1
|
Yerragunta M, Tiwari A, Chakrabarti R, Rimer JD, Kahr B, Vekilov PG. A dual growth mode unique for organic crystals relies on mesoscopic liquid precursors. Commun Chem 2024; 7:190. [PMID: 39198705 PMCID: PMC11358147 DOI: 10.1038/s42004-024-01275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Organic solvents host the synthesis of high-value crystals used as pharmaceuticals and optical devices, among other applications. A knowledge gap persists on how replacing the hydrogen bonds and polar attraction that dominate aqueous environments with the weaker van der Waals forces affects the growth mechanism, including its defining feature, whether crystals grow classically or nonclassically. Here we demonstrate a rare dual growth mode of etioporphyrin I crystals, enabled by liquid precursors that associate with crystal surfaces to generate stacks of layers, which then grow laterally by incorporating solute molecules. Our findings reveal the precursors as mesoscopic solute-rich clusters, a unique phase favored by weak bonds such as those between organic solutes. The lateral spreading of the precursor-initiated stacks of layers crucially relies on abundant solute supply directly from the solution, bypassing diffusion along the crystal surface; the direct incorporation pathway may, again, be unique to organic solvents. Clusters that evolve to amorphous particles do not seamlessly integrate into crystal lattices. Crystals growing fast and mostly nonclassically at high supersaturations are not excessively strained. Our findings demonstrate that the weak interactions typical of organic systems promote nonclassical growth modes by supporting liquid precursors and enabling the spreading of multilayer stacks.
Collapse
Affiliation(s)
- Manasa Yerragunta
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX, 77204-4004, USA
- Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX, 77204-4004, USA
| | - Akash Tiwari
- Department of Chemistry, Molecular Design Institute, New York University, New York, NY, 10003, USA
| | - Rajshree Chakrabarti
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX, 77204-4004, USA
| | - Jeffrey D Rimer
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX, 77204-4004, USA
- Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX, 77204-4004, USA
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX, 77204-5003, USA
| | - Bart Kahr
- Department of Chemistry, Molecular Design Institute, New York University, New York, NY, 10003, USA
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX, 77204-4004, USA.
- Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX, 77204-4004, USA.
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX, 77204-5003, USA.
| |
Collapse
|
2
|
Hu L, Albanyan H, Yang J, Tan X, Wang Y, Yang M, Zhong X, Ward MD, Sahota A. Structure-activity relationships and pharmacokinetic evaluation of L-cystine diamides as L-cystine crystallization inhibitors for cystinuria. Med Chem Res 2024; 33:1384-1407. [PMID: 39494106 PMCID: PMC11529803 DOI: 10.1007/s00044-024-03228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/20/2024] [Indexed: 11/05/2024]
Abstract
Cystinuria is a rare genetic disorder characterized by defective l-cystine reabsorption from the renal proximal tubule, resulting in abnormally high concentrations of L-cystine and subsequent l-cystine crystallization and stone formation in urine. l-Cystine diamides have shown great promise as inhibitors of l-cystine crystallization. The free α-amino groups in l-cystine diamides have previously been shown to be necessary for l-cystine crystallization inhibitory activity. In this study, three additional series of l-cystine diamide analogs were designed to explore further the structure-activity relationships for l-cystine crystallization inhibition. It has been demonstrated that the middle disulfide bond is required for optimal l-cystine crystallization inhibitory activity, and the only regions that can be modified are the two terminal amides. The presence of another basic amine 2-3 atoms away from the amide nitrogen is also critical for optimal activity. Disulfide exchange was found to be the main metabolic pathway resulting in the formation of two molecules of the active mixed disulfide metabolite from a single l-cystine diamide. l-Cystine diamides have the potential to be developed into a much-needed therapy for cystinuria.
Collapse
Affiliation(s)
- Longqin Hu
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
- The Cancer Institute of New Jersey, New Brunswick, New Jersey 08901
| | - Haifa Albanyan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Jeffrey Yang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Xiangduan Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Yiling Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Min Yang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Xiaodi Zhong
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003
| | - Michael D Ward
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003
| | - Amrik Sahota
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| |
Collapse
|
3
|
Torii H, Miura H. Oscillatory zoning of minerals as a fingerprint of impurity-mediated growth. Sci Rep 2024; 14:13337. [PMID: 38902333 PMCID: PMC11190243 DOI: 10.1038/s41598-024-63722-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
We propose a kinetic mathematical model of the oscillatory compositional zoning profile recorded in minerals based on the crystal growth suppression induced by impurities. Notably, the presence of a small amount of impurities significantly inhibits crystal growth, and a growth inhibition mechanism called the pinning effect is widely accepted. Here we show that a model that considers the pinning effect and adsorption/desorption kinetics of impurities on the crystal surface can reproduce the oscillatory compositional zoning. As impurities are common in nature, this model suggests the existence of a universal mechanism that can occur in the growth processes of various crystals.
Collapse
Affiliation(s)
- Hiroki Torii
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 4678501, Japan
| | - Hitoshi Miura
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 4678501, Japan.
| |
Collapse
|
4
|
Thosar AU, Cai Y, Marks SM, Vicars Z, Choi J, Pallath A, Patel AJ. On the engulfment of antifreeze proteins by ice. Proc Natl Acad Sci U S A 2024; 121:e2320205121. [PMID: 38833468 PMCID: PMC11181090 DOI: 10.1073/pnas.2320205121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/16/2024] [Indexed: 06/06/2024] Open
Abstract
Antifreeze proteins (AFPs) are remarkable biomolecules that suppress ice formation at trace concentrations. To inhibit ice growth, AFPs must not only bind to ice crystals, but also resist engulfment by ice. The highest supercooling, [Formula: see text], for which AFPs are able to resist engulfment is widely believed to scale as the inverse of the separation, [Formula: see text], between bound AFPs, whereas its dependence on the molecular characteristics of the AFP remains poorly understood. By using specialized molecular simulations and interfacial thermodynamics, here, we show that in contrast with conventional wisdom, [Formula: see text] scales as [Formula: see text] and not as [Formula: see text]. We further show that [Formula: see text] is proportional to AFP size and that diverse naturally occurring AFPs are optimal at resisting engulfment by ice. By facilitating the development of AFP structure-function relationships, we hope that our findings will pave the way for the rational design of AFPs.
Collapse
Affiliation(s)
- Aniket U. Thosar
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Yusheng Cai
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Sean M. Marks
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Zachariah Vicars
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Jeongmoon Choi
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Akash Pallath
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Amish J. Patel
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
5
|
Lyu J, Zhu T, Zhou Y, Zhao T, Fei M, Zhong X, He H. Controlling the Crystal Growth of DNA Molecules via Strategic Chemical Modifications. Chemistry 2024; 30:e202400012. [PMID: 38477176 DOI: 10.1002/chem.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
Intermolecular interactions are critical to the crystallization of biomolecules, yet the precise control of biomolecular crystal growth based on these interactions remains elusive. To understand the connections between the crystallization kinetics and the strength of intermolecular interactions, herein we have employed DNA triangular crystals and modified ones as a versatile tool to investigate how the strength of intermolecular interaction affects crystal growth. Interestingly, we have found that the 2'-O-methylation at sticky ends of the DNA triangle could strengthen its intermolecular interaction, resulting in the accelerated formation of smaller crystals. Conversely, phosphorothioate modification could weaken the sticky-end cohesion and delay the nucleation, resulting in formation of fewer but larger crystals. In addition, these modification effects were consistently observed in the crystallization of a DNA decamer. In one word, our experimental results demonstrate that the strength of intermolecular interaction directly impacts crystal growth. It suggests that 2'-O-methylation and phosphorothioate modification represents a rational strategy for controlling DNA molecules grow into desired crystals and it also facilitates structural determination.
Collapse
Affiliation(s)
- Jiazhen Lyu
- School of Laboratory Medicine, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Tingyu Zhu
- School of Stomatology, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Yan Zhou
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Ting Zhao
- School of Laboratory Medicine, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Meiling Fei
- School of Laboratory Medicine, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xiaowu Zhong
- School of Laboratory Medicine, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Hongfei He
- School of Laboratory Medicine, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| |
Collapse
|
6
|
Chen XG, Lin L, Huang GY, Chen XM, Li XZ, Zhou YK, Zou Y, Fu T, Li P, Li Z, Sun HB. Optofluidic crystallithography for directed growth of single-crystalline halide perovskites. Nat Commun 2024; 15:3677. [PMID: 38693167 PMCID: PMC11063063 DOI: 10.1038/s41467-024-48110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Crystallization is a fundamental phenomenon which describes how the atomic building blocks such as atoms and molecules are arranged into ordered or quasi-ordered structure and form solid-state materials. While numerous studies have focused on the nucleation behavior, the precise and spatiotemporal control of growth kinetics, which dictates the defect density, the micromorphology, as well as the properties of the grown materials, remains elusive so far. Herein, we propose an optical strategy, termed optofluidic crystallithography (OCL), to solve this fundamental problem. Taking halide perovskites as an example, we use a laser beam to manipulate the molecular motion in the native precursor environment and create inhomogeneous spatial distribution of the molecular species. Harnessing the coordinated effect of laser-controlled local supersaturation and interfacial energy, we precisely steer the ionic reaction at the growth interface and directly print arbitrary single crystals of halide perovskites of high surface quality, crystallinity, and uniformity at a high printing speed of 102 μm s-1. The OCL technique can be potentially extended to the fabrication of single-crystal structures beyond halide perovskites, once crystallization can be triggered under the laser-directed local supersaturation.
Collapse
Affiliation(s)
- Xue-Guang Chen
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Haidian, Beijing, 100084, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing, 100084, China
| | - Linhan Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing, 100084, China.
| | - Guan-Yao Huang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Tsinghua University, Beijing, 100084, China
| | - Xiao-Mei Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing, 100084, China
| | - Xiao-Ze Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing, 100084, China
| | - Yun-Ke Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing, 100084, China
| | - Yixuan Zou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing, 100084, China
| | - Tairan Fu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Tsinghua University, Beijing, 100084, China
| | - Peng Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing, 100084, China
| | - Zhengcao Li
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Haidian, Beijing, 100084, China.
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing, 100084, China.
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
7
|
Yang C, Liu Y, Wong KY, Li H, Magdanz V, Sun C, Liu J. Adsorption of DNA and Aptamers to Sodium Urate Crystals and Inhibition of Crystal Growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8730-8737. [PMID: 38616350 DOI: 10.1021/acs.langmuir.4c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
An elevated level of blood uric acid (UA) can cause the formation of kidney stones, gout, and other diseases. We recently isolated a few DNA aptamers that can selectively bind to UA. In this work, we investigated the adsorption of a UA aptamer and random sequence DNA onto sodium urate crystals. Both DNA strands adsorbed similarly to urate crystals. In addition, both the UA aptamer and random DNA can inhibit the growth of urate crystals, suggesting a nonspecific adsorption mechanism rather than specific aptamer binding. In the presence of 500 nM DNA, the growth of needle-like sodium urate crystals was inhibited, and the crystals appeared granular after 6 h. To understand the mechanism of DNA adsorption, a few chemicals were added to desorb DNA. DNA bases contributed more to the adsorption than the phosphate backbone. Surfactants induced significant DNA desorption. Finally, DNA could also be adsorbed onto real UA kidney stones. This study provides essential insights into the interactions between DNA oligonucleotides and urate crystals, including the inhibition of growth and interface effects of DNA on sodium urate crystals.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong 999077, China
| | - Ka-Ying Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong 999077, China
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Veronika Magdanz
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
8
|
Kang X, Zhang M, Tang W, Gong J. Growth "self-inhibition" of irbesartan desmotrope: surface intra-annular tautomer inter-conversion is the culprit. Chem Commun (Camb) 2024; 60:3511-3514. [PMID: 38410911 DOI: 10.1039/d3cc06170a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The newly discovered growth self-inhibition phenomenon of tautomeric crystals is now generalized to the demostrope (form B) of irbesartan that displays intra-annular tautomerism in neutral aqueous solutions. The dynamic intra-annular tautomer inter-conversion on the surface is the key factor. Our findings provide implications for producing and engineering tautomeric materials.
Collapse
Affiliation(s)
- Xiang Kang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Mingtao Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin 300072, China
| |
Collapse
|
9
|
Guerreiro BM, Concórdio-Reis P, Pericão H, Martins F, Moppert X, Guézennec J, Lima JC, Silva JC, Freitas F. Elevated fucose content enhances the cryoprotective performance of anionic polysaccharides. Int J Biol Macromol 2024; 261:129577. [PMID: 38246459 DOI: 10.1016/j.ijbiomac.2024.129577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Biological cryopreservation often involves using a cryoprotective agent (CPA) to mitigate lethal physical stressors cells endure during freezing and thawing, but effective CPA concentrations are cytotoxic. Hence, natural polysaccharides have been studied as biocompatible alternatives. Here, a subset of 26 natural polysaccharides of various chemical composition was probed for their potential in enhancing the metabolic post-thaw viability (PTV) of cryopreserved Vero cells. The best performing cryoprotective polysaccharides contained significant fucose amounts, resulting in average PTV 2.8-fold (up to 3.1-fold) compared to 0.8-fold and 2.2-fold for all non-cryoprotective and cryoprotective polysaccharides, respectively, outperforming the optimized commercial CryoStor™ CS5 formulation (2.6-fold). Stoichiometrically, a balance between fucose (18-35.7 mol%), uronic acids (UA) (13.5-26 mol%) and high molecular weight (MW > 1 MDa) generated optimal PTV. Principal component analysis (PCA) revealed that fucose enhances cell survival by a charge-independent, MW-scaling mechanism (PC1), drastically different from the charge-dominated ice growth disruption of UA (PC2). Its neutral nature and unique properties distinguishable from other neutral monomers suggest fucose may play a passive role in conformational adaptability of polysaccharide to ice growth inhibition, or an active role in cell membrane stabilization through binding. Ultimately, fucose-rich anionic polysaccharides may indulge in polymer-ice and polymer-cell interactions that actively disrupt ice and minimize lethal volumetric fluctuations due to a balanced hydrophobic-hydrophilic character. Our research showed the critical role neutral fucose plays in enhancing cellular cryopreservation outcomes, disputing previous assumptions of polyanionicity being the sole governing predictor of cryoprotection.
Collapse
Affiliation(s)
- Bruno M Guerreiro
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Patrícia Concórdio-Reis
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Helena Pericão
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Filipa Martins
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Xavier Moppert
- Pacific Biotech SAS, BP 140 289, 98 701 Arue, Tahiti, French Polynesia.
| | - Jean Guézennec
- AiMB (Advices in Marine Biotechnology), 17 Rue d'Ouessant, 29280 Plouzané, France
| | - João C Lima
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Jorge C Silva
- CENIMAT/I3N, Department of Physics, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Filomena Freitas
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| |
Collapse
|
10
|
Huang A, Tong L, Kou X, Gao R, Li ZW, Huang S, Zhu F, Chen G, Ouyang G. Structural and Functional Insights into the Biomineralized Zeolite Imidazole Frameworks. ACS NANO 2023; 17:24130-24140. [PMID: 38015792 DOI: 10.1021/acsnano.3c09118] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Biomineralization is a natural process of mineral formation mediated by biomacromolecules, allowing access to hierarchical structures integrating biological, chemical, and material properties. In this contribution, we comprehensively investigate the biomineralization of zeolite imidazole frameworks (ZIFs) for one-step synthesis of an enzyme-MOF biocomposite, in terms of differential crystallization behaviors, fine microstructure of resultant ZIF biominerals, the enzyme's conformation evolution, and protective effect of ZIF mineral. We discover that the biomineralization ability is ZIF organic linker dependent and the biocatalytic function is highly related to the ZIF mineral species and their distinguishable topologies and defect structures. Importantly, a side-by-side analysis suggests that the protective effect of ZIF mineral toward the hosted enzyme is highly associated with the synergistic effect of size dimension and chemical microenvironment of the ZIF pores. This work provides important insight into the ZIF-dependent biomineralization behaviors and highlights the important role of the ZIF microstructure in its biocatalytic activity and durability, which has been underestimated previously.
Collapse
Affiliation(s)
- Anlian Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Linjing Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Rui Gao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhi-Wei Li
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
11
|
Liu Y, Zhang Q, Du J, Guo R. Arginine-rich peptides as crystallization inhibitors for sodium urate. J Mater Chem B 2023; 11:7389-7400. [PMID: 37431691 DOI: 10.1039/d3tb00666b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Inhibiting the formation of urate crystals is the key to prevent hyperuricemia from developing into gout. Although many studies have focused on the influence of biomacromolecules in the crystallization behavior of sodium urate, the role of peptides with specific structures may contribute to unprecedented regulatory effects. Here, for the first time, we studied the effects of cationic peptides on the phase behavior, crystallization kinetics, and size/morphology of urate crystals. The addition of protamine (PRTM, a typical natural arginine-rich peptide) prolongs the nucleation induction time of sodium urate and inhibits crystal nucleation effectively. PRTM binds to the surface of amorphous sodium urate (ASU) through the hydrogen bond and electrostatic attraction between guanidine groups and urate anions, which is conducive to maintaining the state of ASU and inhibiting crystal nucleation. Moreover, PRTM preferentially binds to the MSUM plane and leads to a significant reduction in the aspect ratio of MSUM filamentous crystals. Further studies showed that there are significant differences in the inhibiting effects of arginine-rich peptides with different chain lengths on the crystallization behavior of sodium urate. Both guanidine functional groups and peptide chain length determine the crystallization inhibiting effect of peptides simultaneously. The present work highlights the potential role of arginine peptides in inhibiting the crystallization of urate and provides new insights into the inhibition mechanism in the pathological biomineralization of sodium urate, demonstrating the possibility of using cationic peptides to treat gout.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - QianYa Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - JiaMei Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| |
Collapse
|
12
|
Farag H, Peters B. Engulfment Avalanches and Thermal Hysteresis for Antifreeze Proteins on Supercooled Ice. J Phys Chem B 2023. [PMID: 37294871 DOI: 10.1021/acs.jpcb.3c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antifreeze proteins (AFPs) bind to the ice-water surface and prevent ice growth at temperatures below 0 °C through a Gibbs-Thomson effect. Each adsorbed AFP creates a metastable depression on the surface that locally resists ice growth, until ice engulfs the AFP. We recently predicted the susceptibility to engulfment as a function of AFP size, distance between AFPs, and supercooling [ J. Chem. Phys. 2023, 158, 094501]. For an ensemble of AFPs adsorbed on the ice surface, the most isolated AFPs are the most susceptible, and when an isolated AFP gets engulfed, its former neighbors become more isolated and more susceptible to engulfment. Thus, an initial engulfment event can trigger an avalanche of subsequent engulfment events, leading to a sudden surge of unrestrained ice growth. This work develops a model to predict the supercooling at which the first engulfment event will occur for an ensemble of randomly distributed AFP pinning sites on an ice surface. Specifically, we formulate an inhomogeneous survival probability that accounts for the AFP coverage, the distribution of AFP neighbor distances, the resulting ensemble of engulfment rates, the ice surface area, and the cooling rate. We use the model to predict thermal hysteresis trends and compare with experimental data.
Collapse
Affiliation(s)
- Hossam Farag
- Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Li M, Reeder MW, Wu T. Ice recrystallization inhibition effect of cellulose nanocrystals at constant and cycling temperatures. Int J Biol Macromol 2023:125108. [PMID: 37257528 DOI: 10.1016/j.ijbiomac.2023.125108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Understanding the effects of ice recrystallization inhibitors at varying temperatures is critical for evaluating their applications. We studied the ice recrystallization inhibition (IRI) effects of cellulose nanocrystals (CNCs) at constant and cycling temperatures. A splat assay using a 3.0 % sucrose solution showed that the IRI effect of 0.2 % CNCs decreased with increasing temperatures from -10 °C to -2 °C; the IRI effects of 0.5 % and 1.0 % CNCs remained unchanged for an increase in temperature from -10 °C to -4 °C but decreased at the temperature of -2 °C. A sandwich assay using a 25.0 % sucrose solution revealed that IRI effects increased with increasing temperatures, except in the presence of 0.2 % and 0.5 % CNCs at -5 °C and - 4 °C. A sandwich assay using a 35.0 % sucrose solution revealed that better IRI effects were observed at higher temperatures at all CNCs concentrations. At cycling temperatures, CNCs were inactive for storage times for ≤2 h, regardless of the rate, holding time, and amplitude of temperature fluctuation, but were active for storage times of 2 and 10 days. The IRI effects of CNCs at different temperatures may be related to the coverage of CNCs on ice surface, diffusion rate of CNCs to ice surface, and types of ice recrystallization.
Collapse
Affiliation(s)
- Min Li
- Department of Food Science, The University of Tennessee, 2510 River Drive, Knoxville, TN 37996, USA
| | - Matthew Winston Reeder
- Department of Food Science, The University of Tennessee, 2510 River Drive, Knoxville, TN 37996, USA
| | - Tao Wu
- Department of Food Science, The University of Tennessee, 2510 River Drive, Knoxville, TN 37996, USA.
| |
Collapse
|
14
|
Fakhreeva AV, Nosov VV, Voloshin AI, Dokichev VA. Polysaccharides as Effective and Environmentally Friendly Inhibitors of Scale Deposition from Aqueous Solutions in Technological Processes. Polymers (Basel) 2023; 15:polym15061478. [PMID: 36987258 PMCID: PMC10059850 DOI: 10.3390/polym15061478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
In this paper, we consider natural and modified polysaccharides for use as active ingredients in scale deposition inhibitors to prevent the formation of scale in oil production equipment, heat exchange equipment, and water supply systems. Modified and functionalized polysaccharides with a strong ability to inhibit the formation of deposits of typical scale, such as carbonates and sulfates of alkaline earth elements found in technological processes, are described. This review discusses the mechanisms of the inhibition of crystallization using polysaccharides, and the various methodological aspects of evaluating their effectiveness are considered. This review also provides information on the technological application of scale deposition inhibitors based on polysaccharides. Special attention is paid to the environmental aspect of the use of polysaccharides in industry as scale deposition inhibitors.
Collapse
Affiliation(s)
- Alsu Venerovna Fakhreeva
- Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, Ufa 450054, Russia
| | | | - Alexander Iosifovich Voloshin
- Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, Ufa 450054, Russia
- RN–BashNIPIneft LLC, Ufa 450103, Russia
- Correspondence: ; Tel.: +7-917-470-6695
| | - Vladimir Anatolyevich Dokichev
- Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, Ufa 450054, Russia
- RN–BashNIPIneft LLC, Ufa 450103, Russia
| |
Collapse
|
15
|
Wagner A, Upcher A, Maria R, Magnesen T, Zelinger E, Raposo G, Palmer BA. Macromolecular sheets direct the morphology and orientation of plate-like biogenic guanine crystals. Nat Commun 2023; 14:589. [PMID: 36737617 PMCID: PMC9898273 DOI: 10.1038/s41467-023-35894-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Animals precisely control the morphology and assembly of guanine crystals to produce diverse optical phenomena in coloration and vision. However, little is known about how organisms regulate crystallization to produce optically useful morphologies which express highly reflective crystal faces. Guanine crystals form inside iridosome vesicles within chromatophore cells called iridophores. By following iridosome formation in developing scallop eyes, we show that pre-assembled, fibrillar sheets provide an interface for nucleation and direct the orientation of the guanine crystals. The macromolecular sheets cap the (100) faces of immature guanine crystals, inhibiting growth along the π-stacking growth direction. Crystal growth then occurs preferentially along the sheets to generate highly reflective plates. Despite their different physical properties, the morphogenesis of iridosomes bears a striking resemblance to melanosome morphogenesis in vertebrates, where amyloid sheets template melanin deposition. The common control mechanisms for melanin and guanine formation inspire new approaches for manipulating the morphologies and properties of molecular materials.
Collapse
Affiliation(s)
- Avital Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Thorolf Magnesen
- Department of Biological Sciences, University of Bergen, Postbox 7803, Bergen, N-5020, Norway
| | - Einat Zelinger
- The CSI Center for Scientific Imaging, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot, 7610001, Israel
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005, Paris, France
| | - Benjamin A Palmer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel.
| |
Collapse
|
16
|
Wang Z, Li M, Wu T. Ice recrystallization inhibition activity in bile salts. J Colloid Interface Sci 2023; 629:728-738. [PMID: 36193617 DOI: 10.1016/j.jcis.2022.09.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
Ice recrystallization inhibitors are novel cryoprotective agents that can reduce the freezing damage of cells, tissues, and organs in cryopreservation. To date, potent ice recrystallization inhibition (IRI) activity has been found on antifreeze (glyco)proteins, polymers, nanomaterials, and a limited number of chemically synthesized small molecules. This paper reports a relatively potent IRI activity on a group of small biological molecules - bile salts. The IRI activity increased as the number of hydroxyl groups decreased in bile salts. Among sodium cholate (NaC), sodium deoxycholate (NaDC), sodium chenodeoxycholate (NaCC), and sodium lithocholate (NaLC), the least hydrophilic NaLC at a concentration of 25.0 mM entirely blocked the ice growth in phosphate-buffered saline (PBS) under test conditions. The IRI activity of bile salts was not related to viscosity or gelation. No IRI activity was found below the critical micelle concentration. The IRI activity was independent of liquid crystal formation. No ice shaping and thermal hysteresis were observed on any bile salts, but NaC and NaLC could increase the ice nucleation temperature. The findings add bile salts to the existing material list of ice recrystallization inhibitors.
Collapse
Affiliation(s)
- Zhihong Wang
- Department of Food Science, The University of Tennessee, Knoxville, 2510 River Drive, TN 37996, USA
| | - Min Li
- Department of Food Science, The University of Tennessee, Knoxville, 2510 River Drive, TN 37996, USA
| | - Tao Wu
- Department of Food Science, The University of Tennessee, Knoxville, 2510 River Drive, TN 37996, USA.
| |
Collapse
|
17
|
Eyal Z, Deis R, Varsano N, Dezorella N, Rechav K, Houben L, Gur D. Plate-like Guanine Biocrystals Form via Templated Nucleation of Crystal Leaflets on Preassembled Scaffolds. J Am Chem Soc 2022; 144:22440-22445. [PMID: 36469805 DOI: 10.1021/jacs.2c11136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Controlling the morphology of crystalline materials is challenging, as crystals have a strong tendency toward thermodynamically stable structures. Yet, organisms form crystals with distinct morphologies, such as the plate-like guanine crystals produced by many terrestrial and aquatic species for light manipulation. Regulation of crystal morphogenesis was hypothesized to entail physical growth restriction by the surrounding membrane, combined with fine-tuned interactions between organic molecules and the growing crystal. Using cryo-electron tomography of developing zebrafish larvae, we found that guanine crystals form via templated nucleation of thin leaflets on preassembled scaffolds made of 20-nm-thick amyloid fibers. These leaflets then merge and coalesce into a single plate-like crystal. Our findings shed light on the biological regulation of crystal morphogenesis, which determines their optical properties.
Collapse
Affiliation(s)
- Zohar Eyal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rachael Deis
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nili Dezorella
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lothar Houben
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dvir Gur
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
18
|
Andrews J, Kennedy SR, Yufit DS, McCabe JF, Steed JW. Designer Gelators for the Crystallization of a Salt Active Pharmaceutical Ingredient-Mexiletine Hydrochloride. CRYSTAL GROWTH & DESIGN 2022; 22:6775-6785. [PMID: 36345390 PMCID: PMC9635620 DOI: 10.1021/acs.cgd.2c00925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
We report an approach to obtain drug-mimetic supramolecular gelators, which are capable of stabilizing metastable polymorphs of the pharmaceutical salt mexiletine hydrochloride, a highly polymorphic antiarrhythmic drug. Solution-phase screening led to the discovery of two new solvated solid forms of mexiletine, a type C 1,2,4-trichlorobenzene tetarto-solvate and a type D nitrobenzene solvate. Various metastable forms were crystallized within the gels under conditions which would not have been possible in solution. Despite typically crystallizing concomitantly with form 1, a pure sample of form 3 was crystallized within a gel of ethyl methyl ketone. Various type A channel solvates were crystallized from gels of toluene and ethyl acetate, in which the contents of the channels varied from those of solution-phase forms. Most strikingly, the high-temperature-stable form 2 was crystallized from a gel in 1,2-dibromoethane: the only known route to access this form at room temperature. These results exemplify the powerful stabilizing effect of drug-mimetic supramolecular gels, which can be exploited in pharmaceutical polymorph screens to access highly metastable or difficult-to-nucleate solid forms.
Collapse
Affiliation(s)
- Jessica
L. Andrews
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Stuart R. Kennedy
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Dmitry S. Yufit
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| | - James F. McCabe
- Pharmaceutical
Sciences, R&D, AstraZeneca, Charter Way, Silk Road Business Park, Macclesfield SK10 2NA, U.K.
| | - Jonathan W. Steed
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| |
Collapse
|
19
|
Relationship between type II polyproline helix secondary structure and thermal hysteresis activity of short homopeptides. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Wagner A, Ezersky V, Maria R, Upcher A, Lemcoff T, Aflalo ED, Lubin Y, Palmer BA. The Non-Classical Crystallization Mechanism of a Composite Biogenic Guanine Crystal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202242. [PMID: 35608485 DOI: 10.1002/adma.202202242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Spectacular colors and visual phenomena in animals are produced by light interference from highly reflective guanine crystals. Little is known about how organisms regulate crystal morphology to tune the optics of these systems. By following guanine crystal formation in developing spiders, a crystallization mechanism is elucidated. Guanine crystallization is a "non-classical," multistep process involving a progressive ordering of states. Crystallization begins with nucleation of partially ordered nanogranules from a disordered precursor phase. Growth proceeds by orientated attachment of the nanogranules into platelets which coalesce into single crystals, via progressive relaxation of structural defects. Despite their prismatic morphology, the platelet texture is retained in the final crystals, which are composites of crystal lamellae and interlamellar sheets. Interactions between the macromolecular sheets and the planar face of guanine appear to direct nucleation, favoring platelet formation. These findings provide insights on how organisms control the morphology and optical properties of molecular crystals.
Collapse
Affiliation(s)
- Avital Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Vladimir Ezersky
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Tali Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Department of Life Sciences, Achva Academic College, Mobile Post Shikmim, Beer-Sheba, 79800, Israel
| | - Yael Lubin
- Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Southern Israel, 8499000, Israel
| | - Benjamin A Palmer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| |
Collapse
|
21
|
Cui S, Zhang W, Shao X, Cai W. Do antifreeze proteins generally possess the potential to promote ice growth? Phys Chem Chem Phys 2022; 24:7901-7908. [PMID: 35311839 DOI: 10.1039/d1cp05431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding of antifreeze proteins (AFPs) to ice needs to be mediated by interfacial water molecules. Our previous study of the effect of AFPs on the dynamics of the interfacial water of freezing at its initial stage has shown that AFPs can promote the growth of ice before binding to it. However, whether different AFPs can promote the freezing of water molecules on the basal and the prismatic surfaces of ice still needs further study. In the present contribution, five representative natural AFPs with different structures and different activities that can be adsorbed on the basal and/or prismatic surfaces of ice are investigated at the atomic level. Our results show that the phenomenon of promoting the growth of ice crystals is not universal. Only hyperactive AFPs (hypAFPs) can promote the growth of the basal plane of ice, while moderately active AFPs cannot. Moreover, this significant promotion is not observed on the prismatic plane regardless of their activity. Further analysis indicates that this promotion may result from the thicker ice/water interface of the basal plane, and the synergy of hypAFPs with ice crystals.
Collapse
Affiliation(s)
- Shaoli Cui
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China.
| | - Weijia Zhang
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China.
| | - Xueguang Shao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China.
| | - Wensheng Cai
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China.
| |
Collapse
|
22
|
Wang P, Cheng W, Zhang X, Liu Q, Li J, Ma J, Zhang T. Membrane Scaling and Wetting in Membrane Distillation: Mitigation Roles Played by Humic Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3258-3266. [PMID: 35148061 DOI: 10.1021/acs.est.1c07294] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane scaling and wetting severely hinder practical applications of membrane distillation (MD) for hypersaline water/wastewater treatment. In this regard, the effects of feedwater constituents are still not well understood. Herein, we investigated how humic acid (HA) influenced gypsum-induced membrane scaling and wetting during MD desalination. At low concentrations (5-20 mg L-1), HA notably mitigated membrane scaling and wetting. The morphological characterization of scaled membranes revealed that the antiwetting behavior could be ascribed to the formation of a compact and protective gypsum/HA scale layer, which blocked the flow channel of scaling ions and suppressed the intrusion of scale particles into membrane pores. Based on the comprehensive analysis of the scaling process, the formation of the scale layer was related to the heterogeneous crystallization of gypsum on the membrane surface. Moreover, deprotonated HA interfered with the heterogeneous crystallization process by inhibiting the formation of gypsum nuclei and altering the orientation of crystal growth, thus delaying membrane scaling and altering the morphology of the scale layer. Thermodynamic and kinetic analyses further demonstrated the mitigation mechanism of HA. Furthermore, improved fouling reversibility and antiwetting ability in synthetic seawater treatment endowed by HA were observed. This study provides new insight into the roles played by the organic constituents of water/wastewater during membrane desalination, providing a valuable reference for developing novel strategies to improve the performance of MD.
Collapse
Affiliation(s)
- Peizhi Wang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qianliang Liu
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
23
|
Shtukenberg AG, Hu L, Sahota A, Kahr B, Ward MD. Disrupting Crystal Growth through Molecular Recognition: Designer Therapies for Kidney Stone Prevention. Acc Chem Res 2022; 55:516-525. [PMID: 35088591 DOI: 10.1021/acs.accounts.1c00631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aberrant crystallization within the human body can lead to several disease states or adverse outcomes, yet much remains to be understood about the critical stages leading to these events, which can include crystal nucleation and growth, crystal aggregation, and the adhesion of crystals to cells. Kidney stones, which are aggregates of single crystals with physiological origins, are particularly illustrative of pathological crystallization, with 10% of the U.S. population experiencing at least one stone occurrence in their lifetimes. The human record of kidney stones is more than 2000 years old, as noted by Hippocrates in his renowned oath and much later by Robert Hooke in his treatise Micrographia. William Hyde Wollaston, who was a physician, chemist, physicist, and crystallographer, was fascinated with stones, leading him to discover an unusual stone that he described in 1810 as cystic oxide, later corrected to cystine. Despite this long history, however, a fundamental understanding of the stages of stone formation and the rational design of therapies for stone prevention have remained elusive.This Account reviews discoveries and advances from our laboratories that have unraveled the complex crystal growth mechanisms of l-cystine, which forms l-cystine kidney stones in at least 20 000 individuals in the U.S. alone. Although l-cystine stones affect fewer individuals than common calcium oxalate stones, they are usually larger, recur more frequently, and are more likely to cause chronic kidney disease. Real-time in situ atomic force microscopy (AFM) reveals that the crystal growth of hexagonal l-cystine is characterized by a complex mechanism in which six interlaced anisotropic spirals grow synchronously, emanating from a single screw dislocation to generate a micromorphology with the appearance of stacked hexagonal islands. In contrast, proximal heterochiral dislocations produce features that appear to be spirals but actually are closed loops, akin to a Frank-Read source. These unusual and aesthetic growth patterns can be explained by the coincidence of the dislocation Burgers vector and the crystallographic 61 screw axis. Inhibiting l-cystine crystal growth is key to preventing stone formation. Decades of studies of "tailor-made additives", which are imposter molecules that closely resemble the solute and bind to crystal faces through molecular recognition, have demonstrated their effects on crystal properties such as morphology and polymorphism. The ability to visualize crystal growth in real time by AFM enables quantitative measurements of step velocities and, by extension, the effect of prospective inhibitors on growth rates, which can then be used to deduce inhibition mechanisms. Investigations with a wide range of prospective inhibitors revealed the importance of precise molecular recognition for binding l-cystine imposters to crystal sites, which results in step pinning and the inhibition of step advancement as well as the growth of bulk crystals. Moreover, select inhibitors of crystal growth, measured in vitro, reduce or eliminate stone formation in knockout mouse models of cystinuria, promising a new pathway to l-cystine stone prevention. These observations have wide-ranging implications for the design of therapies based on tailor-made additives for diseases associated with aberrant crystallization, from disease-related stones to "xenostones" that form in vivo because of the crystallization of low-solubility therapeutic agents such as antiretroviral agents.
Collapse
Affiliation(s)
- Alexander G. Shtukenberg
- Department of Chemistry and Molecular Design Institute, New York University, 100 Washington Square East, New York, New York 10003-6688, United States
| | | | | | - Bart Kahr
- Department of Chemistry and Molecular Design Institute, New York University, 100 Washington Square East, New York, New York 10003-6688, United States
| | - Michael D. Ward
- Department of Chemistry and Molecular Design Institute, New York University, 100 Washington Square East, New York, New York 10003-6688, United States
| |
Collapse
|
24
|
Li S, Macaringue EGJ, Zhou D, Shi P, Tang W, Gong J. Discovering inhibitor molecules for pathological crystallization of CaOx kidney stones from natural extracts of medical herbs. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114733. [PMID: 34644589 DOI: 10.1016/j.jep.2021.114733] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/04/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kidney stones is one of the common diseases of the urinary system. The primary cause of kidney stone formation is the thermodynamic supersaturation of lithogenic solutes in urine, which desaturates by nucleation, crystal growth and aggregation of minerals and salts, mainly Calcium oxalate (CaOx). One of the potential therapies is to develop drug molecules to inhibit or prevent CaOx crystallization in urine. Traditional Chinese medicines (TCMs) provided an efficient approach for the treatment of kidney stones with a specialized-designed recipe of medicinal herbs. But the action details of these herbs were poorly understood due to their complex components, and whether the effective constituents of herbs have an inhibitory effect on the process of stone formation has not been evaluated. AIM OF THE STUDY This study aims to develop and identify inhibitor substitutes from a library of kidney stone prescriptions in traditional Chinese medicines to prevent pathological kidney stone formation. MATERIALS AND METHODS As many as twenty Chinese medicines were extracted and separated into five different polar extracts, the inhibition performance of which on CaOx crystallization was explored by recording and comparing crystallization kinetics. The potential inhibitor molecules in the inhibitory extracts were confirmed by HPLC and their retardation efficacy was evaluated by quantifying nucleation and growth kinetics using colorimetry. Then the inhibitor-COM crystal interactions and specificity were examined by morphology evolution and surface structure analysis. In vitro inhibition performance of inhibitors on crystal growth and attachment of CaOx crystals to human renal epithelial cells were further evaluated by recording the nucleation and adhesive crystal numbers. RESULTS AND CONCLUSION Water- and n-butanol- soluble extracts from 20 kinds of herbs show almost 100% inhibition percentage, and the n-butanol extracts was found better than commercial drug citrate. Twenty-one molecule substitutes were identified from these extracts, and among them polyphenols display the best inhibition efficacy to retard CaOx crystallization. The high-throughput colorimetric assay and morphology examinations reveals thirteen out of 21 molecules show inhibition potential and disrupt growth of CaOx monohydrate crystals by interacting with exposed Ca2+ and C2O42- on the (100) and (010) surfaces. Moreover, these inhibitors also display pronounced performance in protecting renal epithelial cells by inhibiting nucleation and adhesion of CaOx crystals to cells, thus reducing stone formation. The structure-performance correlation among 19 screened molecules that inhibitors having pKa<3.5, logD (pH = 6) <0, H-number>0.1 mmol are the best in suppressing CaOx crystallization. Our findings provide a novel solution to design and manufacture inhibitor drugs from Chinese medicines for preventing pathological kidney stones formation.
Collapse
Affiliation(s)
- Si Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, 300072, PR China
| | - Estevao G J Macaringue
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, 300072, PR China
| | - Donghui Zhou
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Peng Shi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, 300072, PR China
| | - Weiwei Tang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, 300072, PR China.
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
25
|
Darkins R, McPherson IJ, Ford IJ, Duffy DM, Unwin PR. Critical Step Length as an Indicator of Surface Supersaturation during Crystal Growth from Solution. CRYSTAL GROWTH & DESIGN 2022; 22:982-986. [PMID: 35572167 PMCID: PMC9097158 DOI: 10.1021/acs.cgd.1c01249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/11/2022] [Indexed: 06/15/2023]
Abstract
The surface processes that control crystal growth from solution can be probed in real-time by in situ microscopy. However, when mass transport (partly) limits growth, the interfacial solution conditions are difficult to determine, precluding quantitative measurement. Here, we demonstrate the use of a thermodynamic feature of crystal surfaces-the critical step length-to convey the local supersaturation, allowing the surface-controlled kinetics to be obtained. Applying this method to atomic force microscopy measurements of calcite, which are shown to fall within the regime of mixed surface/transport control, unites calcite step velocities with the Kossel-Stranski model, resolves disparities between growth rates measured under different mass transport conditions, and reveals why the Gibbs-Thomson effect in calcite departs from classical theory. Our approach expands the scope of in situ microscopy by decoupling quantitative measurement from the influence of mass transport.
Collapse
Affiliation(s)
- Robert Darkins
- London
Centre for Nanotechnology, University College
London, 17-19 Gordon Street, London WC1H 0AH, U.K.
| | - Ian J. McPherson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Ian J. Ford
- London
Centre for Nanotechnology, University College
London, 17-19 Gordon Street, London WC1H 0AH, U.K.
| | - Dorothy M. Duffy
- London
Centre for Nanotechnology, University College
London, 17-19 Gordon Street, London WC1H 0AH, U.K.
| | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
26
|
Ning Y, Armes SP, Li D. Polymer-Inorganic Crystalline Nanocomposite Materials via Nanoparticle Occlusion. Macromol Rapid Commun 2022; 43:e2100793. [PMID: 35078274 DOI: 10.1002/marc.202100793] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/20/2022] [Indexed: 11/10/2022]
Abstract
Efficient occlusion of guest nanoparticles into host single crystals opens up a straightforward and versatile way to construct functional crystalline nanocomposites. This new technique has attracted increasing research interest because it enables the composition, structure and property of the resulting nanocomposites to be well-controlled. In this review article, we aim to provide a comprehensive summary of nanoparticle occlusion within inorganic crystals. First, we summarize recently-developed strategies for the occlusion of various colloidal particles (e.g., diblock copolymer nanoparticles, polymer-modified inorganic nanoparticles, oil droplets, etc.) within host crystals (e.g., CaCO3 , ZnO or ZIF-8). Second, new results pertaining to spatially-controlled occlusion and the physical mechanism of nanoparticle occlusion are briefly discussed. Finally, we highlight the physicochemical properties and potential applications of various functional nanocomposite crystals constructed via nanoparticle occlusion and we also offer our perspective on the likely future for this research topic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yin Ning
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, People's Republic of China.,College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Steven P Armes
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Dan Li
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, People's Republic of China.,College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
27
|
Patterned crystal growth and heat wave generation in hydrogels. Nat Commun 2022; 13:259. [PMID: 35017471 PMCID: PMC8752664 DOI: 10.1038/s41467-021-27505-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
The crystallization of metastable liquid phase change materials releases stored energy as latent heat upon nucleation and may therefore provide a triggerable means of activating downstream processes that respond to changes in temperature. In this work, we describe a strategy for controlling the fast, exothermic crystallization of sodium acetate from a metastable aqueous solution into trihydrate crystals within a polyacrylamide hydrogel whose polymerization state has been patterned using photomasks. A comprehensive experimental study of crystal shapes, crystal growth front velocities and evolving thermal profiles showed that rapid growth of long needle-like crystals through unpolymerized solutions produced peak temperatures of up to 45˚C, while slower-crystallizing polymerized solutions produced polycrystalline composites and peaked at 30˚C due to lower rates of heat release relative to dissipation in these regions. This temperature difference in the propagating heat waves, which we describe using a proposed analytical model, enables the use of this strategy to selectively activate thermoresponsive processes in predefined areas. The crystallization of metastable liquid phase change materials releases stored energy upon nucleation. Here, the authors demonstrate area-selective activation of thermoresponsive processes by exothermic crystallization of sodium acetate into trihydrate crystals within a patterned polyacrylamide hydrogel.
Collapse
|
28
|
Snook KM, Zasada LB, Chehada D, Xiao DJ. Oxidative control over the morphology of Cu 3(HHTP) 2, a 2D conductive metal–organic framework. Chem Sci 2022; 13:10472-10478. [PMID: 36277645 PMCID: PMC9473509 DOI: 10.1039/d2sc03648g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
The morphology of electrically conductive metal–organic frameworks strongly impacts their performance in applications such as energy storage and electrochemical sensing. However, identifying the appropriate conditions needed to achieve a specific nanocrystal size and shape can be a time-consuming, empirical process. Here we show how partial ligand oxidation dictates the morphology of Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), a prototypical 2D conductive metal–organic framework. Using organic quinones as the chemical oxidant, we demonstrate that partial oxidation of the ligand prior to metal binding alters the nanocrystal aspect ratio by over 60-fold. Systematically varying the extent of initial ligand oxidation leads to distinct rod, block, and flake-like morphologies. These results represent an important advance in the rational control of Cu3(HHTP)2 morphology and motivate future studies into how ligand oxidation impacts the nucleation and growth of 2D conductive metal–organic frameworks. The morphology of a copper-based 2D conductive metal–organic framework can be tuned via controlled ligand oxidation. Using quinone oxidants, we show how partial ligand oxidation prior to metal binding alters the nanocrystal aspect ratio by >60-fold.![]()
Collapse
Affiliation(s)
- Kathleen M. Snook
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Leo B. Zasada
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Dina Chehada
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Dianne J. Xiao
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
29
|
Kang X, Li S, Li M, Li J, Han D, Gong J. Natural inhibitors from earthworms for the crystallization of calcium oxalate monohydrate. CrystEngComm 2022. [DOI: 10.1039/d2ce00630h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two proteins are proposed as CaOx nucleation and crystal growth regulators. The site-specific adsorption of inhibitors is confirmed from both macroscopic and microscopic perspectives.
Collapse
Affiliation(s)
- Xiang Kang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Si Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mengya Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiahui Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Dandan Han
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
30
|
Kezuka Y, Murata H, Yoshida M, Eguchi K, Nakahira A, Tajika M. Effects of trace Si impurities in water on the growth of calcite nanoparticles. CrystEngComm 2022. [DOI: 10.1039/d1ce01463c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Si impurities act as proton buffers in water and prevent the formation of the alkaline environment required for calcite growth.
Collapse
Affiliation(s)
- Yuki Kezuka
- Shiraishi Central Laboratories Co. Ltd., 4–78, Motohama-cho, Amagasaki, Hyogo, 660–0085, Japan
| | - Hidenobu Murata
- Department of Materials Science, Osaka Prefecture University, 1–1 Gakuen-cho, Naka, Sakai, Osaka, 599–8531, Japan
| | - Maya Yoshida
- Shiraishi Central Laboratories Co. Ltd., 4–78, Motohama-cho, Amagasaki, Hyogo, 660–0085, Japan
| | - Kenichiro Eguchi
- Shiraishi Central Laboratories Co. Ltd., 4–78, Motohama-cho, Amagasaki, Hyogo, 660–0085, Japan
| | - Atsushi Nakahira
- Department of Materials Science, Osaka Prefecture University, 1–1 Gakuen-cho, Naka, Sakai, Osaka, 599–8531, Japan
- Trans-Regional Corporation Center for Industrial Materials Research, IMR, Tohoku University, 1–1 Gakuen-cho, Naka, Sakai, Osaka, 599–8531, Japan
| | - Masahiko Tajika
- Shiraishi Central Laboratories Co. Ltd., 4–78, Motohama-cho, Amagasaki, Hyogo, 660–0085, Japan
| |
Collapse
|
31
|
Eddleston MD, Chow EHH, Bučar DK, Thakuria R. Crystal surface defects as possible origins of cocrystal dissociation. CrystEngComm 2022. [DOI: 10.1039/d2ce00166g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomic force microscopy is used as a characterisation tool to investigate cocrystal dissociation under high relative humidity. Caffeine–glutaric acid as a model system showed possible role of crystal surface defects in the process of cocrystal dissociation.
Collapse
Affiliation(s)
- Mark D. Eddleston
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Ernest H. H. Chow
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Dejan-Krešimir Bučar
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Ranjit Thakuria
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Department of Chemistry, Gauhati University, Guwahati 781014, India
| |
Collapse
|
32
|
Blelloch ND, Yarbrough HJ, Mirica KA. Stimuli-responsive temporary adhesives: enabling debonding on demand through strategic molecular design. Chem Sci 2021; 12:15183-15205. [PMID: 34976340 PMCID: PMC8635214 DOI: 10.1039/d1sc03426j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
Stimuli-responsive temporary adhesives constitute a rapidly developing class of materials defined by the modulation of adhesion upon exposure to an external stimulus or stimuli. Engineering these materials to shift between two characteristic properties, strong adhesion and facile debonding, can be achieved through design strategies that target molecular functionalities. This perspective reviews the recent design and development of these materials, with a focus on the different stimuli that may initiate debonding. These stimuli include UV light, thermal energy, chemical triggers, and other potential triggers, such as mechanical force, sublimation, electromagnetism. The conclusion discusses the fundamental value of systematic investigations of the structure-property relationships within these materials and opportunities for unlocking novel functionalities in future versions of adhesives.
Collapse
Affiliation(s)
- Nicholas D Blelloch
- Burke Laboratory, Department of Chemistry, Dartmouth College Hanover New Hampshire 03755 USA http://www.miricagroup.com
| | - Hana J Yarbrough
- Burke Laboratory, Department of Chemistry, Dartmouth College Hanover New Hampshire 03755 USA http://www.miricagroup.com
| | - Katherine A Mirica
- Burke Laboratory, Department of Chemistry, Dartmouth College Hanover New Hampshire 03755 USA http://www.miricagroup.com
| |
Collapse
|
33
|
Mader A, Helmbrecht L, Noorduin WL. Multi-layered Barium and Strontium Carbonate Structures Induced by the Small Organic Dye Acid Orange 7. CRYSTAL GROWTH & DESIGN 2021; 21:6349-6356. [PMID: 34759785 PMCID: PMC8569680 DOI: 10.1021/acs.cgd.1c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The crystal growth behavior induced by small molecular additives is commonly assumed to be far less complex and rich in comparison to that obtained when using macromolecules. Herein, we demonstrate that the small organic molecule Acid Orange 7 can induce a large diversity of multi-layered barium carbonate structures. These multi-layered structures stem from the small molecule imperfectly blocking the fastest growing crystal face. By tuning the balance of growth and inhibition, we control the layer shape and thickness of the structures. Extending these strategies to strontium carbonate enables the precipitation of large quasi two-dimensional multi-layer sheets. Collectively, these findings highlight the unforeseen potential for using small organic molecules to induce the formation of complex inorganic structures.
Collapse
|
34
|
Lemke T, Edte M, Gebauer D, Peter C. Three Reasons Why Aspartic Acid and Glutamic Acid Sequences Have a Surprisingly Different Influence on Mineralization. J Phys Chem B 2021; 125:10335-10343. [PMID: 34473925 DOI: 10.1021/acs.jpcb.1c04467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the role of polymers rich in aspartic acid (Asp) and glutamic acid (Glu) is the key to gaining precise control over mineralization processes. Despite their chemical similarity, experiments revealed a surprisingly different influence of Asp and Glu sequences. We conducted molecular dynamics simulations of Asp and Glu peptides in the presence of calcium and chloride ions to elucidate the underlying phenomena. In line with experimental differences, in our simulations, we indeed find strong differences in the way the peptides interact with ions in solution. The investigated Asp pentapeptide tends to pull a lot of ions into its vicinity, and many structures with clusters of calcium and chloride ions on the surface of the peptide can be observed. Under the same conditions, comparatively fewer ions can be found in proximity of the investigated Glu pentapeptide, and the structures are characterized by single calcium ions bound to multiple carboxylate groups. Based on our simulation data, we identified three reasons contributing to these differences, leading to a new level of understanding additive-ion interactions.
Collapse
Affiliation(s)
- Tobias Lemke
- Theoretical Chemistry, University of Konstanz, 78547 Konstanz, Germany
| | - Moritz Edte
- Theoretical Chemistry, University of Konstanz, 78547 Konstanz, Germany
| | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Christine Peter
- Theoretical Chemistry, University of Konstanz, 78547 Konstanz, Germany
| |
Collapse
|
35
|
Santana P, Aldana Aranda D. Nacre morphology and chemical composition in Atlantic winged oyster Pteria colymbus (Röding, 1798). PeerJ 2021; 9:e11527. [PMID: 34316389 PMCID: PMC8286703 DOI: 10.7717/peerj.11527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/06/2021] [Indexed: 11/27/2022] Open
Abstract
The microstructure and nanostructure of nacre in Pteria colymbus were studied with high-resolution field emission scanning electron microscopy (FESEM). The tablets were found to be flat and polyhedral with four to eight sides, and lengths ranging from 0.6 to 3.0 µm. They consisted of nanocrystals 41 nm wide, growing in the same direction. X-ray diffraction showed the crystals to be mineral phase aragonite, which was confirmed by Raman spectroscopy. Fourier transform infrared spectroscopy identified a band at 1,786.95 cm−1 attributed to carboxylate (carbonyl) groups of the proteins present in the organic matrix as well as bands characteristic of calcium carbonate. X-ray fluorescence showed the nacre to contain 98% calcium carbonate, as well as minor elements (Si, Na, S and Sr) and trace elements (Mg, P, Cu, Al, Fe, Cl, K and Zn).
Collapse
Affiliation(s)
- Pablo Santana
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, México
| | - Dalila Aldana Aranda
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, México
| |
Collapse
|
36
|
di Gregorio MC, Elsousou M, Wen Q, Shimon LJW, Brumfeld V, Houben L, Lahav M, van der Boom ME. Molecular cannibalism: Sacrificial materials as precursors for hollow and multidomain single crystals. Nat Commun 2021; 12:957. [PMID: 33574249 PMCID: PMC7878748 DOI: 10.1038/s41467-021-21076-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023] Open
Abstract
The coexistence of single-crystallinity with a multidomain morphology is a paradoxical phenomenon occurring in biomineralization. Translating such feature to synthetic materials is a highly challenging process in crystal engineering. We demonstrate the formation of metallo-organic single-crystals with a unique appearance: six-connected half-rods forming a hexagonal-like tube. These uniform objects are formed from unstable, monodomain crystals. The monodomain crystals dissolve from the inner regions, while material is anisotropically added to their shell, resulting in hollow, single-crystals. Regardless of the different morphologies and growth mechanism, the crystallographic structures of the mono- and multidomain crystals are nearly identical. The chiral crystals are formed from achiral components, and belong to a rare space group (P622). Sonication of the solvents generating radical species is essential for forming the multidomain single-crystals. This process reduces the concentration of the active metal salt. Our approach offers opportunities to generate a new class of crystals.
Collapse
Affiliation(s)
| | - Merna Elsousou
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Qiang Wen
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Vlad Brumfeld
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Lothar Houben
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Lahav
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | - Milko E van der Boom
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
37
|
Yang J, Cui Y, Chen M, Wang Y, Xu S, Wu S, Wang J, Gong J. Transformation between Two Types of Spherulitic Growth: Tuning the Morphology of Spherulitic Nitroguanidine in a Gelatin Solution. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jing Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin 300072, P. R. China
| | - Yingdan Cui
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Mingyang Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin 300072, P. R. China
| | - Yan Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin 300072, P. R. China
| | - Shijie Xu
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Songgu Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin 300072, P. R. China
| | - Jingkang Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin 300072, P. R. China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
38
|
Ning Y, Han Y, Han L, Derry MJ, Armes SP. Exerting Spatial Control During Nanoparticle Occlusion within Calcite Crystals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yin Ning
- Department of Chemistry University of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| | - Yide Han
- Department of Chemistry University of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| | - Lijuan Han
- Department of Chemistry University of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| | - Matthew J. Derry
- Department of Chemistry University of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
- Present address: Aston Institute of Materials Research Aston University Birmingham B4 7ET UK
| | - Steven P. Armes
- Department of Chemistry University of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| |
Collapse
|
39
|
Ning Y, Han Y, Han L, Derry MJ, Armes SP. Exerting Spatial Control During Nanoparticle Occlusion within Calcite Crystals. Angew Chem Int Ed Engl 2020; 59:17966-17973. [PMID: 32613700 DOI: 10.1002/anie.202007110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/17/2020] [Indexed: 11/08/2022]
Abstract
In principle, nanoparticle occlusion within crystals provides a straightforward and efficient route to make new nanocomposite materials. However, developing a deeper understanding of the design rules underpinning this strategy is highly desirable. In particular, controlling the spatial distribution of the guest nanoparticles within the host crystalline matrix remains a formidable challenge. Herein, we show that the surface chemistry of the guest nanoparticles and the [Ca2+ ] concentration play critical roles in determining the precise spatial location of the nanoparticles within calcite crystals. Moreover, in situ studies provide important mechanistic insights regarding surface-confined nanoparticle occlusion. Overall, this study not only provides useful guidelines for efficient nanoparticle occlusion, but also enables the rational design of patterned calcite crystals using model anionic block copolymer vesicles.
Collapse
Affiliation(s)
- Yin Ning
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South, Yorkshire, S3 7HF, UK
| | - Yide Han
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South, Yorkshire, S3 7HF, UK
| | - Lijuan Han
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South, Yorkshire, S3 7HF, UK
| | - Matthew J Derry
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South, Yorkshire, S3 7HF, UK.,Present address: Aston Institute of Materials Research, Aston University, Birmingham, B4 7ET, UK
| | - Steven P Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South, Yorkshire, S3 7HF, UK
| |
Collapse
|
40
|
Warzecha M, Verma L, Johnston BF, Palmer JC, Florence AJ, Vekilov PG. Olanzapine crystal symmetry originates in preformed centrosymmetric solute dimers. Nat Chem 2020; 12:914-920. [PMID: 32968232 DOI: 10.1038/s41557-020-0542-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
The symmetries of a crystal are notoriously uncorrelated to those of its constituent molecules. This symmetry breaking is typically thought to occur during crystallization. Here we demonstrate that one of the two symmetry elements of olanzapine crystals, an inversion centre, emerges in solute dimers extant in solution prior to crystallization. We combine time-resolved in situ scanning probe microscopy to monitor the crystal growth processes with all-atom molecular dynamics simulations. We show that crystals grow non-classically, predominantly by incorporation of centrosymmetric dimers. The growth rate of crystal layers exhibits a quadratic dependence on the solute concentration, characteristic of the second-order kinetics of the incorporation of dimers, which exist in equilibrium with a majority of monomers. We show that growth by dimers is preferred due to overwhelming accumulation of adsorbed dimers on the crystal surface, where it is complemented by dimerization and expedites dimer incorporation into growth sites.
Collapse
Affiliation(s)
- Monika Warzecha
- EPSRC CMAC Future Manufacturing Research Hub, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology and Innovation Centre, Glasgow, UK
| | - Lakshmanji Verma
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Blair F Johnston
- EPSRC CMAC Future Manufacturing Research Hub, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology and Innovation Centre, Glasgow, UK.,National Physical Laboratory, Teddington, UK
| | - Jeremy C Palmer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA.
| | - Alastair J Florence
- EPSRC CMAC Future Manufacturing Research Hub, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology and Innovation Centre, Glasgow, UK.
| | - Peter G Vekilov
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA. .,Department of Chemistry, University of Houston, Houston, TX, USA.
| |
Collapse
|
41
|
Meldrum FC, O'Shaughnessy C. Crystallization in Confinement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001068. [PMID: 32583495 DOI: 10.1002/adma.202001068] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 05/23/2023]
Abstract
Many crystallization processes of great importance, including frost heave, biomineralization, the synthesis of nanomaterials, and scale formation, occur in small volumes rather than bulk solution. Here, the influence of confinement on crystallization processes is described, drawing together information from fields as diverse as bioinspired mineralization, templating, pharmaceuticals, colloidal crystallization, and geochemistry. Experiments are principally conducted within confining systems that offer well-defined environments, varying from droplets in microfluidic devices, to cylindrical pores in filtration membranes, to nanoporous glasses and carbon nanotubes. Dramatic effects are observed, including a stabilization of metastable polymorphs, a depression of freezing points, and the formation of crystals with preferred orientations, modified morphologies, and even structures not seen in bulk. Confinement is also shown to influence crystallization processes over length scales ranging from the atomic to hundreds of micrometers, and to originate from a wide range of mechanisms. The development of an enhanced understanding of the influence of confinement on crystal nucleation and growth will not only provide superior insight into crystallization processes in many real-world environments, but will also enable this phenomenon to be used to control crystallization in applications including nanomaterial synthesis, heavy metal remediation, and the prevention of weathering.
Collapse
Affiliation(s)
- Fiona C Meldrum
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | | |
Collapse
|
42
|
Ning Y, Armes SP. Efficient Occlusion of Nanoparticles within Inorganic Single Crystals. Acc Chem Res 2020; 53:1176-1186. [PMID: 32421304 DOI: 10.1021/acs.accounts.0c00103] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In principle, the incorporation of guest nanoparticles within host crystals should provide a straightforward and versatile route to a wide range of nanocomposite materials. However, crystallization normally involves expelling impurities, so nanoparticle occlusion is both counter-intuitive and technically challenging. Clearly, the nanoparticles should have a strong interaction with the growing crystalline lattice, but quantifying such an affinity has been challenging; the basic principles that govern efficient nanoparticle occlusion within inorganic single crystals are rather poorly understood. In the past few years, we have focused on the elucidation of robust design rules for such systems; our progress is summarized in this article.Polymerization-induced self-assembly (PISA) is widely recognized as a powerful platform technology for the preparation of a broad range of model organic nanoparticles. Herein, PISA was exploited to prepare sterically stabilized diblock copolymer nano-objects (e.g., spheres, worms, or vesicles) of varying size using steric stabilizers of well-defined chain length, variable anionic charge density, tunable surface density, and adjustable chemical functionality (e.g., carboxylic acid, phosphate, sulfate or sulfonate groups). Thus, we were able to systematically investigate how such structural parameters influence nanoparticle occlusion. Given its commercial importance for many industrial sectors, calcium carbonate was selected as the model host crystal for nanoparticle occlusion studies. Perhaps surprisingly, the extent of nanoparticle occlusion is not particularly sensitive to nanoparticle size or morphology. However, the steric stabilizer chain length can play a key role: relatively short chains lead to surface-confined occlusion, while sufficiently long chains enable uniform nanoparticle occlusion to be achieved throughout the crystal lattice (albeit sometimes inducing a significant change in crystal morphology). Optimizing the anionic charge density and surface density of the stabilizer chains is required to maximize the extent of nanoparticle occlusion, while steric stabilizer chains comprising anionic carboxylate groups led to greater occlusion compared to those composed of phosphate, sulfate, or sulfonate groups when examining a model vesicle system.Subsequently, our occlusion studies were extended to include functional hybrid nanocomposite crystals. For example, the spatially controlled occlusion of poly(glycerol monomethacrylate)-stabilized gold nanoparticles was achieved within semiconductive ZnO crystals by either controlling the nanoparticle concentration or by delaying their addition to the reaction mixture. Moreover, oil droplets of up to 500 nm have been incorporated into calcite crystals at up to 11% by mass, despite the large mismatch in surface energy between the hydrophobic oil droplets and the ionic crystal lattice. We have also explored a "Trojan horse" strategy, whereby cargos comprising nanoparticles or soluble dye molecules are first encapsulated within anionic block copolymer vesicles prior to their incorporation within calcite crystals. This approach offers a generic and efficient strategy for the occlusion of many types of guest species into single crystals. In summary, we have established important guidelines for efficient nanoparticle occlusion within crystals, which opens up new avenues for the synthesis of next-generation hybrid materials.
Collapse
Affiliation(s)
- Yin Ning
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
43
|
Bakshi MS. Impact of nanomaterials on ecosystems: Mechanistic aspects in vivo. ENVIRONMENTAL RESEARCH 2020; 182:109099. [PMID: 31901674 DOI: 10.1016/j.envres.2019.109099] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Nanotechnologies are becoming increasingly popular in modern era of human development in every aspect of life. Their impact on our ecosystem in air, soil, and water is largely unknown because of the limited amount of information available, and hence, they require considerable attention. This account highlights the important routes of nanomaterials toxicity in air, soil, and water, their possible impact on the ecosystem and aquatic life. The mechanistic aspects have been focused on the size, shape, and surface modifications of nanomaterials. The preventive measures and future directions along with appropriate designs and implementation of nanotechnologies have been proposed so as to minimize the interactions of nanomaterials with terrestrial flora and aquatic life. Specifically, the focus largely remains on the toxicity of metallic nanoparticles such as gold (Au) and silver (Ag) because of their applications in diverse fields. The account lists some prominent mechanistic routes of nanotoxicity along with in vivo experimental results based on the fundamental understanding that how nanometallic surfaces interact with plant as well as animal biological systems. The appropriate modifications of the nanometallic surfaces with biocompatible molecules are considered to be the most effective preventive measures to reduce the nanotoxicity.
Collapse
Affiliation(s)
- Mandeep Singh Bakshi
- Department of Chemistry, Natural and Applied Sciences, University of Wisconsin - Green Bay, 2420 Nicolet Drive, Green Bay, WI, 54311-7001, USA.
| |
Collapse
|
44
|
Chen S, Knaus J, Luo J, Spinnrock A, Sturm EV, Cölfen H. Inorganic Porous Bulk Discs as a Matrix for Thin-Layer Chromatography and Translucent Hard Composite Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3727-3735. [PMID: 31825582 DOI: 10.1021/acsami.9b17607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnesium-stabilized amorphous calcium carbonate (Mg-ACC), amorphous magnesium calcium silicate hydrate (MCSH), and hydroxyapatite (HAp) are prepared by a precipitation method. By cold-pressing these particles, it is possible to produce porous bulk discs with a narrow pore size distribution. These porous inorganic discs (Mg-ACC, MCSH, and HAp) are investigated as stationary phases to study the chromatographic behavior and adsorption ability of rhodamine B, methylene blue, and ribonuclease. The adsorption affinities of different biomolecules can be easily observed and evaluated through this method. Furthermore, by infiltrating fabricated opaque porous discs with benzyl ether, which has a similar refractive index as the used inorganic particles (Mg-ACC, MCSH, and HAp), their optical properties significantly change and the discs become translucent. Moreover, by infiltrating the MCSH discs with a light-curing polymer, translucent composites with good surface hardness are fabricated. By doping particles with ions such as Ni2+, Co2+, Fe3+, and Eu3+, the color and UV-visible spectrum of the bulk discs can be adjusted. Typically, by using iron-doped MCSH particles as the inorganic matrix, nanocomposites, which show a steep UV-absorption edge at 400 nm, are fabricated. Our work provides a simple and economical method to evaluate the affinity of biomolecules to inorganic materials and a novel way to fabricate translucent hard composite materials. The fabricated nanocomposite discs show a great UV shielding effect and superior surface hardness compared to polymethyl methacrylate and commercial sunglasses, suggesting their potential as new sunglass materials.
Collapse
Affiliation(s)
- Song Chen
- Physical Chemistry, Department of Chemistry , University of Konstanz , Universitätsstr.10 , D-78457 Konstanz , Germany
| | - Jennifer Knaus
- Physical Chemistry, Department of Chemistry , University of Konstanz , Universitätsstr.10 , D-78457 Konstanz , Germany
| | - Jun Luo
- Applied Materials Science, Department of Engineering Science , Uppsala University , Lägerhyddsvägen 1 , 75237 Uppsala , Sweden
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , 610065 Chengdu , P. R. China
| | - Andreas Spinnrock
- Physical Chemistry, Department of Chemistry , University of Konstanz , Universitätsstr.10 , D-78457 Konstanz , Germany
| | - Elena V Sturm
- Physical Chemistry, Department of Chemistry , University of Konstanz , Universitätsstr.10 , D-78457 Konstanz , Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry , University of Konstanz , Universitätsstr.10 , D-78457 Konstanz , Germany
| |
Collapse
|
45
|
Dekhtiarenko M, Krykun S, Carré V, Aubriet F, Canevet D, Allain M, Voitenko Z, Sallé M, Goeb S. Tuning the structure and the properties of dithiafulvene metalla-assembled tweezers. Org Chem Front 2020. [DOI: 10.1039/d0qo00641f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An electroactive M2L2 metalla-macrocycle constructed through coordination driven self-assembly dimerizes upon oxidation and binds an electro-deficient substrate with a high association constant.
Collapse
Affiliation(s)
- Maksym Dekhtiarenko
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Serhii Krykun
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Vincent Carré
- LCP-A2MC
- FR 3624
- Université de Lorraine
- ICPM
- 57078 Metz Cedex 03
| | | | - David Canevet
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Magali Allain
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Zoia Voitenko
- Taras Shevchenko National University of Kyiv
- Kyiv 01033
- Ukraine
| | - Marc Sallé
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Sébastien Goeb
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| |
Collapse
|
46
|
Yu Q, Ma X, Liu Y, Zhao H. Biomimetic Mineralization of Protein Nanogels for Enzyme Protection. Chemistry 2019; 25:16712-16717. [PMID: 31664741 DOI: 10.1002/chem.201904412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Indexed: 01/24/2023]
Abstract
Protein nanogels have found a wide variety of applications, ranging from biocatalysis to drug/protein delivery. However, in practical applications, proteins in nanogels may suffer from enzymic hydrolysis and denaturation. Inspired by the structure and functionalities of the fowl eggshells, biomimetic mineralization of protein nanogels was studied in this research. Protein nanogels with embedded porcine pancreas lipase (PPL) in the cross-linked nanostructures were synthesized through the thiol-disulfide reaction between thiol-functionalized PPL and poly(N-isopropylacrylamide) with pendant pyridyl disulfide groups. The nanogels were further reacted with reduced bovine serum albumin (BSA) and BSA molecules were coated on the nanogels. Mineralization of BSA leads to the synthesis of biomineralized shells on the nanogels. With the growth of CaCO3 on the shells, the nanogels aggregate into suprastructures. Thermogravimetric analysis, XRD, dynamic light scattering, and TEM were employed to study the mechanism of the biomineralization process and analyze the structures of the mineralized nanogels. The biomineralized shells can effectively protect the PPL molecules from hydrolysis by trypsin; meanwhile, the nanosized channels on the mineralized shells allow the transport of small-molecule substrates across the shells. Bioactivity measurements indicate that PPL in the nanogels maintains more than 80 % bioactivity after biomineralization.
Collapse
Affiliation(s)
- Qianyu Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Collaborative Innovation Center of, Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P.R. China
| | - Xiaoteng Ma
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Collaborative Innovation Center of, Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P.R. China
| | - Yingze Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Collaborative Innovation Center of, Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P.R. China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Collaborative Innovation Center of, Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P.R. China
| |
Collapse
|
47
|
Kim YY, Darkins R, Broad A, Kulak AN, Holden MA, Nahi O, Armes SP, Tang CC, Thompson RF, Marin F, Duffy DM, Meldrum FC. Hydroxyl-rich macromolecules enable the bio-inspired synthesis of single crystal nanocomposites. Nat Commun 2019; 10:5682. [PMID: 31831739 PMCID: PMC6908585 DOI: 10.1038/s41467-019-13422-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/05/2019] [Indexed: 11/24/2022] Open
Abstract
Acidic macromolecules are traditionally considered key to calcium carbonate biomineralisation and have long been first choice in the bio-inspired synthesis of crystalline materials. Here, we challenge this view and demonstrate that low-charge macromolecules can vastly outperform their acidic counterparts in the synthesis of nanocomposites. Using gold nanoparticles functionalised with low charge, hydroxyl-rich proteins and homopolymers as growth additives, we show that extremely high concentrations of nanoparticles can be incorporated within calcite single crystals, while maintaining the continuity of the lattice and the original rhombohedral morphologies of the crystals. The nanoparticles are perfectly dispersed within the host crystal and at high concentrations are so closely apposed that they exhibit plasmon coupling and induce an unexpected contraction of the crystal lattice. The versatility of this strategy is then demonstrated by extension to alternative host crystals. This simple and scalable occlusion approach opens the door to a novel class of single crystal nanocomposites.
Collapse
Affiliation(s)
- Yi-Yeoun Kim
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Robert Darkins
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alexander Broad
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alexander N Kulak
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Mark A Holden
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Ouassef Nahi
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Steven P Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Chiu C Tang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Rebecca F Thompson
- The Astbury Biostructure Laboratory, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Frederic Marin
- UMR CNRS 6282 Biogeosciences, Université de Bourgogne-Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Dorothy M Duffy
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
48
|
Inhibition Effect of Kinetic Hydrate Inhibitors on the Growth of Methane Hydrate in Gas–Liquid Phase Separation State. ENERGIES 2019. [DOI: 10.3390/en12234482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of kinetic hydrate inhibitors (KHIs) on the growth of methane hydrate in the gas–liquid phase separation state is studied at the molecular level. The simulation results show that the kinetic inhibitors, named PVP and PVP-A, show good inhibitory effects on the growth of methane hydrate under the gas–liquid phase separation state, and the initial position of the kinetic hydrate inhibitors has a major effect on the growth of methane hydrates. In addition, inhibitors at different locations exhibit different inhibition performances. When the inhibitor molecules are located at the gas–liquid phase interface, increasing the contact area between the groups of the inhibitor molecules and methane is beneficial to enhance the inhibitory performance of the inhibitors. When inhibitor molecules are located at the solid–liquid phase interface, the inhibitor molecules adsorbed on the surface of the hydrate nucleus and decreased the direct contact of hydrate nucleus with the surrounding water and methane molecules, which would delay the growth of hydrate nucleus. Moreover, the increase of hydrate surface curvature and the Gibbs–Thomson effect caused by inhibitors can also reduce the growth rate of methane hydrate.
Collapse
|
49
|
Douverne M, Ning Y, Tatani A, Meldrum FC, Armes SP. How Many Phosphoric Acid Units Are Required to Ensure Uniform Occlusion of Sterically Stabilized Nanoparticles within Calcite? Angew Chem Int Ed Engl 2019; 58:8692-8697. [DOI: 10.1002/anie.201901307] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/12/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Marcel Douverne
- Department of ChemistryUniversity of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
- Faculty of Chemistry, Pharmaceutical Sciences and GeosciencesJohannes Gutenberg-University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Yin Ning
- Department of ChemistryUniversity of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| | - Aikaterini Tatani
- Department of ChemistryUniversity of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| | - Fiona C. Meldrum
- School of ChemistryUniversity of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Steven P. Armes
- Department of ChemistryUniversity of Sheffield Brook Hill Sheffield, South Yorkshire S3 7HF UK
| |
Collapse
|
50
|
Jiang W, Athanasiadou D, Zhang S, Demichelis R, Koziara KB, Raiteri P, Nelea V, Mi W, Ma JA, Gale JD, McKee MD. Homochirality in biomineral suprastructures induced by assembly of single-enantiomer amino acids from a nonracemic mixture. Nat Commun 2019; 10:2318. [PMID: 31127116 PMCID: PMC6534569 DOI: 10.1038/s41467-019-10383-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 05/09/2019] [Indexed: 11/08/2022] Open
Abstract
Since Pasteur first successfully separated right-handed and left-handed tartrate crystals in 1848, the understanding of how homochirality is achieved from enantiomeric mixtures has long been incomplete. Here, we report on a chirality dominance effect where organized, three-dimensional homochiral suprastructures of the biomineral calcium carbonate (vaterite) can be induced from a mixed nonracemic amino acid system. Right-handed (counterclockwise) homochiral vaterite helicoids are induced when the amino acid L-Asp is in the majority, whereas left-handed (clockwise) homochiral morphology is induced when D-Asp is in the majority. Unexpectedly, the Asp that incorporates into the homochiral vaterite helicoids maintains the same enantiomer ratio as that of the initial growth solution, thus showing chirality transfer without chirality amplification. Changes in the degree of chirality of the vaterite helicoids are postulated to result from the extent of majority enantiomer assembly on the mineral surface. These mechanistic insights potentially have major implications for high-level advanced materials synthesis.
Collapse
Affiliation(s)
- Wenge Jiang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, P. R. China, 300072
- Faculty of Dentistry, McGill University, Montreal, QC, Canada, H3A 0C7
| | | | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China, 200240
| | - Raffaella Demichelis
- Curtin Institute for Computation, The Institute for Geoscience Research (TIGeR), and School of Molecular and Life Science, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Katarzyna B Koziara
- Curtin Institute for Computation, The Institute for Geoscience Research (TIGeR), and School of Molecular and Life Science, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Paolo Raiteri
- Curtin Institute for Computation, The Institute for Geoscience Research (TIGeR), and School of Molecular and Life Science, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Valentin Nelea
- Faculty of Dentistry, McGill University, Montreal, QC, Canada, H3A 0C7
| | - Wenbo Mi
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin, P. R. China, 300354
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, P. R. China, 300072
| | - Julian D Gale
- Curtin Institute for Computation, The Institute for Geoscience Research (TIGeR), and School of Molecular and Life Science, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Marc D McKee
- Faculty of Dentistry, McGill University, Montreal, QC, Canada, H3A 0C7.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada, H3A 0C7.
| |
Collapse
|