1
|
Patel MA, Kapdi AR. Ubiquitous Role of Phosphine-Based Water-Soluble Ligand in Promoting Catalytic Reactions in Water. CHEM REC 2024; 24:e202400057. [PMID: 39162777 DOI: 10.1002/tcr.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Indexed: 08/21/2024]
Abstract
Catalysis has been at the forefront of the developments that has revolutionised synthesis and provided the impetus in the discovery of platform technologies for efficient C-C or C-X bond formation. Current environmental situation however, demands a change in strategy with catalysis being promoted more in solvents that are benign (Water) and for that the development of hydrophilic ligands (especially phosphines) is a necessity which could promote catalytic reactions in water, allow recyclability of the catalytic solutions and make it possible to isolate products using column-free techniques that involve lesser usage of hazardous organic solvents. In this review, we therefore critically analyse such catalytic processes providing examples that do follow the above-mentioned parameter.
Collapse
Affiliation(s)
- Manisha A Patel
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| |
Collapse
|
2
|
Davies AM, Greene KH, Allen AR, Farris BM, Szymczak NK, Stephenson CRJ. Catalytic Olefin Transpositions Facilitated by Ruthenium N,N,N-Pincer Complexes. J Org Chem 2024; 89:9647-9653. [PMID: 38901003 DOI: 10.1021/acs.joc.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
In this report, we demonstrate olefin transposition/isomerization reactions catalyzed by a series of N,N,N-pincer (1,3-bis(2-pyridylimino)isoindoline) Ru-hydride complexes. The protocol proceeds at room temperature for most substrates, achieving excellent yields, regioselectivity, and diastereoselectivity in short reaction times. The air-stable Ru-chloride derivatives of these complexes exhibit comparable reactivity enabling benchtop setup and synthetic versatility. Furthermore, we demonstrate the potential for one-pot cascade sequences of the products derived from the transposition reactions.
Collapse
Affiliation(s)
- Alex M Davies
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kara H Greene
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anthony R Allen
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Benjamin M Farris
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nathaniel K Szymczak
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Corey R J Stephenson
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Ansari MF, Maurya AK, Kumar A, Elangovan S. Manganese-catalyzed C-C and C-N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer. Beilstein J Org Chem 2024; 20:1111-1166. [PMID: 38887586 PMCID: PMC11181258 DOI: 10.3762/bjoc.20.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/24/2024] [Indexed: 06/20/2024] Open
Abstract
Transition-metal-mediated "borrowing hydrogen" also known as hydrogen auto-transfer reactions allow the sustainable construction of C-C and C-N bonds using alcohols as hydrogen donors. In recent years, manganese complexes have been explored as efficient catalysts in these reactions. This review highlights the significant progress made in manganese-catalyzed C-C and C-N bond-formation reactions via hydrogen auto-transfer, emphasizing the importance of this methodology and manganese catalysts in sustainable synthesis strategies.
Collapse
Affiliation(s)
- Mohd Farhan Ansari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Atul Kumar Maurya
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Abhishek Kumar
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Saravanakumar Elangovan
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
4
|
Ru T, Zhang Y, Wei Q, Zuo S, Jia Z, Chen FE. P(V)-Promoted Rh-Catalyzed Highly Regioselective Hydroformylation of Styrenes under Mild Conditions. Molecules 2024; 29:2039. [PMID: 38731530 PMCID: PMC11085418 DOI: 10.3390/molecules29092039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Hydroformylation of olefins is widely used in the chemical industry due to its versatility and the ability to produce valuable aldehydes with 100% atom economy. Herein, a hybrid phosphate promoter was found to efficiently promote rhodium-catalyzed hydroformylation of styrenes under remarkably mild conditions with high regioselectivities. Preliminary mechanistic studies revealed that the weak coordination between the Rhodium and the P=O double bond of this pentavalent phosphate likely induced exceptional reactivity and high ratios of branched aldehydes to linear products.
Collapse
Affiliation(s)
- Tong Ru
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China;
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Yajiao Zhang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350102, China
| | - Qiuxiang Wei
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350102, China
| | - Sheng Zuo
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Zhenhua Jia
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China;
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350102, China
| |
Collapse
|
5
|
Yuan X, Zhang X, Zheng Z, Sun S, Jia X, Dong S. Highly active and regioselective hydroaminomethylation of olefins catalyzed by Rh/sulfoxantphos with ZSM-5. Chem Commun (Camb) 2024; 60:4667-4670. [PMID: 38591607 DOI: 10.1039/d4cc00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Rh-catalyzed hydroaminomethylation has been developed with acid sulfoxantphos and ZSM-5. Linear amines were obtained in good yields (71-95%) with high l/b ratios (up to 132.4) and excellent TON values (up to 23 760). The ZSM-5 and SO3H group of ligands improved the performances of hydroformylation and reductive amination.
Collapse
Affiliation(s)
- Xiaoshuang Yuan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Xueqing Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Zhaohui Zheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
- Liaoning Sino More New Material Co., Ltd, Panjin, 124000, P. R. China
| | - Shuhui Sun
- Xianhe Oil Production Plant, SINOPEC, Dongying, 257000, P. R. China
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Shuxiang Dong
- Liaoning Sino More New Material Co., Ltd, Panjin, 124000, P. R. China
| |
Collapse
|
6
|
Faculak MS, Veatch AM, Alexanian EJ. Cobalt-catalyzed synthesis of amides from alkenes and amines promoted by light. Science 2024; 383:77-81. [PMID: 38175889 PMCID: PMC10799253 DOI: 10.1126/science.adk2312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024]
Abstract
Catalytic methods to couple alkene and amine feedstocks are valuable in synthetic chemistry. The direct carbonylative coupling of alkenes and amines holds promise as a perfectly atom-economical approach to amide synthesis, but general methods remain underdeveloped. Herein, we report an alkene hydroaminocarbonylation catalyzed by unmodified, inexpensive cobalt carbonyl under mild conditions and low pressure promoted by light. Silane addition after the reaction enables sequential cobalt-catalyzed amide reduction, constituting a formal alkene hydroaminomethylation. These methods exhibit exceptional scope across both alkene and amine components with high chemo- and regioselectivity and proceed efficiently even in the absence of solvent. The formation of a hydridocobalt through photodissociation of a carbonyl ligand is proposed to enable catalytic activity under mild conditions, which addresses a long-standing challenge in catalysis.
Collapse
Affiliation(s)
- Mason S Faculak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander M Veatch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erik J Alexanian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Marques GVDL, Marques DPDA, Clarindo FA, Avendaño-Villarreal JA, Guerra FS, Fernandes PD, Dos Santos EN, Gusevskaya EV, Kohlhoff M, Moreira FDA, Andrade LAF, Fonseca FGD, Dos-Reis JGAC, Oliveira RBD. Synthesis of cannabidiol-based compounds as ACE2 inhibitors with potential application in the treatment of COVID-19. Eur J Med Chem 2023; 260:115760. [PMID: 37657273 DOI: 10.1016/j.ejmech.2023.115760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Cannabis is a general name for plants of the genus Cannabis. Used as fiber, medicine, drug, for religious, therapeutic, and hedonistic purposes along the millenia, it is mostly known for its psychoactive properties. One of its major constituents, cannabidiol (CBD), a non-psychoactive substance, among many other biological activities, has shown potential as an anti-SARS-CoV-2 drug. In this work, three derivatives and an analogue of CBD were synthesized, and cell viability and antiviral activities were evaluated. None of the compounds showed cytotoxicity up to a maximum concentration of 100 μM and, in contrast, displayed a significant antiviral activity, superior to remdesivir and nafamostat mesylate, with IC50 values ranging from 9.4 to 1.9 μM. In order to search for a possible molecular target, the inhibitory activity of the compounds against ACE2 was investigated, with expressive results (IC50 ranging from 3.96 μM to 0.01 μM).
Collapse
Affiliation(s)
- Gabriel Vitor de Lima Marques
- Universidade Federal de Minas Gerais, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Belo Horizonte, Brazil
| | | | - Felipe Alves Clarindo
- Universidade Federal de Minas Gerais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | | | - Fabiana Sélos Guerra
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Programa de Pesquisa em Descoberta de Fármacos, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brazil
| | - Patrícia Dias Fernandes
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Programa de Pesquisa em Descoberta de Fármacos, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brazil
| | - Eduardo Nicolau Dos Santos
- Universidade Federal de Minas Gerais, Departamento de Química, Instituto de Ciências Exatas, Belo Horizonte, Brazil
| | - Elena Vitalievna Gusevskaya
- Universidade Federal de Minas Gerais, Departamento de Química, Instituto de Ciências Exatas, Belo Horizonte, Brazil
| | - Markus Kohlhoff
- Instituto René Rachou (IRR) - FIOCRUZ Minas, Química de Produtos Naturais Bioativos (QPNB), Belo Horizonte, Brazil
| | - Fabrício de Araújo Moreira
- Universidade Federal de Minas Gerais, Departamento de Farmacologia, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Luis Adan Flores Andrade
- Universidade Federal de Minas Gerais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Belo Horizonte, Brazil; Universidade Federal de Minas Gerais, Centro de Tecnologia de Vacinas - CT Vacinas, Belo Horizonte, Brazil
| | - Flávio Guimarães da Fonseca
- Universidade Federal de Minas Gerais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Belo Horizonte, Brazil; Universidade Federal de Minas Gerais, Centro de Tecnologia de Vacinas - CT Vacinas, Belo Horizonte, Brazil
| | | | - Renata Barbosa de Oliveira
- Universidade Federal de Minas Gerais, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Belo Horizonte, Brazil.
| |
Collapse
|
8
|
Li F, Luo Y, Ren J, Yuan Q, Yan D, Zhang W. Iridium-Catalyzed Remote Site-Switchable Hydroarylation of Alkenes Controlled by Ligands. Angew Chem Int Ed Engl 2023; 62:e202309859. [PMID: 37610735 DOI: 10.1002/anie.202309859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
An iridium-catalyzed remote site-switchable hydroarylation of alkenes was reported, delivering the products functionalized at the subterminal methylene and terminal methyl positions on an alkyl chain controlled by two different ligands, respectively, in good yields and with good to excellent site-selectivities. The catalytic system showed good functional group tolerance and a broad substrate scope, including unactivated and activated alkenes. More importantly, the regioconvergent transformations of mixtures of isomeric alkenes were also successfully realized. The results of the mechanistic studies demonstrate that the reaction undergoes a chain-walking process to give an [Ar-Ir-H] complex of terminal alkene. The subsequent processes proceed through the modified Chalk-Harrod-type mechanism via the migratory insertion of terminal alkene into the Ir-C bond followed by C-H reductive elimination to afford the hydrofunctionalization products site-selectively.
Collapse
Affiliation(s)
- Fei Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinbao Ren
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qianjia Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Deyue Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
9
|
Zhou X, Liu J, Zhang L, Wang S, Jia X, Fu W, Tang T. Molybdenum oxides catalyzed the
N
,
N
‐dimethylamination of alcohols with
N
,
N
‐dimethylformamide for direct synthesis of tertiary amines. Appl Organomet Chem 2023. [DOI: 10.1002/aoc.7080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
10
|
Kortuz W, Kirschtowski S, Seidel-Morgenstern A, Hamel C. Mechanistic kinetic modeling of the rhodium-catalyzed tandem hydroaminomethylation of 1-decene in a thermomorphic solvent system. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
11
|
Delolo FG, Vieira GM, Avendaño-Villarreal JA, de Oliveira Dias A, dos Santos EN, Gusevskaya EV. Working Together to Avoid Unwanted Reactions: Hydroformylation/O-acylation of Terpene-Based Hydroxyolefins. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
12
|
Li Y, Tang Y, Tao FF. C-N Coupling through Hydroaminoalkylation on a Single-Atom Rh Heterogeneous Catalyst. Angew Chem Int Ed Engl 2023; 62:e202214332. [PMID: 36749904 DOI: 10.1002/anie.202214332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023]
Abstract
C-N coupling is significant for the synthesis of fine chemicals toward various applications. Hydroaminoalkylation of olefins is a tandem reaction of C-N coupling involving first the formation of an aldehyde through hydroformylation of an olefin and then the production of amine through reductive amination of the aldehyde. Here we report a stable, supported catalyst of singly dispersed Rh1 atoms anchored on TiO2 (P25) nanoparticles designated as Rh1 /P25. Its high activity for C-N coupling was demonstrated by six hydroaminoalkylations of olefins and amines with selectivity of higher than 90% for producing tertiary amines. The singly dispersed Rh1 O4 on P25 exhibit activity and selectivity for hydroaminoalkylation comparable or even higher than some reported molecular catalysts. In contrast to molecular catalysts, the Rh-based single-atom Rh heterogeneous catalysis (Rh1 /P25) can be readily separated from reactants and products, reused for multiple runs of hydroaminoalkylation, and recycled with a low cost.
Collapse
Affiliation(s)
- Yuting Li
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66049, USA
| | - Yu Tang
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66049, USA
| | - Franklin Feng Tao
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66049, USA
| |
Collapse
|
13
|
Migliorini F, Monciatti E, Romagnoli G, Parisi ML, Taubert J, Vogt M, Langer R, Petricci E. Switching Mechanistic Pathways by Micellar Catalysis: A Highly Selective Rhodium Catalyst for the Hydroaminomethylation of Olefins with Anilines in Water. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Francesca Migliorini
- Department of Biochemistry, Chemistry and Pharmacy - University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| | - Elisabetta Monciatti
- Department of Biochemistry, Chemistry and Pharmacy - University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| | - Giulia Romagnoli
- Department of Biochemistry, Chemistry and Pharmacy - University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| | - Maria Laura Parisi
- Department of Biochemistry, Chemistry and Pharmacy - University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| | - Julia Taubert
- Naturwissenschaftliche Fakultät II - Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle, Germany
| | - Matthias Vogt
- Naturwissenschaftliche Fakultät II - Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle, Germany
| | - Robert Langer
- Naturwissenschaftliche Fakultät II - Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle, Germany
| | - Elena Petricci
- Department of Biochemistry, Chemistry and Pharmacy - University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| |
Collapse
|
14
|
Knaus T, Corrado ML, Mutti FG. One-Pot Biocatalytic Synthesis of Primary, Secondary, and Tertiary Amines with Two Stereocenters from α,β-Unsaturated Ketones Using Alkyl-Ammonium Formate. ACS Catal 2022; 12:14459-14475. [PMID: 36504913 PMCID: PMC9724091 DOI: 10.1021/acscatal.2c03052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/20/2022] [Indexed: 11/11/2022]
Abstract
The efficient asymmetric catalytic synthesis of amines containing more than one stereogenic center is a current challenge. Here, we present a biocatalytic cascade that combines ene-reductases (EReds) with imine reductases/reductive aminases (IReds/RedAms) to enable the conversion of α,β-unsaturated ketones into primary, secondary, and tertiary amines containing two stereogenic centers in very high chemical purity (up to >99%), a diastereomeric ratio, and an enantiomeric ratio (up to >99.8:<0.2). Compared with previously reported strategies, our strategy could synthesize two, three, or even all four of the possible stereoisomers of the amine products while precluding the formation of side-products. Furthermore, ammonium or alkylammonium formate buffer could be used as the only additional reagent since it acted both as an amine donor and as a source of reducing equivalents. This was achieved through the implementation of an NADP-dependent formate dehydrogenase (FDH) for the in situ recycling of the NADPH coenzyme, thus leading to increased atom economy for this biocatalytic transformation. Finally, this dual-enzyme ERed/IRed cascade also exhibits a complementarity with the recently reported EneIRED enzymes for the synthesis of cyclic six-membered ring amines. The ERed/IRed method yielded trans-1,2 and cis-1,3 substituted cyclohexylamines in high optical purities, whereas the EneIRED method was reported to yield one cis-1,2 and one trans-1,3 enantiomer. As a proof of concept, when 3-methylcyclohex-2-en-1-one was converted into secondary and tertiary chiral amines with different amine donors, we could obtain all the four possible stereoisomer products. This result exemplifies the versatility of this method and its potential for future wider utilization in asymmetric synthesis by expanding the toolbox of currently available dehydrogenases via enzyme engineering and discovery.
Collapse
Affiliation(s)
- Tanja Knaus
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Maria L. Corrado
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Francesco G. Mutti
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
15
|
Zheng S, Wang W, Yuan W. Remote and Proximal Hydroaminoalkylation of Alkenes Enabled by Photoredox/Nickel Dual Catalysis. J Am Chem Soc 2022; 144:17776-17782. [PMID: 36136777 DOI: 10.1021/jacs.2c08039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mild and site-selective hydroaminoalkylation of activated and unactivated alkenes via dual photoredox/Ni catalysis is developed. This dual catalytic strategy enables exclusive access to α-selective products, which is complementary to previously reported photocatalytic hydroaminoalkylation of activated alkenes that provides the β-selective products. The chain-walking of a Ni-H intermediate toward a carbonyl allows for the hydroaminoalkylation of unactivated alkenes at remote sp3 C-H sites. This method tolerates a broad substrate scope of both amines and alkenes as well as providing a streamlined synthesis of value-added β-amino acid derivatives from readily available starting materials.
Collapse
Affiliation(s)
- Songlin Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Wenlong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
16
|
Kliemann MN, Teeuwen S, Weike C, Franciò G, Leitner W. Rhodium‐Catalyzed Asymmetric Hydrohydrazonemethylation of Styrenes: Access to Chiral Hydrazones, Hydrazides, Hydrazines and Amines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - Walter Leitner
- Max-Planck-Institute for Chemical Energy Conversion GERMANY
| |
Collapse
|
17
|
Yan Z, Wang NX, Zhang LY, Wu YH, Li JL, She MY, Gao XW, Feng K, Xing Y. The C(sp 3)-H bond functionalization of thioethers with styrenes with insight into the mechanism. Org Biomol Chem 2022; 20:5845-5851. [PMID: 35848391 DOI: 10.1039/d2ob00872f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free inactive C(sp3)-H bond functionalization of thioethers with styrenes using TBHP as an initiator and DBU as a base has been developed. This transformation has broken through the low activity of thioethers and realized moderate yields. Herein extended experiments were conducted to confirm the radical relay process, reaction energy and intermediate transformations.
Collapse
Affiliation(s)
- Zhan Yan
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China.
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Lei-Yang Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yue-Hua Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jian-Li Li
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China.
| | - Meng-Yao She
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China.
| | - Xue-Wang Gao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Ke Feng
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yalan Xing
- Department of Chemistry, William Paterson University of New Jersey, New Jersey, 07470, USA.
| |
Collapse
|
18
|
An Intramolecular Hydroaminomethylation-Based Approach to Pyrrolizidine Alkaloids under Microwave-Assisted Heating. Molecules 2022; 27:molecules27154762. [PMID: 35897934 PMCID: PMC9332719 DOI: 10.3390/molecules27154762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
A general method for the synthesis of pyrrolizidine derivatives using an intramolecular hydroaminomethylation protocol (HAM) under microwave (MW) dielectric heating is reported. Starting from a 3,4-bis(benzyloxy)-2-[(benzyloxy)methyl]-5-vinylpyrrolidine, MW-assisted intramolecular HAM in the presence of gaseous H2 and CO gave the natural alkaloid hyacinthacine A2 protected as benzyl ether. The same approach gave a lentiginosine analogue starting from the corresponding vinyl N-hydroxypyrrolidine. The nature of the reaction products and the yields were strongly influenced by the relative stereochemistry of the starting pyrrolidines, as well as by the catalyst/ligand employed. The use of ethanol as a solvent provides environmentally friendly conditions, while the ligand/catalyst system can be recovered by separating the alkaloid product with an SCX column and recycling the ethanolic solution. HAM worked up to three times with the recycled catalyst solution without any significant impact on yield.
Collapse
|
19
|
Zhao K, Wang H, Wang X, Cui X, Shi F. A biphosphine copolymer encapsulated single-site Rh catalyst for heterogeneous regioselective hydroaminomethylation of alkenes. Chem Commun (Camb) 2022; 58:8093-8096. [PMID: 35766347 DOI: 10.1039/d2cc02469a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel porous organic polymer catalyst with in situ encapsulated single-site Rh (Rh@CPOL-DPMphos&p-3vPPh3) was developed and employed in heterogeneous hydroaminomethylation of alkenes, affording the corresponding amines in good to excellent regioselectivity and catalytic activity by a one-pot method. The combined actions of hierarchical pore confinement and the biphosphine ligand derived from the POP catalyst contributed to the improved regioselectivity.
Collapse
Affiliation(s)
- Kang Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, P. R. China. .,University of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049, P. R. China
| | - Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, P. R. China. .,University of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049, P. R. China
| | - Xinzhi Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, P. R. China. .,University of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049, P. R. China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, P. R. China.
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, P. R. China.
| |
Collapse
|
20
|
One-Pot Synthesis of Fatty Amines: Rh-Catalyzed Hydroaminomethylation of 1-Decene in an Aqueous Microemulsion System—Influence of Reaction Conditions on the Reaction Performance. Catalysts 2022. [DOI: 10.3390/catal12070773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The hydroaminomethylation of the long-chain olefin 1-decene and diethylamine with a homogeneous Rh(acac)(cod)/SulfoXantphos catalyst complex as a one-pot synthesis was investigated. The influence of reaction conditions such as temperature and synthesis gas pressure was determined, as well as the effects of the initial concentrations of catalyst precursor, ligand, and reactants on the yield of fatty amine. Hydroaminomethylation was successfully carried out in an aqueous microemulsion system using a non-ionic surfactant with a reaction time of 2 h. A maximum yield of 34%, high regioselectivities >97%, and chemoselectivities >85% were achieved.
Collapse
|
21
|
DiPucchio RC, Rosca SC, Schafer LL. Hydroaminoalkylation for the Catalytic Addition of Amines to Alkenes or Alkynes: Diverse Mechanisms Enable Diverse Substrate Scope. J Am Chem Soc 2022; 144:11459-11481. [PMID: 35731810 DOI: 10.1021/jacs.1c10397] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hydroaminoalkylation is a powerful, atom-economic catalytic reaction for the reaction of amines with alkenes and alkynes. This C-H functionalization reaction allows for the atom-economic alkylation of amines using simple alkenes or alkynes as the alkylating agents. This transformation has significant potential for transformative approaches in the pharmaceutical, agrochemical, and fine chemical industries in the preparation of selectively substituted amines and N-heterocycles and shows promise in materials science for the synthesis of functional and responsive aminated materials. Different early transition-metal, late transition-metal, and photoredox catalysts mediate hydroaminoalkylation by distinct mechanistic pathways. These mechanistic insights have resulted in the development of new catalysts and reaction conditions to realize hydroaminoalkylation with a broad range of substrates: activated and unactivated, terminal and internal, C-C double and triple bonds with aryl or alkyl primary, secondary, or tertiary amines, including N-heterocyclic amines. By deploying select catalysts with specific substrate combinations, control over regioselectivity, diastereoselectivity, and enantioselectivity has been realized. Key barriers to widespread adoption of this reaction include air and moisture sensitivity for early transition-metal catalysts as well as a heavy dependence on amine protecting or directing groups for late transition-metal or photocatalytic routes. Advances in improved catalyst robustness, substrate scope, and regio-/stereoselective reactions with early- and late transition-metal catalysts, as well as photoredox catalysis, are highlighted, and opportunities for further catalyst and reaction development are included. This perspective shows that hydroaminoalkylation has the potential to be a disruptive and transformative strategy for the synthesis of selectively substituted amines and N-heterocycles from simple amines and alkenes.
Collapse
Affiliation(s)
- Rebecca C DiPucchio
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
| | - Sorin-Claudiu Rosca
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
| | - Laurel L Schafer
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
| |
Collapse
|
22
|
Wang H, Wang H, Li L, Wang X, Sun R, Zhou M. Ruthenium(II)‐Catalyzed Hydroamination of Allenoates: A Regioselective Synthesis of Allylamines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hua Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 People's Republic of China
| | - He Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 People's Republic of China
| | - Lei Li
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 People's Republic of China
| | - Xin Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 People's Republic of China
| | - Ran Sun
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 People's Republic of China
| | - Ming‐Dong Zhou
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 People's Republic of China
| |
Collapse
|
23
|
Recyclable cooperative catalyst for accelerated hydroaminomethylation of hindered amines in a continuous segmented flow reactor. Nat Commun 2022; 13:2441. [PMID: 35508490 PMCID: PMC9068773 DOI: 10.1038/s41467-022-30175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/18/2022] [Indexed: 12/02/2022] Open
Abstract
Synthesis of hindered amines using the atom-efficient hydroaminomethylation (HAM) route remains a challenge. Here, we report a general and accelerated HAM in segmented flow, achieved via a cooperative effect between rhodium (Rh)/N-Xantphos and a co-catalyst (2-Fluoro-4-methylbenzoic acid) to increase the reactivity by 70 fold when compared to Rh/Xantphos in batch reactors. The cooperation between Rh and the co-catalyst facilitates the cleavage of the H–H bond and drives the equilibrium-limited condensation step forward. Online reaction optimization expands the scope to include alkyl, aryl, and primary amines. In-flow solvent tuning enables selectivity switching from amine to enamine without the need for changing the ligand. Furthermore, leveraging the ionic nature of the catalyst, we present a robust Rh recovery strategy up to 4 recycles without loss of activity. Flow chemistry enables intensified production of hindered amines. Here the authors present a rapid and reusable catalyst to operate in a segmented flow reactor for olefin hydroaminomethylation to selectively produce hindered amines or enamines.
Collapse
|
24
|
Highly regioselective tandem hydroformylation of substituted styrene using Iminophosphine rhodium complex immobilized on carbon. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Efficient hydroaminomethylation of olefins catalyzed by Rh-complex ligated by P,O-hybrid ligand with chelating effect. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
|
27
|
Kortuz W, Kirschtowski S, Seidel‐Morgenstern A, Hamel C. Kinetics of the Rhodium‐Catalyzed Hydroaminomethylation of 1‐Decene in a Thermomorphic Solvent System. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wieland Kortuz
- Otto von Guericke University Magdeburg Institute of Process Engineering Universitätsplatz 2 39106 Magdeburg Germany
| | - Sabine Kirschtowski
- Otto von Guericke University Magdeburg Institute of Process Engineering Universitätsplatz 2 39106 Magdeburg Germany
| | - Andreas Seidel‐Morgenstern
- Otto von Guericke University Magdeburg Institute of Process Engineering Universitätsplatz 2 39106 Magdeburg Germany
- Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Sandtorstraße 1 39106 Magdeburg Germany
| | - Christof Hamel
- Otto von Guericke University Magdeburg Institute of Process Engineering Universitätsplatz 2 39106 Magdeburg Germany
- Anhalt University of Applied Sciences Department of Applied Biosciences and Process Engineering Bernburger Straße 55 06366 Köthen Germany
| |
Collapse
|
28
|
Wang Q, Ni S, Wang X, Wang Y, Pan Y. Visible-light-mediated tungsten-catalyzed C-H amination of unactivated alkanes with nitroarenes. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1170-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Hochberger-Roa F, García-Ríos PH, López-Cortés JG, Ortega-Alfaro MC, Daran JC, Gouygou M, Urrutigoïty M. Interrupted Intramolecular Hydroaminomethylation of N-Protected-2-vinyl Anilines: Novel Access to 3-Substitued Indoles or Indoline-2-ols. Molecules 2022; 27:molecules27031074. [PMID: 35164340 PMCID: PMC8840357 DOI: 10.3390/molecules27031074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
A new synthetic alternative to the synthesis of 3-methyl indoles and 3-methyl indoline-2-ols with an excellent atomic economy is presented in this study. It is demonstrated that the intramolecular interrupted hydroaminomethylation (HAM) reaction is a powerful tool for the formation of these compounds, which exhibit wide-ranging biological activity. Several N-Protected-2-vinyl anilines were synthesized and involved in the reaction producing the corresponding 3-methylindole or 3-methyl indoline-2-ol depending on the nature of the N-protecting groups.
Collapse
Affiliation(s)
- Frank Hochberger-Roa
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique, Université de Toulouse, 31030 Toulouse, France; (F.H.-R.); (P.H.G.-R.); (J.-C.D.); (M.G.)
| | - Perla H. García-Ríos
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique, Université de Toulouse, 31030 Toulouse, France; (F.H.-R.); (P.H.G.-R.); (J.-C.D.); (M.G.)
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P., Ciudad de Mexico 04510, Mexico;
| | - José G. López-Cortés
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P., Ciudad de Mexico 04510, Mexico;
| | - M. Carmen Ortega-Alfaro
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P., Ciudad de Mexico 04510, Mexico;
| | - Jean-Claude Daran
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique, Université de Toulouse, 31030 Toulouse, France; (F.H.-R.); (P.H.G.-R.); (J.-C.D.); (M.G.)
| | - Maryse Gouygou
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique, Université de Toulouse, 31030 Toulouse, France; (F.H.-R.); (P.H.G.-R.); (J.-C.D.); (M.G.)
| | - Martine Urrutigoïty
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique, Université de Toulouse, 31030 Toulouse, France; (F.H.-R.); (P.H.G.-R.); (J.-C.D.); (M.G.)
- Correspondence:
| |
Collapse
|
30
|
Huxoll F, Kampwerth A, Seidensticker T, Vogt D, Sadowski G. Predicting Solvent Effects on Homogeneity and Kinetics of the Hydroaminomethylation: A Thermodynamic Approach Using PC-SAFT. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fabian Huxoll
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| | - Anna Kampwerth
- Laboratory of Industrial Chemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany
| | - Thomas Seidensticker
- Laboratory of Industrial Chemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany
| | - Dieter Vogt
- Laboratory of Industrial Chemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| |
Collapse
|
31
|
Sun P, Zhang Z, Wang X, Li L, Li Y, Li Z. Cobalt‐catalyzed Intermolecular Hydroamination of Unactivated Alkenes Using
NFSI
as Nitrogen Source. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peng‐Wei Sun
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Ze Zhang
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Xinyao Wang
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Linshan Li
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yuxin Li
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Zhengming Li
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
32
|
Yang J, Delolo FG, Spannenberg A, Jackstell R, Beller M. A Selective and General Cobalt‐Catalyzed Hydroaminomethylation of Olefins to Amines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ji Yang
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Fábio G. Delolo
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Departamento de Química Universidade Federal de Minas Gerais Av. Antônio Carlos 6627 31270-901 Belo Horizonte MG Brazil
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
33
|
Yan X, Zhang R, Wang J, Yu H, Wen J, Bai ST, Zhang X. Selective and stable tetraphosphite for Rh-catalyzed linear hydroaminomethylation of aliphatic and aromatic terminal olefins. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00400c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A highly selective and stable tetraphosphite ligand TBTP was reported for Rh-catalyzed linear selective hydroaminomethylation of both aliphatic and aromatic terminal olefins, giving up to 10 000 TON, 99.9% linear amines with isolated yields up to 98.2%.
Collapse
Affiliation(s)
- Xin Yan
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Runtong Zhang
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiang Wang
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongyi Yu
- Homerton College, University of Cambridge, Cambridgeshire, CB2 8PH, UK
| | - Jialin Wen
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao-Tao Bai
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xumu Zhang
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
34
|
Zhou SY, Zhang D, Liu XJ, Qin JH, Fu ZL, Li SL, Cai FJ, Li Y, Li JH. Visible-Light-Driven Photoredox-Catalyzed C(sp3)-C(sp3) Cross-Coupling of N-arylamines with Cycloketone Oxime Esters. Org Chem Front 2022. [DOI: 10.1039/d2qo00128d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel photoredox-catalyzed C(sp3)-C(sp3) cross-coupling between N-arylamines and cycloketone oxime esters under mild conditions has been accomplished. The redox-neutral reaction proceeds good functional group tolerance and excellent regioselectivity without any...
Collapse
|
35
|
|
36
|
Zeng M, Liu YX, Zheng JH, Zhao L, Zhu QH, Jiang D, Ling Y, Liu W, Zeng SX. Direct α-methylenation of triazines to terminal olefins with DMA. NEW J CHEM 2022. [DOI: 10.1039/d2nj04417j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report an efficient metal (Cu or Ni)-catalysed α-methylenation of triazines to terminal olefins using DMA as a one-carbon source. Various substituted triazine derivatives are suitable for this reaction.
Collapse
Affiliation(s)
- Ming Zeng
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Yi-xuan Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Jian-hui Zheng
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Lan Zhao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Qi-han Zhu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Dengzhao Jiang
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Yun Ling
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Wenbo Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Shen-xin Zeng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| |
Collapse
|
37
|
Delolo FG, Vieira GM, Villarreal JA, dos Santos EN, Gusevskaya EV. One-pot hydroformylation/O-acylation of propenylbenzenes for the synthesis of polyfunctionalized fragrances. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Yang J, Delolo FG, Spannenberg A, Jackstell R, Beller M. A Selective and General Cobalt-Catalyzed Hydroaminomethylation of Olefins to Amines. Angew Chem Int Ed Engl 2021; 61:e202112597. [PMID: 34738697 PMCID: PMC9299624 DOI: 10.1002/anie.202112597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 11/10/2022]
Abstract
A new cobalt catalyst is presented for the domino hydroformylation-reductive amination reaction of olefins. The optimal Co-tert-BuPy-Xantphos catalyst shows good to excellent linear-to-branched (n/iso) regioselectivity for the reactions of aliphatic alkenes with aromatic amines under mild conditions. This system is far more selective than traditional cobalt(I) catalysts and even better than most known rhodium catalysts.
Collapse
Affiliation(s)
- Ji Yang
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Fábio G Delolo
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
39
|
Wu Z, Gockel SN, Hull KL. Anti-Markovnikov hydro(amino)alkylation of vinylarenes via photoredox catalysis. Nat Commun 2021; 12:5956. [PMID: 34642311 PMCID: PMC8511241 DOI: 10.1038/s41467-021-26170-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Photoredox catalysis is a powerful means to generate odd-electron species under mild reaction conditions from a wide array of radical precursors. Herein, we present the application of this powerful catalytic manifold to address the hydroalkylation and hydroaminoalkylation of electronically diverse vinylarenes. This reaction allows for generalized alkene hydroalkylation leveraging common alkyl radical precursors, such as organotrifluoroborate salts and carboxylic acids. Furthermore, utilizing easily accessible α-silyl amine reagents or tertiary amines directly, secondary and tertiary amine moieties can be installed onto monoaryl and diaryl alkenes to access valuable products, including γ,γ-diarylamines pharmacophores. Thus, under a unified system, both hydroalkylation and hydroaminoalkylation of alkenes are achieved. The substrate scope is evaluated through 57 examples, the synthetic utility of the method is demonstrated, and preliminary mechanistic insights are presented. Many useful chemical scaffolds include carbon or nitrogen substitutions at two or three atoms away from benzene. Here, the authors show a unified hydroalkylation and hydroaminoalkylation protocol to access these structures via a regioselective photocatalytic addition to simple styrenes.
Collapse
Affiliation(s)
- Zhao Wu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Samuel N Gockel
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.,Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, TX, 78712, USA
| | - Kami L Hull
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, TX, 78712, USA.
| |
Collapse
|
40
|
Rh-Catalyzed Reductive Amination of Undecanal in an Aqueous Microemulsion System Using a Non-Ionic Surfactant. Catalysts 2021. [DOI: 10.3390/catal11101223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The homogeneously catalyzed reductive amination of the long-chain aldehyde undecanal with diethylamine was performed in an aqueous microemulsion system using the non-ionic surfactant Marlophen NP8. The experiments showed that the used water-soluble rhodium/SulfoXantphos catalyst system is suitable for this reaction. The Rh-catalyzed formation of the alcohol by-product can be completely suppressed by the use of carbon monoxide with its stabilizing effect of the catalyst system. In addition to pressure and temperature, the most important parameters for the reaction performance of the reductive amination are the concentrations of reactants. Especially, the initial concentration of the aldehyde has a strong impact on the chemoselectivity, and the formation of aldol by-product due to the fact that both, the enamine condensation and the aldol condensation are equilibrium reactions.
Collapse
|
41
|
Li WH, Yang J, Jing H, Zhang J, Wang Y, Li J, Zhao J, Wang D, Li Y. Creating High Regioselectivity by Electronic Metal-Support Interaction of a Single-Atomic-Site Catalyst. J Am Chem Soc 2021; 143:15453-15461. [PMID: 34506145 DOI: 10.1021/jacs.1c08088] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ligands are the most commonly used means to control the regioselectivity of organic reactions. It is very important to develop new regioselective control methods for organic synthesis. In this study, we designed and synthesized a single-atomic-site catalyst (SAC), namely, Cu1-TiC, with strong electronic metal-support interaction (EMSI) effects by studying various reaction mechanisms. π cloud back-donation to the alkyne on the metal catalytic intermediate was enhanced during the reaction by using transient electron-rich characteristics. In this way, the reaction achieved highly linear-E-type regioselective conversion of electronically unbiased alkynes and completely avoided the formation of branched isomers (ln:br >100:1, TON up to 612, 3 times higher than previously recorded). The structural elements of the SACs were designed following the requirements of the synthesis mechanism. Every element in the catalyst played an important role in the synthesis mechanism. This demonstrated that the EMSI, which is normally thought to be responsible for the improvement in catalytic efficiency and durability in heterogeneous catalysis, now first shows exciting potential for regulating the regioselectivity in homogeneous catalysis.
Collapse
Affiliation(s)
- Wen-Hao Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongyu Jing
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jian Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, 201204, China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, 201204, China
| | - Jie Zhao
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
42
|
Chakraborty P, Sundararaju B, Manoury E, Poli R. New Borrowing Hydrogen Mechanism for Redox-Active Metals. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Priyanka Chakraborty
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Eric Manoury
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 F-31077, France
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 F-31077, France
- Institut Universitaire de France, 1, Rue Descartes, Paris Cedex 05 75231, France
| |
Collapse
|
43
|
Hu K, Liu R, Zhou X. Sequential Addition of Amines to Nitrile and Carbon-Carbon Multiple Bond: A Route to 7-Amino-5 H-dibenzo[ c,e]azepines. Org Lett 2021; 23:6946-6950. [PMID: 34415175 DOI: 10.1021/acs.orglett.1c02540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A rare earth metal-catalyzed sequential inter- and intramolecular C-N bond formation of 2-nitrile-2'-alkenyl(alkynyl)biphenyls with amines has been developed, which provides a straightforward and efficient access to a range of new functional dibenzo[c,e]azepines. This represents the first examples of direct construction of seven-membered azaheterocycle from unsaturated nitriles and amines. Such transformations have the advantages of avoiding the use of additives, easily available starting materials, step- and high atom-economy, mild reaction conditions, and high selectivity.
Collapse
Affiliation(s)
- Kun Hu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Ruiting Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xigeng Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.,State Key Laboratory of Organometallic Chemistry, Shanghai 200032, China
| |
Collapse
|
44
|
Phosphorus coordinated Rh single-atom sites on nanodiamond as highly regioselective catalyst for hydroformylation of olefins. Nat Commun 2021; 12:4698. [PMID: 34349125 PMCID: PMC8339002 DOI: 10.1038/s41467-021-25061-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/12/2021] [Indexed: 12/03/2022] Open
Abstract
Single-atom Rh catalysts present superior activity relative to homogeneous catalyst in olefins hydroformylation, yet with limited success in regioselectivity control. In the present work, we develop a phosphorus coordinated Rh1 single-atom catalyst with nanodiamond as support. Benefiting from this unique structure, the catalyst exhibits excellent activity and regioselectivity in hydroformylation of arylethylenes with wide substrate generality, i.e., with high conversion (>99%) and high regioselectivity (>90%), which is comparable with the homogeneous counterparts. The coordination interaction between Rh1 and surface phosphorus species is clarified by 31P solid-state NMR and X-ray absorption spectroscopy (XAS). Rh single atoms are firmly anchored over nanodiamond through Rh-P bonds, guaranteeing good stability in the hydroformation of styrene even after six runs. Finally, by using this catalyst, two kinds of pharmaceutical molecules, Ibuprofen and Fendiline, are synthesized efficiently with high yields, demonstrating a new prospect of single-atom catalyst in pharmaceutical synthesis. Single-atom Rh catalysts present superior activity in olefins hydroformylation, yet with limited success in regioselectivity control. Here the authors develop a Rh1 single-atom catalyst with nanodiamond as support, with which good to excellent regioselectivities to branched aldehydes in hydroformylation of terminal olefins are achieved.
Collapse
|
45
|
|
46
|
Jiang H, Sheng M, Li Y, Kong S, Bian F. Photocatalytic one‐pot multidirectional
N
‐alkylation over Pt/D‐TiO
2
/Ti
3
C
2
: Ti
3
C
2
‐based short‐range directional charge transmission. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Heyan Jiang
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources Chongqing Technology and Business University Chongqing China
| | - Meilin Sheng
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources Chongqing Technology and Business University Chongqing China
| | - Yue Li
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources Chongqing Technology and Business University Chongqing China
| | - Shuzhen Kong
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources Chongqing Technology and Business University Chongqing China
| | - Fengxia Bian
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources Chongqing Technology and Business University Chongqing China
| |
Collapse
|
47
|
Transition metal-catalyzed branch-selective hydroformylation of olefins in organic synthesis. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
48
|
Rashid M, Baker DD, Greer A. Two-step Two-intermediate Photorelease Bolm-McCulla Reaction: Dual Release of Nitrene and Atomic Oxygen Reactive Intermediates. Photochem Photobiol 2021; 97:1453-1455. [PMID: 34242417 DOI: 10.1111/php.13485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022]
Abstract
This article is a highlight of the paper by Isor et al. in this issue of Photochemistry and Photobiology. It describes the photolysis of a dibenzothiophene sulfoximine (bearing N-phenyl imino and S-oxide groups) to produce two reactive intermediates in tandem. The sulfoximine undergoes a S-N and S-O photocleavage to release phenyl nitrene and atomic oxygen [O(3 P)]. The phenyl nitrene dimerizes to azobenzene or is trapped by diethylamine to reach an azepine. From there, atomic oxygen arises in a secondary photolysis of dibenzothiophene sulfoxide. A computational analysis also reveals that the S-N bond is labile for initial nitrene release, with the secondary release of atomic oxygen by S-O cleavage. Whether future sulfoximine scaffolds can produce the reverse order release of O(3 P) then nitrene, or release both simultaneously, is yet to be established. Nonetheless, molecules with dual-intermediate release, such as coupled photoaffinity labeling and cellular oxidation, are worth pursuing.
Collapse
Affiliation(s)
- Mahir Rashid
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY
| | - Devora D Baker
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY
| | - Alexander Greer
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| |
Collapse
|
49
|
Singh A, Maji A, Joshi M, Choudhury AR, Ghosh K. Designed pincer ligand supported Co(II)-based catalysts for dehydrogenative activation of alcohols: Studies on N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines. Dalton Trans 2021; 50:8567-8587. [PMID: 34075925 DOI: 10.1039/d0dt03748f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Base-metal catalysts Co1, Co2 and Co3 were synthesized from designed pincer ligands L1, L2 and L3 having NNN donor atoms respectively. Co1, Co2 and Co3 were characterized by IR, UV-Vis. and ESI-MS spectroscopic studies. Single crystal X-ray diffraction studies were investigated to authenticate the molecular structures of Co1 and Co3. Catalysts Co1, Co2 and Co3 were utilized to study the dehydrogenative activation of alcohols for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines. Under optimized reaction conditions, a broad range of substrates including alcohols, anilines and ketones were exploited. A series of control experiments for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines were examined to understand the reaction pathway. ESI-MS spectral studies were investigated to characterize cobalt-alkoxide and cobalt-hydride intermediates. Reduction of styrene by evolved hydrogen gas during the reaction was investigated to authenticate the dehydrogenative nature of the catalysts. Probable reaction pathways were proposed for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines on the basis of control experiments and detection of reaction intermediates.
Collapse
Affiliation(s)
- Anshu Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | | | | | | | | |
Collapse
|
50
|
Li X, Li L, Qin T, Gun G, Lin T, Zhong L. Atomically dispersed Rh on hydroxyapatite as an effective catalyst for tandem hydroaminomethylation of olefins. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|