1
|
Conejo-Cuevas G, Lopes AC, Badillo I, Del Campo FJ, Ruiz-Rubio L, Pérez-Álvarez L. Self-healing, piezoresistive and temperature responsive behaviour of chitosan/polyacrylic acid dynamic hydrogels. J Colloid Interface Sci 2025; 678:320-333. [PMID: 39298985 DOI: 10.1016/j.jcis.2024.09.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Flexible electronics have introduced new challenges for efficient human-machine interactions. Hydrogels have emerged as prominent materials for electronic wearable applications due to their exceptional mechanical deformability and lightweight characteristics combined in some cases with conductive properties, and softness. Additionally, bio-interphases require multisensory response to stress, strain, temperature, and self-healing capacity. To mimic these properties, this work developed interpenetrated hydrogel networks composed of chitosan (CHI) and polyacrylic acid (PAA), combined with Fe (III) ions and varying amounts of NMBA (0-0.25 %), to achieve tailored conductivity (0.8-2.5 mS/cm), self-healing, self-standing and mechanical properties (E = 11.7-110 Pa and fracture strain = 64.9-1923 %) suitable for strain sensor applications. The results revealed a significant influence of the restrictive effect on the mobility of uncrosslinked chain segments, caused by Fe ions and NMBA, on the piezoresistance (GF 2.1-1.3) and self-healing capability of the gels. Interestingly, a transparent/turbid transition, driven by microphase separation that is characteristic of systems with high dynamic interactions, was encountered for the first time in these hydrogels. This transition was analyzed in relation to external temperature, water content, pH, and the influence of Fe ions and NMBA. The simultaneous sensitivity of these materials to temperature and pH, along with their piezoresistive and self-healing behaviour, can be highly valuable for multifunctional sensors in a wide range of applications.
Collapse
Affiliation(s)
- Guillermo Conejo-Cuevas
- Macromolecular Chemistry Group (LABQUIMAC), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Ana Catarina Lopes
- Macromolecular Chemistry Group (LABQUIMAC), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
| | - Inari Badillo
- Departament of Electricity and Electronics, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Francisco Javier Del Campo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Leire Ruiz-Rubio
- Macromolecular Chemistry Group (LABQUIMAC), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Leyre Pérez-Álvarez
- Macromolecular Chemistry Group (LABQUIMAC), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| |
Collapse
|
2
|
Ma H, Liu C, Yang Z, Wu S, Jiao Y, Feng X, Xu B, Ou R, Mei C, Xu Z, Lyu J, Xie Y, Fu Q. Programmable and flexible wood-based origami electronics. Nat Commun 2024; 15:9272. [PMID: 39468092 PMCID: PMC11519615 DOI: 10.1038/s41467-024-53708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Natural polymer substrates are gaining attention as substitutes for plastic substrates in electronics, aiming to combine high performance, intricate shape deformation, and environmental sustainability. Herein, natural wood veneer is converted into a transparent wood film (TWF) substrate. The combination of 3D printing and origami technique is established to create programmable wood-based origami electronics, which exhibit superior flexibility with high tensile strength (393 MPa) due to the highly aligned cellulose fibers and the formation of numerous intermolecular hydrogen bonds between them. Moreover, the flexible TWF electronics exhibit editable multiplexed configurations and maintain stable conductivity. This is attributed to the strong adhesion between the cellulose-based ink and TWF substrate by non-covalent bonds. Benefiting from its anisotropic structure, the programmability of TWF electronics is achieved through sequentially folding into predesigned shapes. This design not only promotes environmental sustainability but also introduces its customizable shapes with potential applications in sensors, microfluidics, and wearable electronics.
Collapse
Affiliation(s)
- Huashuo Ma
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Zhi Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Shuai Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Yue Jiao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Xinhao Feng
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, PR China
| | - Bo Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Rongxian Ou
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, PR China
| | - Changtong Mei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Zhaoyang Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Jianxiong Lyu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Yanjun Xie
- Engineering and Engineering Research Center of Advanced Wooden Materials, College of Materials Science and Engineering, Northeast Forestry University, Harbin, PR China.
| | - Qiliang Fu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China.
- Scion, Te Papa Tipu Innovation Park, Rotorua, New Zealand.
| |
Collapse
|
3
|
Ren J, Chen G, Yang H, Zheng J, Li S, Zhu C, Yang H, Fu J. Super-Tough, Non-Swelling Zwitterionic Hydrogel Sensor Based on the Hofmeister Effect for Potential Motion Monitoring of Marine Animals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412162. [PMID: 39388508 DOI: 10.1002/adma.202412162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/21/2024] [Indexed: 10/12/2024]
Abstract
Hydrogel-based electronic devices in aquatic environments have sparked widespread research interest. Nevertheless, the challenge of developing hydrogel electronics underwater has not been profoundly surmounted because of the fragility and swelling of hydrogels in aquatic environments. In this work, a zwitterionic double network hydrogel comprised of polyvinyl alcohol (PVA), poly(sulfobetaine methacrylate) (PSBMA), and sulfuric acid (H2SO4) demonstrates super-tough and non-swelling performance. The Hofmeister effect of H2SO4 and PSBMA induces the PVA chains to form numerous nanocrystalline domains, which serve as the primary physical crosslinking points and provide effective energy dissipation. H2SO4 induces a strong salting-out effect to facilitate PVA crystallization and the formation of a dense and stable network structure that inhibits swelling. The resulting hydrogel exhibits an ultra-high toughness of 4.61 MJ m-3, non-swelling, and long-term stability for up to a month in pure water and seawater. Based on this, a hydrogel-based seawater strain sensor has been developed to monitor the underwater movements of marine animal models. Reliable and stable sensing performance ensures real-time collection of underwater motion signals, despite the impacts of water flow and the interference of ions. This study provides a facile approach to designing super-tough and non-swelling hydrogels and further expands the application of underwater electronic devices.
Collapse
Affiliation(s)
- Jiayuan Ren
- Guangdong Functional Biomaterials Engineering Technology Research Center, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guoqi Chen
- Guangdong Functional Biomaterials Engineering Technology Research Center, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hailong Yang
- Guangdong Functional Biomaterials Engineering Technology Research Center, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jingxia Zheng
- Guangdong Functional Biomaterials Engineering Technology Research Center, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shengnan Li
- Guangdong Functional Biomaterials Engineering Technology Research Center, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Canjie Zhu
- Guangdong Functional Biomaterials Engineering Technology Research Center, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hua Yang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Fu
- Guangdong Functional Biomaterials Engineering Technology Research Center, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
4
|
Zhao Y, Mai G, Mei Z, Deng Q, Feng Z, Tan Y, Li Z, Yao L, Li M. Three-Dimensional Flexible SnO 2@Hard Carbon@MoS 2@Soft Carbon Fiber Film Anode toward Ultrafast and Stable Sodium Storage. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39361923 DOI: 10.1021/acsami.4c13138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Developing flexible electrodes for the application in sodium-ion batteries (SIBs) has received great attention and has been still challenging due to their merits of additive-free, lightweight, and high energy density. In this work, a free-standing 3D flexible SIB anode with the composition of SnO2@hard carbon@MoS2@soft carbon is designed and successfully synthesized. This electrode combines the energy storage advantages and hybrid sodium storage mechanisms of each material, manifested in the enhanced flexibility, specific capacity, conductivity, rate, cycling performances, etc. Based on the synergistic effects, it exhibits much higher specific capacity than SnO2 carbon nanofibers, as well as more excellent cycling performance (250 mA h g-1 after 500 cycles at 1 A g-1) than MoS2 nanospheres (32 mA h g-1). In addition, relevant kinetic mechanisms are also expounded with the aid of theoretical calculation. This work provides a feasible and advantageous strategy for constructing high-performance and flexible energy storage electrodes based on hybrid mechanisms and synergistic effects.
Collapse
Affiliation(s)
- Yang Zhao
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Gaorui Mai
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Zining Mei
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Qinglin Deng
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Ziwen Feng
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Yipeng Tan
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Zelin Li
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Lingmin Yao
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
- Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou 510275, China
| | - Mai Li
- College of Science, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Bhaduri A, Ha TJ. Biowaste-Derived Triboelectric Nanogenerators for Emerging Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405666. [PMID: 39248387 DOI: 10.1002/advs.202405666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Triboelectric nanogenerators (TENGs) combine contact electrification and electrostatic induction effects to convert waste mechanical energy into electrical energy. As conventional devices contribute to electronic waste, TENGs based on ecofriendly and biocompatible materials have been developed for various energy applications. Owing to the abundance, accessibility, low cost, and biodegradability of biowaste (BW), recycling these materials has gained considerable attention as a green approach for fabricating TENGs. This review provides a detailed overview of BW materials, processing techniques for BW-based TENGs (BW-TENGs), and potential applications of BW-TENGs in emerging bioelectronics. In particular, recent progress in material design, fabrication methods, and biomechanical and environmental energy-harvesting performance is discussed. This review is aimed at promoting the continued development of BW-TENGs and their adoption for sustainable energy-harvesting applications in the field of bioelectronics.
Collapse
Affiliation(s)
- Abhisikta Bhaduri
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Tae-Jun Ha
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| |
Collapse
|
6
|
Yang H, Li S, Wu Y, Bao X, Xiang Z, Xie Y, Pan L, Chen J, Liu Y, Li RW. Advances in Flexible Magnetosensitive Materials and Devices for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311996. [PMID: 38776537 DOI: 10.1002/adma.202311996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Emerging fields, such as wearable electronics, digital healthcare, the Internet of Things, and humanoid robots, highlight the need for flexible devices capable of recording signals on curved surfaces and soft objects. In particular, flexible magnetosensitive devices garner significant attention owing to their ability to combine the advantages of flexible electronics and magnetoelectronic devices, such as reshaping capability, conformability, contactless sensing, and navigation capability. Several key challenges must be addressed to develop well-functional flexible magnetic devices. These include determining how to make magnetic materials flexible and even elastic, understanding how the physical properties of magnetic films change under external strain and stress, and designing and constructing flexible magnetosensitive devices. In recent years, significant progress is made in addressing these challenges. This study aims to provide a timely and comprehensive overview of the most recent developments in flexible magnetosensitive devices. This includes discussions on the fabrications and mechanical regulations of flexible magnetic materials, the principles and performances of flexible magnetic sensors, and their applications for wearable electronics. In addition, future development trends and challenges in this field are discussed.
Collapse
Affiliation(s)
- Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Shengbin Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Xilai Bao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziyin Xiang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yali Xie
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Lili Pan
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinxia Chen
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Lu J, Zhu G, Wang S, Wu C, Qu X, Dong X, Pang H, Zhang Y. 3D Printed MXene-Based Wire Strain Sensors with Enhanced Sensitivity and Anisotropy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401565. [PMID: 38745539 DOI: 10.1002/smll.202401565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Stretchable strain sensors play a crucial role in intelligent wearable systems, serving as the interface between humans and environment by translating mechanical strains into electrical signals. Traditional fiber strain sensors with intrinsic uniform axial strain distribution face challenges in achieving high sensitivity and anisotropy. Moreover, existing micro/nano-structure designs often compromise stretchability and durability. To address these challenges, a novel approach of using 3D printing to fabricate MXene-based flexible sensors with tunable micro and macrostructures. Poly(tetrafluoroethylene) (PTFE) as a pore-inducing agent is added into 3D printable inks to achieve controllable microstructural modifications. In addition to microstructure tuning, 3D printing is employed for macrostructural design modifications, guided by finite element modeling (FEM) simulations. As a result, the 3D printed sensors exhibit heightened sensitivity and anisotropy, making them suitable for tracking static and dynamic displacement changes. The proposed approach presents an efficient and economically viable solution for standardized large-scale production of advanced wire strain sensors.
Collapse
Affiliation(s)
- Jingqi Lu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Guoyin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Shaolong Wang
- State Key Laboratory of Organic Electronics and Information Displays Institute of Advanced Materials (IAM) School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Chunjin Wu
- State Key Laboratory of Organic Electronics and Information Displays Institute of Advanced Materials (IAM) School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Xinyu Qu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| |
Collapse
|
8
|
Tang H, Li Y, Liao S, Liu H, Qiao Y, Zhou J. Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation. Adv Healthc Mater 2024; 13:e2400562. [PMID: 38773929 DOI: 10.1002/adhm.202400562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Indexed: 05/24/2024]
Abstract
The past few decades have witnessed the rapid advancement and broad applications of flexible bioelectronics, in wearable and implantable electronics, brain-computer interfaces, neural science and technology, clinical diagnosis, treatment, etc. It is noteworthy that soft and elastic conductive hydrogels, owing to their multiple similarities with biological tissues in terms of mechanics, electronics, water-rich, and biological functions, have successfully bridged the gap between rigid electronics and soft biology. Multifunctional hydrogel bioelectronics, emerging as a new generation of promising material candidates, have authentically established highly compatible and reliable, high-quality bioelectronic interfaces, particularly in bioelectronic recording and stimulation. This review summarizes the material basis and design principles involved in constructing hydrogel bioelectronic interfaces, and systematically discusses the fundamental mechanism and unique advantages in bioelectrical interfacing with the biological surface. Furthermore, an overview of the state-of-the-art manufacturing strategies for hydrogel bioelectronic interfaces with enhanced biocompatibility and integration with the biological system is presented. This review finally exemplifies the unprecedented advancement and impetus toward bioelectronic recording and stimulation, especially in implantable and integrated hydrogel bioelectronic systems, and concludes with a perspective expectation for hydrogel bioelectronics in clinical and biomedical applications.
Collapse
Affiliation(s)
- Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shufei Liao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Houfang Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
9
|
Tiwari S, Ghosh T, Kandpal S, Saxena S, Kumar R, Prakash R, Chaudhary A. Utilizing Natural Materials in Electronic Devices: Inching Toward "Herbal Electronics". ACS APPLIED BIO MATERIALS 2024; 7:5107-5120. [PMID: 38980821 DOI: 10.1021/acsabm.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Sustainable development is the primary key to address global energy challenges. Though the scientific community is engaged in developing efficient ways to not only maximize energy production from natural resources like sun, wind, water, etc. but also to make all the electronic gadgets power efficient, despite all this, the materials used in most of the electronic devices are largely produced using various materials processing techniques and semiconductors, polymers, dielectrics, etc. which again increases the burden on energy and in turn affects the environment. While addressing these challenges, it is very important to explore the possibility to directly, or with minimum processing, utilize the potential of natural resources in the development of electronic devices. Recent articles are focused on the development of herbal electronic devices that essentially implement natural resources, like plants, leaves, etc., either in their raw or extracted form in the device assembly. This review encompasses the recent research developments around herbal electronic devices. Furthermore, herbal electronics has been discussed for several functional applications including electrochromism, energy storage, memresistor, LED, solar cell, water purification, pressure sensor, etc. Moreover, advantages, disadvantages, and challenges encountered in the realization of "herbal electronics" have been discussed at length.
Collapse
Affiliation(s)
- Soumya Tiwari
- Department of Physics, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| | - Tanushree Ghosh
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Suchita Kandpal
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Shailendra Saxena
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, 603203 Tamil Nadu, India
| | - Rajesh Kumar
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
- Centre for Advanced Electronics, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Rajiv Prakash
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| | - Anjali Chaudhary
- Department of Physics, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| |
Collapse
|
10
|
Wei J, Wang Z, Pan F, Yuan T, Fang Y, Gao C, Ping H, Wang Y, Zhao S, Fu Z. Biosustainable Multiscale Transparent Nanocomposite Films for Sensitive Pressure and Humidity Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37122-37130. [PMID: 38953852 DOI: 10.1021/acsami.4c09157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Light weight, thinness, transparency, flexibility, and insulation are the key indicators for flexible electronic device substrates. The common flexible substrates are usually polymer materials, but their recycling is an overwhelming challenge. Meanwhile, paper substrates are limited in practical applications because of their poor mechanical and thermal stability. However, natural biomaterials have excellent mechanical properties and versatility thanks to their organic-inorganic multiscale structures, which inspired us to design an organic-inorganic nanocomposite film. For this purpose, a bio-inspired multiscale film was developed using cellulose nanofibers with abundant hydrophilic functional groups to assist in dispersing hydroxyapatite nanowires. The thickness of the biosustainable film is only 40 μm, and it incorporates distinctive mechanical properties (strength: 52.8 MPa; toughness: 0.88 MJ m-3) and excellent optical properties (transmittance: 80.0%; haze: 71.2%). Consequently, this film is optimal as a substrate employed for flexible sensors, which can transmit capacitance and resistance signals through wireless Bluetooth, showing an ultrasensitive response to pressure and humidity (for example, responding to finger pressing with 5000% signal change and exhaled water vapor with 4000% signal change). Therefore, the comprehensive performance of the biomimetic multiscale organic-inorganic composite film confers a prominent prospect in flexible electronics devices, food packaging, and plastic substitution.
Collapse
Affiliation(s)
- Jingjiang Wei
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Zhikang Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Fei Pan
- Department of Chemistry, University of Basel, Basel 4058, Switzerland
| | - Tianyu Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Yuanlai Fang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Caiqin Gao
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yanqing Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shanyu Zhao
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
11
|
Periyasamy T, Asrafali SP, Lee J. High-Performance Supercapacitor Electrodes from Fully Biomass-Based Polybenzoxazine Aerogels with Porous Carbon Structure. Gels 2024; 10:462. [PMID: 39057485 PMCID: PMC11275366 DOI: 10.3390/gels10070462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, polybenzoxazine aerogels have emerged as promising materials for various applications. However, their full potential has been hindered by the prevalent use of hazardous solvents during the preparation process, which poses significant environmental and safety concerns. In light of this, there is a pressing need to explore alternative methods that can mitigate these issues and propel the practical utilization of polybenzoxazine aerogels. To address this challenge, a novel approach involving the synthesis of heteroatom self-doped mesoporous carbon from polybenzoxazine has been devised. This process utilizes eugenol, stearyl amine, and formaldehyde to create the polybenzoxazine precursor, which is subsequently treated with ethanol as a safer solvent. Notably, the incorporation of boric acid in this method serves a dual purpose: it not only facilitates microstructural regulation but also reinforces the backbone strength of the material through the formation of intermolecular bridged structures between polybenzoxazine chains. Moreover, this approach allows ambient pressure drying, further enhancing its practicability and environmental friendliness. The resultant carbon materials, designated as ESC-N and ESC-G, exhibit distinct characteristics. ESC-N, derived from calcination, possesses a surface area of 289 m2 g-1, while ESC-G, derived from the aerogel, boasts a significantly higher surface area of 673 m2 g-1. Furthermore, ESC-G features a pore size distribution ranging from 5 to 25 nm, rendering it well suited for electrochemical applications such as supercapacitors. In terms of electrochemical performance, ESC-G demonstrates exceptional potential. With a specific capacitance of 151 F g-1 at a current density of 0.5 A g-1, it exhibits superior energy storage capabilities compared with ESC-N. Additionally, ESC-G displayed a more pronounced rectangular shape in its cyclic voltammogram at a low voltage scanning rate of 20 mV s-1, indicative of enhanced electrochemical reversibility. The impedance spectra of both carbon types corroborated these findings, further validating the superior performance of ESC-G. Furthermore, ESC-G exhibits excellent cycling stability, retaining its electrochemical properties even after 5000 continuous charge-discharge cycles. This robustness underscores its suitability for long-term applications in supercapacitors, reaffirming the viability of heteroatom-doped polybenzoxazine aerogels as a sustainable alternative to traditional carbon materials.
Collapse
Affiliation(s)
| | | | - Jaewoong Lee
- Department of Fiber System Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongbuk, Gyeongsan 38541, Republic of Korea; (T.P.); (S.P.A.)
| |
Collapse
|
12
|
Wang Z, Xiao M, Li Z, Wang X, Li F, Yang H, Chen Y, Zhu Z. Microneedle Patches-Integrated Transdermal Bioelectronics for Minimally Invasive Disease Theranostics. Adv Healthc Mater 2024; 13:e2303921. [PMID: 38341619 DOI: 10.1002/adhm.202303921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Wearable epidermal electronics with non- or minimally-invasive characteristics can collect, transduce, communicate, and interact with accessible physicochemical health indicators on the skin. However, due to the stratum corneum layer, rich information about body health is buried under the skin stratum corneum layer, for example, in the skin interstitial fluid. Microneedle patches are typically designed with arrays of special microsized needles of length within 1000 µm. Such characteristics potentially enable the access and sample of biomolecules under the skin or give therapeutical treatment painlessly and transdermally. Integrating microneedle patches with various electronics allows highly efficient transdermal bioelectronics, showing their great promise for biomedical and healthcare applications. This comprehensive review summarizes and highlights the recent progress on integrated transdermal bioelectronics based on microneedle patches. The design criteria and state-of-the-art fabrication techniques for such devices are initially discussed. Next, devices with different functions, including but not limited to health monitoring, drug delivery, and therapeutical treatment, are highlighted in detail. Finally, key issues associated with current technologies and future opportunities are elaborated to sort out the state of recent research, point out potential bottlenecks, and provide future research directions.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Fangjie Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- Health Industry Innovation Center, Xin-Huangpu Joint Innovation Institute of Chinese Medicine, 81 Xiangxue Middle Avenue, Huangpu District, Guangzhou, Guangdong Province, 510799, China
| |
Collapse
|
13
|
Chen W, Yu N, Gong H, Li M, Xu W, Zhuo Z, Sun Z, Ni M, Huang W, Yang J, Lin Y, Wang L, Li H, Liang X, Sun N, Sun L, Bai L, Han Y, Tao Y, Xu M, Yin C, An X, Lin J, Huang W. Elastic-Plastic Fully π-Conjugated Polymer with Excellent Energy Dissipation Capacity for Ultra-Deep-Blue Flexible Polymer Light-Emitting Diodes with CIE y = 0.04. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402708. [PMID: 38837440 DOI: 10.1002/adma.202402708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Emerging intrinsically flexible fully π-conjugated polymers (FπCPs) are a promising functional material for flexible optoelectronics, attributed to their potential interchain interpenetration and entanglement. However, the challenge remains in obtaining elastic-plastic FπCPs with intrinsic robust optoelectronic property and excellent long-term and cycling deformation stability simultaneously for applications in deep-blue flexible polymer light-emitting diodes (PLEDs). This study, demonstrates a series of elastic-plastic FπCPs (P1-P4) with an excellent energy dissipation capacity via side-chain internal plasticization for the ultra-deep-blue flexible PLEDs. First, the freestanding P1 film exhibited a maximum fracture strain of 34.6%. More interestingly, the elastic behavior is observed with a low strain (≤10%), and the stretched film with a high deformation (>10%) attributed to plastic processing revealed the robust capacity to realize energy absorption and release. The elastic-plastic P1 film exhibits outstanding ultra-deep-blue emission, with an efficiency of 56.38%. Subsequently, efficient PLEDs are fabricated with an ultra-deep-blue emission of CIE (0.16, 0.04) and a maximum external quantum efficiency of 1.73%. Finally, stable and efficient ultra-deep-blue electroluminescence are obtained from PLEDs based on stretchable films with different strains and cycling deformations, suggesting excellent elastic-plastic behavior and deformation stability for flexible electronics.
Collapse
Affiliation(s)
- Wenyu Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ningning Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Huaqiang Gong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mengyuan Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Weifeng Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhiqiang Zhuo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhiyang Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mingjian Ni
- The Institute of Flexible Electronics, (IFE Future Technologies), Xiamen University(XMU), 422 Siming South Road, Xiamen, Fujian, 361005, China
| | - Wenxin Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jing Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yingru Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lizhi Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xinyu Liang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ning Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lili Sun
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 66 Gongchang Road, Shenzhen, 518107, China
| | - Lubing Bai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yamin Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Youtian Tao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chengrong Yin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiang An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 66 Gongchang Road, Shenzhen, 518107, China
| |
Collapse
|
14
|
Song Z, Li W, Gao Z, Chen Y, Wang D, Chen S. Bio-Inspired Electrodes with Rational Spatiotemporal Management for Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400405. [PMID: 38682479 PMCID: PMC11267303 DOI: 10.1002/advs.202400405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/16/2024] [Indexed: 05/01/2024]
Abstract
Lithium-ion batteries (LIBs) are currently the predominant energy storage power source. However, the urgent issues of enhancing electrochemical performance, prolonging lifetime, preventing thermal runaway-caused fires, and intelligent application are obstacles to their applications. Herein, bio-inspired electrodes owning spatiotemporal management of self-healing, fast ion transport, fire-extinguishing, thermoresponsive switching, recycling, and flexibility are overviewed comprehensively, showing great promising potentials in practical application due to the significantly enhanced durability and thermal safety of LIBs. Taking advantage of the self-healing core-shell structures, binders, capsules, or liquid metal alloys, these electrodes can maintain the mechanical integrity during the lithiation-delithiation cycling. After the incorporation of fire-extinguishing binders, current collectors, or capsules, flame retardants can be released spatiotemporally during thermal runaway to ensure safety. Thermoresponsive switching electrodes are also constructed though adding thermally responsive components, which can rapidly switch LIB off under abnormal conditions and resume their functions quickly when normal operating conditions return. Finally, the challenges of bio-inspired electrode designs are presented to optimize the spatiotemporal management of LIBs. It is anticipated that the proposed electrodes with spatiotemporal management will not only promote industrial application, but also strengthen the fundamental research of bionics in energy storage.
Collapse
Affiliation(s)
- Zelai Song
- College of Automotive EngineeringJilin UniversityChangchun130022China
- National Key Laboratory of Automotive Chassis Integration and BionicJilin UniversityChangchun130022China
| | - Weifeng Li
- College of Automotive EngineeringJilin UniversityChangchun130022China
- National Key Laboratory of Automotive Chassis Integration and BionicJilin UniversityChangchun130022China
| | - Zhenhai Gao
- College of Automotive EngineeringJilin UniversityChangchun130022China
- National Key Laboratory of Automotive Chassis Integration and BionicJilin UniversityChangchun130022China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijing100190China
| | - Deping Wang
- General Research and Development InstituteChina FAW Corporation LimitedChangchun130013China
| | - Siyan Chen
- College of Automotive EngineeringJilin UniversityChangchun130022China
- National Key Laboratory of Automotive Chassis Integration and BionicJilin UniversityChangchun130022China
| |
Collapse
|
15
|
Nie N, Gong X, Gong C, Qiao Z, Wang Z, Fang G, Chen YC. A Wearable Thin-Film Hydrogel Laser for Functional Sensing on Skin. Anal Chem 2024; 96:9159-9166. [PMID: 38726669 DOI: 10.1021/acs.analchem.4c00979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Flexible photonics offers the possibility of realizing wearable sensors by bridging the advantages of flexible materials and photonic sensing elements. Recently, optical resonators have emerged as a tool to improve their oversensitivity by integrating with flexible photonic sensors. However, direct monitoring of multiple psychological information on human skin remains challenging due to the subtle biological signals and complex tissue interface. To tackle the current challenges, here, we developed a functional thin film laser formed by encapsulating liquid crystal droplet lasers in a flexible hydrogel for monitoring metabolites in human sweat (lactate, glucose, and urea). The three-dimensional cross-linked hydrophilic polymer serves as the adhesive layer to allow small molecules to penetrate from human tissue to generate strong light--matter interactions on the interface of whispering gallery modes resonators. Both the hydrogel and cholesteric liquid crystal microdroplets were modified specifically to achieve high sensitivity and selectivity. As a proof of concept, wavelength-multiplexed sensing and a prototype were demonstrated on human skin to detect human metabolites from perspiration. These results present a significant advance in the fabrication and potential guidance for wearable and functional microlasers in healthcare.
Collapse
Affiliation(s)
- Ningyuan Nie
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Xuerui Gong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Chaoyang Gong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Zhen Qiao
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Ziyihui Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Guocheng Fang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Yu-Cheng Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
16
|
Li S, Cao S, Lu H, He B, Gao B. Kirigami triboelectric spider fibroin microneedle patches for comprehensive joint management. Mater Today Bio 2024; 26:101044. [PMID: 38600920 PMCID: PMC11004194 DOI: 10.1016/j.mtbio.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Joint injuries are among the leading causes of disability. Present concentrations were focused on oral drugs and surgical treatment, which brings severe and unnecessary difficulties for patients. Smart patches with high flexibility and intelligent drug control-release capacity are greatly desirable for efficient joint management. Herein, we present a novel kirigami spider fibroin-based microneedle triboelectric nanogenerator (KSM-TENG) patch with distinctive features for comprehensive joint management. The microneedle patch consists of two parts: the superfine tips and the flexible backing base, which endow it with great mechanical strength to penetrate the skin and enough flexibility to fit different bends. Besides, the spider fibroin-based MNs served as a positive triboelectric material to generate electrical stimulation, thereby forcing drug release from needles within 720 min. Especially, kirigami structures could also transform the flat patch into three dimensions, which could impart the patch with flexible properties to accommodate the complicated processes produced by joint motion. Benefiting from these traits, the KSM-TENG patch presents excellent performance in inhibiting the inflammatory response and promoting wound healing in mice models. The results indicated that the mice possessed only 2% wound area and the paw thickness was reduced from 10.5 mm to 6.2 mm after treatment with the KSM-TENG patch, which further demonstrates the therapeutic effect of joints in vivo. Thus, it is believed that the proposed novel KSM-TENG patch is valuable in the field of comprehensive treatments and personalized clinical applications.
Collapse
Affiliation(s)
- Shuhuan Li
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Suwen Cao
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Huihui Lu
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Bingbing Gao
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
17
|
Periyasamy T, Asrafali SP, Islam M, Bari GAKMR, Lee J. Polymer Composite Hydrogel Based on Polyvinyl Alcohol/Polyacrylamide/Polybenzoxazine Carbon for Use in Flexible Supercapacitors. Polymers (Basel) 2024; 16:1463. [PMID: 38891410 PMCID: PMC11174713 DOI: 10.3390/polym16111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Polymer gels are cross-linked polymer networks swollen by a solvent. These cross-linked networks are interconnected to produce a three-dimensional molecular framework. It is this cross-linked network that provides solidity to the gel and helps to hold the solvent in place. The present work deals with the fabrication of polybenzoxazine carbon (PBzC)-based gels that could function as a solid electrode in flexible supercapacitors (SCs). With the advantage of molecular design flexibility, polybenzoxazine-based carbon containing different hetero-atoms was synthesized. A preliminary analysis of PBzC including XRD, Raman, XPS, and SEM confirmed the presence of hetero-atoms with varying pore structures. These PBz-carbons, upon reaction with polyvinyl alcohol (PVA) and acrylamide (AAm), produced a composite polymer hydrogel, PVA/poly (AAm)/PBzC. The performance of the synthesized hydrogel was analyzed using a three-electrode system. PVA/poly (AAm)/PBzC represented the working electrode. The inclusion of PBzC within the PVA/poly (AAm) matrix was evaluated by cyclic voltammetry and galvanostatic charge/discharge measurements. A substantial increase in the CV area and a longer charge/discharge time signified the importance of PBzC inclusion. The PVA/poly (AAm)/PBzC electrode exhibited larger specific capacitance (Cs) of 210 F g-1 at a current density of 0.5 A g-1 when compared with the PVA/poly (AAm) electrode [Cs = 92 F g-1]. These improvements suggest that the synthesized composite hydrogel can be used in flexible supercapacitors requiring light weight and wearability.
Collapse
Affiliation(s)
- Thirukumaran Periyasamy
- Department of Fiber System Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (T.P.); (S.P.A.)
| | - Shakila Parveen Asrafali
- Department of Fiber System Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (T.P.); (S.P.A.)
| | - Mobinul Islam
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea;
| | - Gazi A. K. M. Rafiqul Bari
- School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Jaewoong Lee
- Department of Fiber System Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (T.P.); (S.P.A.)
| |
Collapse
|
18
|
Yang C, Wang H, Cao Z, Chen X, Zhou G, Zhao H, Wu Z, Zhao Y, Sun B. Memristor-Based Bionic Tactile Devices: Opening the Door for Next-Generation Artificial Intelligence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308918. [PMID: 38149504 DOI: 10.1002/smll.202308918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Bioinspired tactile devices can effectively mimic and reproduce the functions of the human tactile system, presenting significant potential in the field of next-generation wearable electronics. In particular, memristor-based bionic tactile devices have attracted considerable attention due to their exceptional characteristics of high flexibility, low power consumption, and adaptability. These devices provide advanced wearability and high-precision tactile sensing capabilities, thus emerging as an important research area within bioinspired electronics. This paper delves into the integration of memristors with other sensing and controlling systems and offers a comprehensive analysis of the recent research advancements in memristor-based bionic tactile devices. These advancements incorporate artificial nociceptors and flexible electronic skin (e-skin) into the category of bio-inspired sensors equipped with capabilities for sensing, processing, and responding to stimuli, which are expected to catalyze revolutionary changes in human-computer interaction. Finally, this review discusses the challenges faced by memristor-based bionic tactile devices in terms of material selection, structural design, and sensor signal processing for the development of artificial intelligence. Additionally, it also outlines future research directions and application prospects of these devices, while proposing feasible solutions to address the identified challenges.
Collapse
Affiliation(s)
- Chuan Yang
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Hongyan Wang
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zelin Cao
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaoliang Chen
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Guangdong Zhou
- College of Artificial Intelligence, Brain-inspired Computing & Intelligent Control of Chongqing Key Lab, Southwest University, Chongqing, 400715, China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Zhenhua Wu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 DongChuan Rd, Shanghai, 200240, China
| | - Yong Zhao
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Bai Sun
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
19
|
Zhang W, Wu M, Zhang Y, Yan H, Lee Y, Zhao Z, Hao H, Shi X, Zhang Z, Kim K, Liu N. Paraffin-Enabled Superlattice Customization for a Photostimulated Gradient-Responsive Artificial Reflex Arc. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313267. [PMID: 38346418 DOI: 10.1002/adma.202313267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Indexed: 02/21/2024]
Abstract
The development of photostimulated-motion artificial reflex arcs - a neural circuit inspired by light-driven motion reflexes - holds significant promises for advancements in robotic perception, navigation, and motion control. However, the fabrication of such systems, especially those that accommodate multiple actions and exhibit gradient responses, remains challenging. Here, a gradient-responsive photostimulated-motion artificial reflex arc is developed by integrating a programmable and tunable photoreceptor based on folded MoS2 at different twist angles. The twisted folded bilayer MoS2 used as photoreceptors can be customized via the transfer technique using patternable paraffin, where the twist angle and fold-line could be controlled. The photoluminescence (PL) intensity is 3.7 times higher at a twist angle of 29° compared to that at 0°, showing a monotonically decreasing indirect bandgap. Through tunable interlayer carrier transport, photoreceptors fabricated using folded bilayer MoS2 at different twist angles demonstrate gradient response time, enabling the photostimulated-motion artificial reflex arc for multiaction responses. They are transformed to digital command flow and studied via machine learning to control the gestures of a robotic hand, showing a prototype of photostimulated gradient-responsive artificial reflex arcs for the first time. This work provides a unique idea for developing intelligent soft robots and next-generation human-computer interfaces.
Collapse
Affiliation(s)
- Weifeng Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Mengwei Wu
- College of Engineering, Peking University, Beijing, 100871, China
| | - Yan Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hongyi Yan
- Department of Physics, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yangjin Lee
- Center for Nanomedicine, Institute for Basic Science, Seoul, 03722, South Korea
- Department of Physics, Yonsei University, Seoul, 03722, South Korea
| | - Zihan Zhao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - He Hao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaohu Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhaoxian Zhang
- College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, #07-26, EA, Singapore, 117575, Singapore
| | - Kwanpyo Kim
- Center for Nanomedicine, Institute for Basic Science, Seoul, 03722, South Korea
- Department of Physics, Yonsei University, Seoul, 03722, South Korea
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
20
|
Chen X, Cui J, Liu Z, Wang Y, Li M, Zhang J, Pan S, Wang M, Bao C, Wei Q. Polyacrylamide/sodium alginate/sodium chloride photochromic hydrogel with high conductivity, anti-freezing property and fast response for information storage and electronic skin. Int J Biol Macromol 2024; 268:131972. [PMID: 38697436 DOI: 10.1016/j.ijbiomac.2024.131972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/07/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Photochromic hydrogels have promising prospects in areas such as wearable device, information encryption technology, optoelectronic display technology, and electronic skin. However, there are strict requirements for the properties of photochromic hydrogels in practical engineering applications, especially in some extreme application environments. The preparation of photochromic hydrogels with high transparency, high toughness, fast response, colour reversibility, excellent electrical conductivity, and anti-freezing property remains a challenge. In this study, a novel photochromic hydrogel (PAAm/SA/NaCl-Mo7) was prepared by loading ammonium molybdate (Mo7) and sodium chloride (NaCl) into a dual-network hydrogel of polyacrylamide (PAAm) and sodium alginate (SA) using a simple one-pot method. PAAm/SA/NaCl-Mo7 hydrogel has excellent conductivity (175.9 S/cm), water retention capacity and anti-freezing properties, which can work normally at a low temperature of -28.4 °C. In addition, the prepared PAAm/SA/NaCl-Mo7 hydrogel exhibits fast response (<15 s), high transparency (>70 %), good toughness (maximum elongation up to 1500 %), good cyclic compression properties at high compressive strains (60 %), good biocompatibility (78.5 %), stable reversible discolouration and excellent sensing properties, which can be used for photoelectric display, information storage and motion monitoring. This work provides a new inspiration for the development of flexible electronic skin devices.
Collapse
Affiliation(s)
- Xiaohu Chen
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Jiashu Cui
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Zhisheng Liu
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Yanen Wang
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.
| | - Mingyang Li
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Juan Zhang
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Siyu Pan
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Mengjie Wang
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Chengwei Bao
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Qinghua Wei
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.
| |
Collapse
|
21
|
Li W, Zhang S, Sun M, Kleuskens S, Wilson DA. Shape Transformation of Polymer Vesicles. ACCOUNTS OF MATERIALS RESEARCH 2024; 5:453-466. [PMID: 38694189 PMCID: PMC11059097 DOI: 10.1021/accountsmr.3c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/29/2024] [Indexed: 05/04/2024]
Abstract
Life activities, such as respiration, are accomplished through the continuous shape modulation of cells, tissues, and organs. Developing smart materials with shape-morphing capability is a pivotal step toward life-like systems and emerging technologies of wearable electronics, soft robotics, and biomimetic actuators. Drawing inspiration from cells, smart vesicular systems have been assembled to mimic the biological shape modulation. This would enable the understanding of cellular shape adaptation and guide the design of smart materials with shape-morphing capability. Polymer vesicles assembled by amphiphilic molecules are an example of remarkable vesicular systems. The chemical versatility, physical stability, and surface functionality promise their application in nanomedicine, nanoreactor, and biomimetic systems. However, it is difficult to drive polymer vesicles away from equilibrium to induce shape transformation due to the unfavorable energy landscapes caused by the low mobility of polymer chains and low permeability of the vesicular membrane. Extensive studies in the past decades have developed various methods including dialysis, chemical addition, temperature variation, polymerization, gas exchange, etc., to drive shape transformation. Polymer vesicles can now be engineered into a variety of nonspherical shapes. Despite the brilliant progress, most of the current studies regarding the shape transformation of polymer vesicles still lie in the trial-and-error stage. It is a grand challenge to predict and program the shape transformations of polymer vesicles. An in-depth understanding of the deformation pathway of polymer vesicles would facilitate the transition from the trial-and-error stage to the computing stage. In this Account, we introduce recent progress in the shape transformation of polymer vesicles. To provide an insightful analysis, the shape transformation of polymer vesicles is divided into basic and coupled deformation. First, we discuss the basic deformation of polymer vesicles with a focus on two deformation pathways: the oblate pathway and the prolate pathway. Strategies used to trigger different deformation pathways are introduced. Second, we discuss the origin of the selectivity of two deformation pathways and the strategies used to control the selectivity. Third, we discuss the coupled deformation of polymer vesicles with a focus on the switch and coupling of two basic deformation pathways. Last, we analyze the challenges and opportunities in the shape transformation of polymer vesicles. We envision that a systematic understanding of the deformation pathway would push the shape transformation of polymer vesicles from the trial-and-error stage to the computing stage. This would enable the prediction of deformation behaviors of nanoparticles in complex environments, like blood and interstitial tissue, and access to advanced architecture desirable for man-made applications.
Collapse
Affiliation(s)
- Wei Li
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Shaohua Zhang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mingchen Sun
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Sandra Kleuskens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
22
|
He W, Wang M, Mei G, Liu S, Khan AQ, Li C, Feng D, Su Z, Bao L, Wang G, Liu E, Zhu Y, Bai J, Zhu M, Zhou X, Liu Z. Establishing superfine nanofibrils for robust polyelectrolyte artificial spider silk and powerful artificial muscles. Nat Commun 2024; 15:3485. [PMID: 38664427 PMCID: PMC11045855 DOI: 10.1038/s41467-024-47796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Spider silk exhibits an excellent combination of high strength and toughness, which originates from the hierarchical self-assembled structure of spidroin during fiber spinning. In this work, superfine nanofibrils are established in polyelectrolyte artificial spider silk by optimizing the flexibility of polymer chains, which exhibits combination of breaking strength and toughness ranging from 1.83 GPa and 238 MJ m-3 to 0.53 GPa and 700 MJ m-3, respectively. This is achieved by introducing ions to control the dissociation of polymer chains and evaporation-induced self-assembly under external stress. In addition, the artificial spider silk possesses thermally-driven supercontraction ability. This work provides inspiration for the design of high-performance fiber materials.
Collapse
Grants
- This work was supported by the National Key Research and Development Program of China (Grants Nos. 2022YFB3807103, 2022YFA1203304, and 2019YFE0119600, Z.F.L.), the National Natural Science Foundation of China (grants 52350120, 52090034, 52225306, 51973093, and 51773094, Z.F.L.), Frontiers Science Center for Table Organic Matter, Nankai University (grant number 63181206. Z.F.L.), the Fundamental Research Funds for the Central Universities (grant 63171219. Z.F.L.), Lingyu Grant (2021-JCJQ-JJ-1064, Z.L.F.).
- the National Natural Science Foundation of China (grant 22371300, X.Z.)
Collapse
Affiliation(s)
- Wenqian He
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Meilin Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guangkai Mei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shiyong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Abdul Qadeer Khan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Danyang Feng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zihao Su
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lili Bao
- Department of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Ge Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Enzhao Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yutian Zhu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jie Bai
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
23
|
Lv D, Li X, Huang X, Cao C, Ai L, Wang X, Ravi SK, Yao X. Microphase-Separated Elastic and Ultrastretchable Ionogel for Reliable Ionic Skin with Multimodal Sensation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309821. [PMID: 37993105 DOI: 10.1002/adma.202309821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Indexed: 11/24/2023]
Abstract
Bioinspired artificial skins integrated with reliable human-machine interfaces and stretchable electronic systems have attracted considerable attention. However, the current design faces difficulties in simultaneously achieving satisfactory skin-like mechanical compliance and self-powered multimodal sensing. Here, this work reports a microphase-separated bicontinuous ionogel which possesses skin-like mechanical properties and mimics the multimodal sensing ability of biological skin by ion-driven stimuli-electricity conversion. The ionogel exhibits excellent elasticity and ionic conductivity, high toughness, and ultrastretchability, as well as a Young's modulus similar to that of human skin. Leveraging the ion-polymer interactions enabled selective ion transport, the ionogel can output pulsing or continuous electrical signals in response to diverse stimuli such as strain, touch pressure, and temperature sensitively, demonstrating a unique self-powered multimodal sensing. Furthermore, the ionogel-based I-skin can concurrently sense different stimuli and decouple the variations of the stimuli from the voltage signals with the assistance of a machine-learning model. The ease of fabrication, wide tunability, self-powered multimodal sensing, and the excellent environmental tolerance of the ionogels demonstrate a new strategy in the development of next-generation soft smart mechano-transduction devices.
Collapse
Affiliation(s)
- Dong Lv
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Xin Huang
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, 621900, China
| | - Chunyan Cao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Liqing Ai
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Xuejiao Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Hong Kong, 999077, China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518075, China
| |
Collapse
|
24
|
He H, Yang T, Liu T, Gao Y, Zhang Z, Yang Z, Liang F. Soft-Hard Janus Nanoparticles Triggered Hierarchical Conductors with Large Stretchability, High Sensitivity, and Superior Mechanical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312278. [PMID: 38266185 DOI: 10.1002/adma.202312278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Indexed: 01/26/2024]
Abstract
There is a long-standing conflict between the large stretchability and high sensitivity for strain sensors, a strategy of decoupling the mechanical/electrical module by constructing the hierarchical conductor has been developed in this study. The hierarchical conductor, consisting of a mechanically stretchable layer, a conductive network layer, and a strongly bonded interface, can be produced in a simple one-step process with the aid of soft-hard Janus nanoparticles (JNPs). The introduction of JNPs in the stretchable layer can evenly distribute stress and dissipate energy due to forming the rigid-flexible homogeneous networks. Specifically, JNPs can drive graphene nanosheets (GNS) to fold or curl, creating the unique JNPs-GNS building block that can further construct the conductive network. Due to its excellent deformability to hinder crack propagation, the flexible conductive network could be stretched continuously and the local conductive pathways could be reconstructed. Consequently, the hierarchical conductor could detect both subtle strain of 0-2% and large strain of up to 370%, with a gauge factor (GF) from 66.37 to 971.70, demonstrating outstanding stretchability and sensitivity. And it also owns large tensile strength (5.28 MPa) and high deformation stability. This hierarchical design will give graphene-based sensors a major boost in emerging applications.
Collapse
Affiliation(s)
- Hailing He
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Tiantian Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Tianlin Liu
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yeqi Gao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhaoyuan Zhang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fuxin Liang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
25
|
Li H, Tan P, Rao Y, Bhattacharya S, Wang Z, Kim S, Gangopadhyay S, Shi H, Jankovic M, Huh H, Li Z, Maharjan P, Wells J, Jeong H, Jia Y, Lu N. E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chem Rev 2024; 124:3220-3283. [PMID: 38465831 DOI: 10.1021/acs.chemrev.3c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human body continuously emits physiological and psychological information from head to toe. Wearable electronics capable of noninvasively and accurately digitizing this information without compromising user comfort or mobility have the potential to revolutionize telemedicine, mobile health, and both human-machine or human-metaverse interactions. However, state-of-the-art wearable electronics face limitations regarding wearability and functionality due to the mechanical incompatibility between conventional rigid, planar electronics and soft, curvy human skin surfaces. E-Tattoos, a unique type of wearable electronics, are defined by their ultrathin and skin-soft characteristics, which enable noninvasive and comfortable lamination on human skin surfaces without causing obstruction or even mechanical perception. This review article offers an exhaustive exploration of e-tattoos, accounting for their materials, structures, manufacturing processes, properties, functionalities, applications, and remaining challenges. We begin by summarizing the properties of human skin and their effects on signal transmission across the e-tattoo-skin interface. Following this is a discussion of the materials, structural designs, manufacturing, and skin attachment processes of e-tattoos. We classify e-tattoo functionalities into electrical, mechanical, optical, thermal, and chemical sensing, as well as wound healing and other treatments. After discussing energy harvesting and storage capabilities, we outline strategies for the system integration of wireless e-tattoos. In the end, we offer personal perspectives on the remaining challenges and future opportunities in the field.
Collapse
Affiliation(s)
- Hongbian Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Philip Tan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yifan Rao
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarnab Bhattacharya
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zheliang Wang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sangjun Kim
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Susmita Gangopadhyay
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongyang Shi
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matija Jankovic
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heeyong Huh
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengjie Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pukar Maharjan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan Wells
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
| | - Yaoyao Jia
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
26
|
Yang Y, Zhou J, Rao AM, Lu B. Bio-inspired carbon electrodes for metal-ion batteries. NANOSCALE 2024; 16:5893-5902. [PMID: 38389495 DOI: 10.1039/d4nr00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Carbon has been widely used as an electrode material in commercial metal-ion batteries (MIBs) because of its desirable electrical, mechanical, and physical properties. Still, traditional carbon electrodes suffer from limited mechanical stability and electrochemical performance in MIBs. Drawing inspiration from biological species, the carbon allotropes, such as fullerenes, carbon nanotubes, and graphene, can be engineered into mechanically robust, highly conductive frameworks with enhanced ion storage and transport capabilities for MIBs. Here, we present an assortment of bio-inspired carbon electrodes that have enhanced the cycling stability, capacity retention, and overall performance of MIBs. In addition, mimicking the structure and functionality of biological systems has led to the development of flexible MIBs whose performance does not degrade even when stretched, bent, or twisted. Finite element analysis (FEA) is a useful guide in identifying such bio-inspired carbon frameworks because it can simulate and analyze potential failure scenarios, such as stress build-up or structural collapse in MIBs. This review highlights through several examples that there is much scope for improving carbon-based electrode materials through bio-inspired designs for practical high-performance MIBs.
Collapse
Affiliation(s)
- Yihan Yang
- School of Physics and Electronics, Hunan University, Changsha 410083, P. R. China.
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Apparao M Rao
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC 29634, USA.
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha 410083, P. R. China.
| |
Collapse
|
27
|
Kondaveeti S, Choi G, Veerla SC, Kim S, Kim J, Lee HJ, Kuzhiumparambil U, Ralph PJ, Yeo J, Jeong HE. Mussel-inspired resilient hydrogels with strong skin adhesion and high-sensitivity for wearable device. NANO CONVERGENCE 2024; 11:12. [PMID: 38512587 PMCID: PMC10957857 DOI: 10.1186/s40580-024-00419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Stretchable and self-adhesive conductive hydrogels hold significant importance across a wide spectrum of applications, including human-machine interfaces, wearable devices, and soft robotics. However, integrating multiple properties, such as high stretchability, strong interfacial adhesion, self-healing capability, and sensitivity, into a single material poses significant technical challenges. Herein, we present a multifunctional conductive hydrogel based on poly(acrylic acid) (PAA), dopamine-functionalized pectin (PT-DA), polydopamine-coated reduction graphene oxide (rGO-PDA), and Fe3+ as an ionic cross-linker. This hydrogel exhibits a combination of high stretchability (2000%), rapid self-healing (~ 94% recovery in 5 s), and robust self-adhesion to various substrates. Notably, the hydrogel demonstrates a remarkable skin adhesion strength of 85 kPa, surpassing previous skin adhesive hydrogels. Furthermore, incorporating rGO within the hydrogel network creates electric pathways, ensuring excellent conductivity (0.56 S m-1). Consequently, these conductive hydrogels exhibit strain-sensing properties with a significant increase in gauge factor (GF) of 14.6, covering an extensive detection range of ~ 1000%, fast response (198 ms) and exceptional cycle stability. These multifunctional hydrogels can be seamlessly integrated into motion detection sensors capable of distinguishing between various strong or subtle movements of the human body.
Collapse
Affiliation(s)
- Stalin Kondaveeti
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Geonjun Choi
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sarath Chandra Veerla
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Somi Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaeil Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hee Jin Lee
- Department of Physics, Kyungpook National University, 80 Daehak-Ro, Bukgu, Daegu, 41566, Republic of Korea
| | | | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Junyeob Yeo
- Department of Physics, Kyungpook National University, 80 Daehak-Ro, Bukgu, Daegu, 41566, Republic of Korea.
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
28
|
Luo J, Song T, Han T, Qi H, Liu Q, Wang Q, Song Z, Rojas O. Multifunctioning of carboxylic-cellulose nanocrystals on the reinforcement of compressive strength and conductivity for acrylic-based hydrogel. Carbohydr Polym 2024; 327:121685. [PMID: 38171694 DOI: 10.1016/j.carbpol.2023.121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Simultaneously having competitive compressive properties, fatigue-resistant stability, excellent conductivity and sensitivity has still remained a challenge for acrylic-based conductive hydrogels, which is critical in their use in the sensor areas where pressure is performed. In this work, an integrated strategy was proposed for preparing a conductive hydrogel based on acrylic acid (AA) and sodium alginate (SA) by addition of carboxylic-cellulose nanocrystals (CNC-COOH) followed by metal ion interaction to reinforce its compressive strength and conductivity simultaneously. The CNC-COOH played a multifunctional role in the hydrogel by well-dispersing SA and AA in the hydrogel precursor solution for forming a uniform semi-interpenetrating network, providing more hydrogen bonds with SA and AA, more -COOH for metal ion interactions to form uniform multi-network, and also offering high modulus to the final hydrogel. Accordingly, the as-prepared hydrogels showed simultaneous excellent compressive strength (up to 3.02 MPa at a strain of 70 %) and electrical conductivity (6.25 S m-1), good compressive fatigue-resistant (93.2 % strength retention after 1000 compressive cycles under 50 % strain) and high sensitivity (gauge factor up to 14.75). The hydrogel strain sensor designed in this work is capable of detecting human body movement of pressing, stretching and bending with highly sensitive conductive signals, which endows it great potential for multi-scenario strain sensing applications.
Collapse
Affiliation(s)
- Jintang Luo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, PR China; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tao Song
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China.
| | - Tingting Han
- Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Qunhua Liu
- China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, PR China
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Zhongqian Song
- Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Orlando Rojas
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
29
|
Hu C, Wang L, Liu S, Sheng X, Yin L. Recent Development of Implantable Chemical Sensors Utilizing Flexible and Biodegradable Materials for Biomedical Applications. ACS NANO 2024; 18:3969-3995. [PMID: 38271679 DOI: 10.1021/acsnano.3c11832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.
Collapse
Affiliation(s)
- Chen Hu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
30
|
Pyun KR, Kwon K, Yoo MJ, Kim KK, Gong D, Yeo WH, Han S, Ko SH. Machine-learned wearable sensors for real-time hand-motion recognition: toward practical applications. Natl Sci Rev 2024; 11:nwad298. [PMID: 38213520 PMCID: PMC10776364 DOI: 10.1093/nsr/nwad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Accepted: 11/01/2023] [Indexed: 01/13/2024] Open
Abstract
Soft electromechanical sensors have led to a new paradigm of electronic devices for novel motion-based wearable applications in our daily lives. However, the vast amount of random and unidentified signals generated by complex body motions has hindered the precise recognition and practical application of this technology. Recent advancements in artificial-intelligence technology have enabled significant strides in extracting features from massive and intricate data sets, thereby presenting a breakthrough in utilizing wearable sensors for practical applications. Beyond traditional machine-learning techniques for classifying simple gestures, advanced machine-learning algorithms have been developed to handle more complex and nuanced motion-based tasks with restricted training data sets. Machine-learning techniques have improved the ability to perceive, and thus machine-learned wearable soft sensors have enabled accurate and rapid human-gesture recognition, providing real-time feedback to users. This forms a crucial component of future wearable electronics, contributing to a robust human-machine interface. In this review, we provide a comprehensive summary covering materials, structures and machine-learning algorithms for hand-gesture recognition and possible practical applications through machine-learned wearable electromechanical sensors.
Collapse
Affiliation(s)
- Kyung Rok Pyun
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
| | - Kangkyu Kwon
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
| | - Myung Jin Yoo
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
| | - Kyun Kyu Kim
- Department of Chemical Engineering, Stanford University, Stanford, CA94305, USA
| | - Dohyeon Gong
- Department of Mechanical Engineering, Ajou University, Suwon-si16499, South Korea
| | - Woon-Hong Yeo
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
| | - Seungyong Han
- Department of Mechanical Engineering, Ajou University, Suwon-si16499, South Korea
| | - Seung Hwan Ko
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
- Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Seoul08826, South Korea
| |
Collapse
|
31
|
Pan D, Hu J, Wang B, Xia X, Cheng Y, Wang C, Lu Y. Biomimetic Wearable Sensors: Emerging Combination of Intelligence and Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303264. [PMID: 38044298 PMCID: PMC10837381 DOI: 10.1002/advs.202303264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/03/2023] [Indexed: 12/05/2023]
Abstract
Owing to the advancement of interdisciplinary concepts, for example, wearable electronics, bioelectronics, and intelligent sensing, during the microelectronics industrial revolution, nowadays, extensively mature wearable sensing devices have become new favorites in the noninvasive human healthcare industry. The combination of wearable sensing devices with bionics is driving frontier developments in various fields, such as personalized medical monitoring and flexible electronics, due to the superior biocompatibilities and diverse sensing mechanisms. It is noticed that the integration of desired functions into wearable device materials can be realized by grafting biomimetic intelligence. Therefore, herein, the mechanism by which biomimetic materials satisfy and further enhance system functionality is reviewed. Next, wearable artificial sensory systems that integrate biomimetic sensing into portable sensing devices are introduced, which have received significant attention from the industry owing to their novel sensing approaches and portabilities. To address the limitations encountered by important signal and data units in biomimetic wearable sensing systems, two paths forward are identified and current challenges and opportunities are presented in this field. In summary, this review provides a further comprehensive understanding of the development of biomimetic wearable sensing devices from both breadth and depth perspectives, offering valuable guidance for future research and application expansion of these devices.
Collapse
Affiliation(s)
- Donglei Pan
- College of Light Industry and Food EngineeringGuangxi UniversityNanningGuangxi530004China
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Jiawang Hu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Bin Wang
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Xuanjie Xia
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Yifan Cheng
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Cheng‐Hua Wang
- College of Light Industry and Food EngineeringGuangxi UniversityNanningGuangxi530004China
| | - Yuan Lu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
32
|
Jiang X, Wei S, Wang J. Preparation of Tough and Adhesive PVA/P(AM-AMPS)/Glycerol/Laponite/Na 2SO 4 Organohydrogels for All-Solid-State Supercapacitors and Self-Powered Wearable Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1380-1393. [PMID: 38109561 DOI: 10.1021/acsami.3c13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Hydrogel electrolytes are ideal for flexible wearable electronic devices because of their high ionic conductivity, flexibility, and biocompatibility. However, some problems, such as poor mechanical properties, low conductivity, and lack of adhesivity, are encountered in the process of hydrogel preparation and application, which restrict the further development of hydrogel electrolytes. In this study, PVA was used as the first network, and P(AM-co-AMPS) as the second network to prepare a double-network hydrogel electrolyte. Laponite and Na2SO4 were introduced into the hydrogel during hydrogel formation as the nanofiller and salt with the salting-out effect to enhance its mechanical properties. The hydrogel electrolyte with high toughness (1663 kJ·m-3), adhesivity (77 kPa), and ionic conductivity (1.7 S·m-1) was obtained. In addition, the hydrogel electrolyte also has excellent antifatigue performance. In the 10 consecutive tensile cycles, the tensile strength does not decay. Due to the high adhesivity of the hydrogel electrolyte, a symmetrical all-solid-state supercapacitor was assembled with a tight interface between the hydrogel electrolyte and the AC/CNT composite electrode. The supercapacitor has a high specific capacitance of 186.1 mF·cm-2 at the current density of 1 mA·cm-2. In addition, the capacitor has good flexibility and can withstand bending at various angles. The hydrogel electrolyte also has excellent strain sensing performance, with an ultrafast tensile response time (0.17 s) and high sensitivity factor (GF = 10.01). Finally, the self-powered sensor system composed of a supercapacitor as the power supply device and hydrogel electrolyte as the sensing part was obtained and applied to human motion monitoring, which provides a potential application in the integrated flexible electronic system.
Collapse
Affiliation(s)
- Xiancai Jiang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362114, China
| | - Siqi Wei
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362114, China
| | - Jinquan Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362114, China
| |
Collapse
|
33
|
Ma J, Yang Y, Zhang X, Xue P, Valenzuela C, Liu Y, Wang L, Feng W. Mechanochromic and ionic conductive cholesteric liquid crystal elastomers for biomechanical monitoring and human-machine interaction. MATERIALS HORIZONS 2024; 11:217-226. [PMID: 37901959 DOI: 10.1039/d3mh01386c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Cholesteric liquid crystal elastomers (CLCEs) that combine rubbery elasticity with structural colour from self-assembled helical nanostructures are of paramount importance for diverse applications such as biomimetic skins, adaptive optics and soft robotics. Despite great advances, it is challenging to integrate electrical sensing and colour-changing characteristics in a single CLCE system. Here, we report the design and synthesis of an ionic conductive cholesteric liquid crystal elastomer (iCLCE) through in situ Michael addition and free-radical photopolymerization of CLCE precursors on silane-functionalized polymer ionic liquid networks, in which robust covalent chemical bonding was formed at the interface. Thanks to superior mechanochromism and ionic conductivity, the resulting iCLCEs exhibit dynamic colour-changing and electrical sensing functions in a wide range upon mechanical stretching, and can be used for biomechanical monitoring during joint bending. Importantly, a capacitive elastomeric sensor can be constructed through facilely stacking iCLCEs, where the optical and electrical dual-signal reporting performance allows intuitive visual localization of pressure intensity and distribution. Moreover, proof-of-concept application of the iCLCEs has been demonstrated with human-interactive systems. The research disclosed herein can provide new insights into the development of bioinspired somatosensory materials for emerging applications in diverse fields such as human-machine interaction, prostheses and intelligent robots.
Collapse
Affiliation(s)
- Jiazhe Ma
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Yanzhao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Pan Xue
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Yuan Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
- Binhai Industrial Research Institute, Tianjin University, Tianjin 300452, China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
34
|
Abstract
Efforts to design devices emulating complex cognitive abilities and response processes of biological systems have long been a coveted goal. Recent advancements in flexible electronics, mirroring human tissue's mechanical properties, hold significant promise. Artificial neuron devices, hinging on flexible artificial synapses, bioinspired sensors, and actuators, are meticulously engineered to mimic the biological systems. However, this field is in its infancy, requiring substantial groundwork to achieve autonomous systems with intelligent feedback, adaptability, and tangible problem-solving capabilities. This review provides a comprehensive overview of recent advancements in artificial neuron devices. It starts with fundamental principles of artificial synaptic devices and explores artificial sensory systems, integrating artificial synapses and bioinspired sensors to replicate all five human senses. A systematic presentation of artificial nervous systems follows, designed to emulate fundamental human nervous system functions. The review also discusses potential applications and outlines existing challenges, offering insights into future prospects. We aim for this review to illuminate the burgeoning field of artificial neuron devices, inspiring further innovation in this captivating area of research.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cong Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongli He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
35
|
Xu Q, Yu C, Jiang L, Wang Y, Liu F, Jiang W, Zhou Y. Coacervate-Assisted Polymerization-Induced Self-Assembly of Chiral Alternating Copolymers into Hierarchical Bishell Capsules with Sub-5 nm Ultrathin Lamellae. SMALL METHODS 2023; 7:e2300136. [PMID: 37116085 DOI: 10.1002/smtd.202300136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Hierarchical self-assembly of synthetic polymers in solution represents one of the sophisticated strategies to replicate the natural superstructures which lay the basis for their superb functions. However, it is still quite challenging to increase the degree of complexity of the as-prepared assemblies, especially in a large scale. Liquid-liquid phase separation (LLPS) widely exists in cells and is assumed to be responsible for the formation of many cellular organelles without membranes. Herein, through integrating LLPS with the polymerization-induced self-assembly (PISA), a coacervate-assisted PISA (CAPISA) methodology to realize the one-pot and scalable preparation of hierarchical bishell capsules (BCs) from nanosheets with ultrathin lamellae phase (sub-5 nm), microflakes, unishell capsules to final BCs in a bottom-up sequence is presented. Both the self-assembled structure and the dynamic formation process of BCs have been disclosed. Since CAPISA has combined the advantages of coacervates, click chemistry, interfacial reaction and PISA, it is believed that it will become a promising option to fabricate biomimetic polymer materials with higher structural complexity and more sophisticated functions.
Collapse
Affiliation(s)
- Qingsong Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Lingsheng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yuling Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wenfeng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
36
|
Zhao Y, Lei X, Zeng Z, Guo D, Li Y, Ma R, Shen S, Liu F. Highly Sensitive Flexible Pressure Sensors with Hybrid Microstructures Similar to Volcano Sponge. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54743-54752. [PMID: 37968935 DOI: 10.1021/acsami.3c14281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Preparing hybrid microstructures on flexible substrates is a crucial approach to achieving highly sensitive flexible pressure sensors. However, the preparation of hybrid microstructures on soft materials often faces complex, time-consuming, and costly problems, which hampers the advancement of highly sensitive flexible sensors. Herein, based on a 3D-printing template and a household microwave oven, a simple, green, and one-step microwave irradiation process using glucose porogen is applied to develop a flexible pressure sensor with a volcano-sponge-like porous dome structure based on porous polydimethylsiloxane (PDMS). Due to the easily deformable porous dome on the porous PDMS substrate, the flexible pressure sensor showcases exceptional sensitivity of 611.85 kPa-1 in 0-1 and 50.31 kPa-1 over a wide range of 20-80 kPa. Additionally, the sensor takes only 43 ms to respond, 123 ms to recover, and presents excellent stability (>1100 cycles). In application testing, the sensor effectively captures pulse signals, speech signals, tactile signals from a mechanical gripper, and gesture signals, demonstrating its potential applications in medical diagnosis and robotics. In conclusion, the microwave irradiation method based on template and glucose porogen provides a new way for the simple, low-cost, and green preparation of porous-surface hybrid microstructures on polymers and high-performance flexible pressure sensors.
Collapse
Affiliation(s)
- Yilin Zhao
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Xiao Lei
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Ziran Zeng
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Dingyi Guo
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yunfan Li
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Rui Ma
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Shengnan Shen
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Feng Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
- Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration, Wuhan University, Wuhan 430072, China
| |
Collapse
|
37
|
Ali F, Koc M. 3D Printed Polymer Piezoelectric Materials: Transforming Healthcare through Biomedical Applications. Polymers (Basel) 2023; 15:4470. [PMID: 38231894 PMCID: PMC10708359 DOI: 10.3390/polym15234470] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 01/19/2024] Open
Abstract
Three-dimensional (3D) printing is a promising manufacturing platform in biomedical engineering. It offers significant advantages in fabricating complex and customized biomedical products with accuracy, efficiency, cost-effectiveness, and reproducibility. The rapidly growing field of three-dimensional printing (3DP), which emphasizes customization as its key advantage, is actively searching for functional materials. Among these materials, piezoelectric materials are highly desired due to their linear electromechanical and thermoelectric properties. Polymer piezoelectrics and their composites are in high demand as biomaterials due to their controllable and reproducible piezoelectric properties. Three-dimensional printable piezoelectric materials have opened new possibilities for integration into biomedical fields such as sensors for healthcare monitoring, controlled drug delivery systems, tissue engineering, microfluidic, and artificial muscle actuators. Overall, this review paper provides insights into the fundamentals of polymer piezoelectric materials, the application of polymer piezoelectric materials in biomedical fields, and highlights the challenges and opportunities in realizing their full potential for functional applications. By addressing these challenges, integrating 3DP and piezoelectric materials can lead to the development of advanced sensors and devices with enhanced performance and customization capabilities for biomedical applications.
Collapse
Affiliation(s)
- Fawad Ali
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar;
| | | |
Collapse
|
38
|
Brooks AK, Pradhan S, Yadavalli VK. Degradable Elastomeric Silk Biomaterial for Flexible Bioelectronics. ACS APPLIED BIO MATERIALS 2023; 6:4392-4402. [PMID: 37788457 DOI: 10.1021/acsabm.3c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The integration of degradable and biomimetic approaches in material and device development can facilitate the next generation of sustainable (bio) electronics. The use of functional degradable materials presents exciting opportunities for applications in healthcare, soft robotics, energy, and electronics. These include conformability to curved surfaces, matching of stiffness of tissue, and the ability to withstand mechanical deformations. Nature-derived materials such as silk fibroin (SF) provide excellent biocompatibility, resorbability, and tunable properties toward such goals. However, fibroin alone lacks the required mechanical properties and durability for processing in biointegrated electronics and dry conditions. To overcome these limitations, we report on an elastomeric photocurable composite of silk fibroin and poly(dimethylsiloxane) (PDMS). Photofibroin (containing methacryl functionalities) is doped with photoPDMS (methacryloxypropyl-terminated poly(dimethylsiloxane)) to form an elastomeric photofibroin (ePF) composite. The elastomeric silk is photocurable, allowing for microfabrication using UV photolithography. It is suitable for circuits, strain-sensing devices, and biointegrated systems. The ePF exhibits flexibility in both wet and dry conditions, enhanced mechanical strength and long-term durability, and optical transparency. It is stable at high temperatures, compatible with electronic materials, and cytocompatible while being enzymatically degradable. This work therefore highlights a path toward combining natural and synthetic materials to achieve versatile properties and demonstrates the potential of silk fibroin composites in (bio) electronics, encapsulation, and packaging.
Collapse
Affiliation(s)
- Anne Katherine Brooks
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Sayantan Pradhan
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
39
|
Liu H, Yao Y, Samorì P. Taming Multiscale Structural Complexity in Porous Skeletons: From Open Framework Materials to Micro/Nanoscaffold Architectures. SMALL METHODS 2023; 7:e2300468. [PMID: 37431215 DOI: 10.1002/smtd.202300468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/14/2023] [Indexed: 07/12/2023]
Abstract
Recent developments in the design and synthesis of more and more sophisticated organic building blocks with controlled structures and physical properties, combined with the emergence of novel assembly modes and nanofabrication methods, make it possible to tailor unprecedented structurally complex porous systems with precise multiscale control over their architectures and functions. By tuning their porosity from the nanoscale to microscale, a wide range of functional materials can be assembled, including open frameworks and micro/nanoscaffold architectures. During the last two decades, significant progress is made on the generation and optimization of advanced porous systems, resulting in high-performance multifunctional scaffold materials and novel device configurations. In this perspective, a critical analysis is provided of the most effective methods for imparting controlled physical and chemical properties to multifunctional porous skeletons. The future research directions that underscore the role of skeleton structures with varying physical dimensions, from molecular-level open frameworks (<10 nm) to supramolecular scaffolds (10-100 nm) and micro/nano scaffolds (>100 nm), are discussed. The limitations, challenges, and opportunities for potential applications of these multifunctional and multidimensional material systems are also evaluated in particular by addressing the greatest challenges that the society has to face.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Yifan Yao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France
| |
Collapse
|
40
|
Bo R, Xu S, Yang Y, Zhang Y. Mechanically-Guided 3D Assembly for Architected Flexible Electronics. Chem Rev 2023; 123:11137-11189. [PMID: 37676059 PMCID: PMC10540141 DOI: 10.1021/acs.chemrev.3c00335] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.
Collapse
Affiliation(s)
- Renheng Bo
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Shiwei Xu
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Youzhou Yang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Yihui Zhang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| |
Collapse
|
41
|
Kumar A, Sood A, Agrawal G, Thakur S, Thakur VK, Tanaka M, Mishra YK, Christie G, Mostafavi E, Boukherroub R, Hutmacher DW, Han SS. Polysaccharides, proteins, and synthetic polymers based multimodal hydrogels for various biomedical applications: A review. Int J Biol Macromol 2023; 247:125606. [PMID: 37406894 DOI: 10.1016/j.ijbiomac.2023.125606] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Nature-derived or biologically encouraged hydrogels have attracted considerable interest in numerous biomedical applications owing to their multidimensional utility and effectiveness. The internal architecture of a hydrogel network, the chemistry of the raw materials involved, interaction across the interface of counter ions, and the ability to mimic the extracellular matrix (ECM) govern the clinical efficacy of the designed hydrogels. This review focuses on the mechanistic viewpoint of different biologically driven/inspired biomacromolecules that encourages the architectural development of hydrogel networks. In addition, the advantage of hydrogels by mimicking the ECM and the significance of the raw material selection as an indicator of bioinertness is deeply elaborated in the review. Furthermore, the article reviews and describes the application of polysaccharides, proteins, and synthetic polymer-based multimodal hydrogels inspired by or derived from nature in different biomedical areas. The review discusses the challenges and opportunities in biomaterials along with future prospects in terms of their applications in biodevices or functional components for human health issues. This review provides information on the strategy and inspiration from nature that can be used to develop a link between multimodal hydrogels as the main frame and its utility in biomedical applications as the primary target.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yogendra Kumar Mishra
- Smart Materials, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg 6400, Denmark
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| |
Collapse
|
42
|
Li J, Gong M, Wang X, Fan F, Zhang B. Triphenylamine-Based Helical Polymer for Flexible Memristors. Biomimetics (Basel) 2023; 8:391. [PMID: 37754142 PMCID: PMC10526500 DOI: 10.3390/biomimetics8050391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Flexible nonvolatile memristors have potential applications in wearable devices. In this work, a helical polymer, poly (N, N-diphenylanline isocyanide) (PPIC), was synthesized as the active layer, and flexible electronic devices with an Al/PPIC/ITO architecture were prepared on a polyethylene terephthalate (PET) substrate. The device showed typical nonvolatile rewritable memristor characteristics. The high-molecular-weight helical structure stabilized the active layer under different bending degrees, bending times, and number of bending cycles. The memristor was further employed to simulate the information transmission capability of neural fibers, providing new perspectives for the development of flexible wearable memristors and biomimetic neural synapses. This demonstration highlights the promising possibilities for the advancement of artificial intelligence skin and intelligent flexible robots in the future.
Collapse
Affiliation(s)
- Jinyong Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minglei Gong
- Shanghai i-Reader Biotech Co., Ltd., Shanghai 201100, China
| | - Xiaoyang Wang
- Guangxi Key Laboratory of Information Material, Engineering Research Center of Electronic Information Materials and Devices, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541200, China
| | - Fei Fan
- Shanghai i-Reader Biotech Co., Ltd., Shanghai 201100, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
43
|
Bi CX, Jin KQ, Yan J, Qin Y, Hong F, Huang WH, Liu YL. Nanofiber-based Stretchable Electrodes for Oriented Culture and Mechanotransduction Monitoring of Smooth Muscle Cells. ACS Sens 2023; 8:3248-3256. [PMID: 37581426 DOI: 10.1021/acssensors.3c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Vascular smooth muscle cells (SMCs) are circumferentially oriented perpendicular to the blood vessel and maintain the contractile phenotype in physiological conditions. They can sense the mechanical forces of blood vessels expanding and contracting and convert them into biochemical signals to regulate vascular homeostasis. However, the real-time monitoring of mechanically evoked biochemical response while maintaining SMC oriented growth remains an important challenge. Herein, we developed a stretchable electrochemical sensor by electrospinning aligned and elastic polyurethane (PU) nanofibers on the surface of PDMS film and further modification of conductive polymer PEDOT:PSS-LiTFSI-CoPc (PPLC) on the nanofibers (denoted as PPLC/PU/PDMS). The aligned nanofibers on the electrode surface could guide the oriented growth of SMCs and maintain the contractile phenotype, and the modification of PPLC endowed the electrode with good electrochemical sensing performance and stability under mechanical deformation. By culturing cells on the electrode surface, the oriented growth of SMCs and real-time monitoring of stretch-induced H2O2 release were achieved. On this basis, the changes of H2O2 level released by SMCs under the pathology (hypertension) and intervention of natural product resveratrol were quantitatively monitored, which will be helpful to further understand the occurrence and development of vascular-related diseases and the mechanisms of pharmaceutical intervention.
Collapse
Affiliation(s)
- Chen-Xi Bi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Kai-Qi Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Qin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
44
|
Zhang Z, Vogelbacher F, Song Y, Tian Y, Li M. Bio-inspired optical structures for enhancing luminescence. EXPLORATION (BEIJING, CHINA) 2023; 3:20220052. [PMID: 37933238 PMCID: PMC10624395 DOI: 10.1002/exp.20220052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/06/2022] [Indexed: 11/08/2023]
Abstract
Luminescence is an essential signal for many plants, insects, and marine organisms to attract the opposite sex, avoid predators, and so on. Most luminescent living organisms have ingenious optical structures which can help them get high luminescent performances. These remarkable and efficient structures have been formed by natural selection from long-time evolution. Researchers keenly observed the enhanced luminescence phenomena and studied how these phenomena happen in order to learn the characteristics of bio-photonics. In this review, we summarize the optical structures for enhancing luminescence and their applications. The structures are classified according to their different functions. We focus on how researchers use these biological inspirations to enhance different luminescence processes, such as chemiluminescence (CL), photoluminescence (PL), and electroluminescence (EL). It lays a foundation for further research on the applications of luminescence enhancement. Furthermore, we give examples of luminescence enhancement by bio-inspired structures in information encryption, biochemical detection, and light sources. These examples show that it is possible to use bio-inspired optical structures to solve complex problems in optical applications. Our work will provide guidance for research on biomimetic optics, micro- and nano-optical structures, and enhanced luminescence.
Collapse
Affiliation(s)
- Zemin Zhang
- Key Laboratory of Green Printing, Institute of ChemistryChinese Academy of SciencesBeijingP. R. China
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Beijing Advanced Innovation Center for Imaging TechnologyCapital Normal UniversityBeijingP. R. China
| | - Florian Vogelbacher
- Key Laboratory of Green Printing, Institute of ChemistryChinese Academy of SciencesBeijingP. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of ChemistryChinese Academy of SciencesBeijingP. R. China
| | - Yang Tian
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Beijing Advanced Innovation Center for Imaging TechnologyCapital Normal UniversityBeijingP. R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing, Institute of ChemistryChinese Academy of SciencesBeijingP. R. China
- Key Laboratory of Materials Processing and Mold of Ministry of EducationZhengzhou UniversityZhengzhouP. R. China
| |
Collapse
|
45
|
Jatsch AS, Jacobs S, Wommer K, Wanieck K. Biomimetics for Sustainable Developments-A Literature Overview of Trends. Biomimetics (Basel) 2023; 8:304. [PMID: 37504192 PMCID: PMC10807477 DOI: 10.3390/biomimetics8030304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Biomimetics holds the promise to contribute to sustainability in several ways. However, it remains unclear how the two broad concepts and research fields are connected. This article presents a literature overview on biomimetic sustainable developments and research. It is shown that there is an increasing trend in publications dealing with various topics and that the research takes place worldwide. The biological models studied in biomimetic sustainable developments are mostly sub-elements of biological systems on a molecular level and lead to eco-friendly, resource and energy-efficient applications. This article indicates that biomimetics is further integrating sustainability to contribute to real problems in this context.
Collapse
Affiliation(s)
- Anne-Sophie Jatsch
- Faculty of Applied Informatics, Deggendorf Institute of Technology (DIT), Teaching Area Biomimetics and Innovation, Grafenauer Str. 22, 94078 Freyung, Germany (K.W.)
| | - Shoshanah Jacobs
- Department of Integrative Biology, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Kirsten Wommer
- Faculty of Applied Informatics, Deggendorf Institute of Technology (DIT), Teaching Area Biomimetics and Innovation, Grafenauer Str. 22, 94078 Freyung, Germany (K.W.)
| | - Kristina Wanieck
- Faculty of Applied Informatics, Deggendorf Institute of Technology (DIT), Teaching Area Biomimetics and Innovation, Grafenauer Str. 22, 94078 Freyung, Germany (K.W.)
| |
Collapse
|
46
|
Zou J, Chen Z, Wang SJ, Liu ZH, Liu YJ, Feng PY, Jing X. A Flexible Sensor with Excellent Environmental Stability Using Well-Designed Encapsulation Structure. Polymers (Basel) 2023; 15:polym15102308. [PMID: 37242884 DOI: 10.3390/polym15102308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The hydrogel-based sensors suffer from poor stability and low sensitivity, severely limiting their further development. It is still "a black box" to understand the effect of the encapsulation as well as the electrode on the performance of the hydrogel-based sensors. To address these problems, we prepared an adhesive hydrogel that could robustly adhere to Ecoflex (adhesive strength is 4.7 kPa) as an encapsulation layer and proposed a rational encapsulation model that fully encapsulated the hydrogel within Ecoflex. Owing to the excellent barrier and resilience of Ecoflex, the encapsulated hydrogel-based sensor can still work normally after 30 days, displaying excellent long-term stability. In addition, we performed theoretical and simulation analyses on the contact state between the hydrogel and the electrode. It was surprising to find that the contact state significantly affects the sensitivity of the hydrogel sensors (the maximum difference in sensitivity was 333.6%), indicating that the reasonable design of the encapsulation and electrode are indispensable parts for fabricating successful hydrogel sensors. Therefore, we paved the way for a novel insight to optimize the properties of the hydrogel sensors, which is greatly favorable to developing hydrogel-based sensors to be applied in various fields.
Collapse
Affiliation(s)
- Jian Zou
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National and Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhuo Chen
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National and Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Sheng-Ji Wang
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National and Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Zi-Hao Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| | - Yue-Jun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National and Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Pei-Yong Feng
- National and Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Xin Jing
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National and Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
47
|
Peng L, Hou L, Wu P. Synergetic Lithium and Hydrogen Bonds Endow Liquid-Free Photonic Ionic Elastomer with Mechanical Robustness and Electrical/Optical Dual-Output. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211342. [PMID: 36878193 DOI: 10.1002/adma.202211342] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/28/2023] [Indexed: 05/19/2023]
Abstract
Photonic ionic elastomers (PIEs) capable of multiple signal outputs are intriguing in flexible interactive electronics. However, fabricating PIEs with simultaneous mechanical robustness, good ionic conductivity, and brilliant structure color still remains challenging. Here, the limitations are broken through introducing the synergistic effect of lithium and hydrogen bonds into an elastomer. In virtue of lithium bonding between lithium ions and carbonyl groups in the polymer matrix as well as hydrogen bonding between silanol on the surface of silica nanoparticles (SiNPs) and ether groups along polymer chains, the PIEs demonstrate mechanical strength up to 4.3 MPa and toughness up to 8.6 MJ m-3 . Meanwhile, the synchronous electrical and optical output under mechanical strains can be achieved in the PIEs with the presence of dissociated ions contributed by lithium bond and non-close-packed SiNPs stabilized by the hydrogen bond. Moreover, due to their liquid-free nature, the PIEs exhibit extraordinary stability and durability, which can withstand extreme conditions including both high and low temperatures as well as high humidity. This work provides a promising molecular engineering route to construct high-performance photonic ionic conductors toward advanced ionotronic applications.
Collapse
Affiliation(s)
- Lei Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Lei Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
- National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong, 271000, P. R. China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
48
|
Sun T, Feng B, Huo J, Xiao Y, Peng J, Li Z, Wang W, Liu L, Zou G, Wang W. Switching ultra-stretchability and sensitivity in metal films for electronic skins: a pufferfish-inspired, interlayer regulation strategy. MATERIALS HORIZONS 2023. [PMID: 37067478 DOI: 10.1039/d3mh00252g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The booming development of electronic skins necessitates stretchable electrodes and flexible sensors that exhibit distinctly opposite requirements of electromechanical properties, both of which are difficult to be fulfilled on a single material. Here, a pufferfish-inspired, interlayer regulation strategy is proposed that realizes the above opposite properties in simple metal films, exhibiting either ultra-stretchability (295% strain) or sensitivity (maximum GF: ∼5500) on demand. It is revealed that the stretchability of the intrinsically strain-sensitive metal films can be improved by ∼20-fold via regulating the surface morphology of the inserted interlayer, accompanied by an intriguing transition in film cracking behavior from cut-through cracks to network patterns. By featuring these two antithetical but valuable properties, common metal films can be applied as diverse sensors and stretchable electrodes in electronic skins, showing application prospects in healthcare monitoring, human-machine interaction, and engineering services. Our proposed strategy substantially advances the application of metal film conductors in flexible electronics and broadens the horizons for developing more sophisticated electronic skins by interlayer engineering.
Collapse
Affiliation(s)
- Tianming Sun
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Bin Feng
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Jinpeng Huo
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Yu Xiao
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Jin Peng
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Zehua Li
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Wengan Wang
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Lei Liu
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Guisheng Zou
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Wenxian Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| |
Collapse
|
49
|
Xu J, Zhang H, Guo Z, Zhang C, Tan H, Gong G, Yu M, Xu L. Fully physical crosslinked BSA-based conductive hydrogels with high strength and fast self-recovery for human motion and wireless electrocardiogram sensing. Int J Biol Macromol 2023; 230:123195. [PMID: 36634804 DOI: 10.1016/j.ijbiomac.2023.123195] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
The emergence of protein hydrogel sensors has attracted intensive attention because of their biocompatibility and biodegradability, and potential application in wearable electronics. However, natural protein hydrogel sensors commonly exhibited low conductivity, weak mechanical strength, and unsatisfactory self-recovery performance. Herein, a fully physical crosslinked conductive BSA-MA-PPy/P(AM-co-AA)/Fe3+ hydrogel based on methacrylic anhydride (MA)-modified and polypyrrole (PPy)-functionalized bovine serum albumin (BSA) introduced into poly(acrylamide-co-acrylic acid) (P(AM-co-AA)) matrix was constructed. Due to the presence of the hydrogen bond complexation and the metal-ligand coordination between ferric ion (Fe3+) and the polymer chain, the as-prepared hydrogel showed outstanding mechanical strength (5.36 MPa tensile stress, 17.66 MJ/m3 toughness, and 1.61 MPa elastic modulus) and fast self-recovery performance (99.89 %/96.18 %/93.57 % stress/elastic modulus/dissipated energy within 10 min at room temperature). Meanwhile, the hydrogel exhibited outstanding conductivity (1.13 S/m) due to the presence of PPy and Fe3+ moieties, high strain sensitivity (GF = 4.98) and good biocompatibility without causing skin allergic reactions. Thus, the hydrogel can be fabricated into strain sensor to monitor the joint motion of the human body. Moreover, it can be used as soft electrode in electrocardiogram device to realize wireless heart-rate monitoring in the real-time conditions (relaxation and post-exercising), which exhibited excellent reusability, stability, and reliability simultaneously.
Collapse
Affiliation(s)
- Jianxiong Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Hongyi Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Ziyu Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Chaoyang Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Haihu Tan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Guo Gong
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Maolin Yu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China.
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China.
| |
Collapse
|
50
|
Kashaninejad N, Nguyen NT. Microfluidic solutions for biofluids handling in on-skin wearable systems. LAB ON A CHIP 2023; 23:913-937. [PMID: 36628970 DOI: 10.1039/d2lc00993e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
On-skin wearable systems for biofluid sampling and biomarker sensing can revolutionize the current practices in healthcare monitoring and personalized medicine. However, there is still a long path toward complete market adoption and acceptance of this fascinating technology. Accordingly, microfluidic science and technology can provide excellent solutions for bridging the gap between basic research and clinical research. The research gap has led to the emerging field of epidermal microfluidics. Moreover, recent advances in the fabrication of highly flexible and stretchable microfluidic systems have revived the concept of micro elastofluidics, which can provide viable solutions for on-skin wearable biofluid handling. In this context, this review highlights the current state-of-the-art platforms in this field and discusses the potential technologies that can be used for on-skin wearable devices. Toward this aim, we first compare various microfluidic platforms that could be used for on-skin wearable devices. These platforms include semiconductor-based, polymer-based, liquid metal-based, paper-based, and textile-based microfluidics. Next, we discuss how these platforms can enhance the stretchability of on-skin wearable biosensors at the device level. Next, potential microfluidic solutions for collecting, transporting, and controlling the biofluids are discussed. The application of finger-powered micropumps as a viable solution for precise and on-demand biofluid pumping is highlighted. Finally, we present the future directions of this field by emphasizing the applications of droplet-based microfluidics, stretchable continuous-flow micro elastofluidics, stretchable superhydrophobic surfaces, liquid beads as a form of digital micro elastofluidics, and topological liquid diodes that received less attention but have enormous potential to be integrated into on-skin wearable devices.
Collapse
Affiliation(s)
- Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| |
Collapse
|