1
|
Pietras N, Frąckowiak D, Kownacki I. Ball-Milling toward Nickel(II) Diphosphine Complexes for Direct Use in Catalysis. CHEMSUSCHEM 2024; 17:e202400545. [PMID: 38860859 DOI: 10.1002/cssc.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024]
Abstract
Mechanochemistry turned out to be a powerful synthetic tool enabling the first efficient synthesis of nickel(II) complexes with diphosphines. It has been demonstrated that solventless ball-milling of nickel(II) halides with diphosphines leads to the [NiX2(diphosphine)] type compounds, which can be directly used in catalysis without any purification. Moreover, it was confirmed that despite the presence of impurities in the resulting complexes, their catalytic activity remains identical to those obtained via traditional solvent-based methods.
Collapse
Affiliation(s)
- Natalia Pietras
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Dawid Frąckowiak
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Ireneusz Kownacki
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| |
Collapse
|
2
|
Marcos Anghinoni J, Irum, Ur Rashid H, João Lenardão E, Santos Silva M. 31P Nuclear Magnetic Resonance Spectroscopy for Monitoring Organic Reactions and Organic Compounds. CHEM REC 2024; 24:e202400132. [PMID: 39499103 DOI: 10.1002/tcr.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Indexed: 11/07/2024]
Abstract
31P NMR spectroscopy is a consolidated tool for the characterization of organophosphorus compounds and, more recently, for reaction monitoring. The evolution of organic synthesis, mainly due to the combination of elaborated building blocks with enabling technologies, generated great challenges to understand and to optimize the synthetic methodologies. In this sense, 31P NMR experiments also became a routine technique for reaction monitoring, accessing products and side products yields, chiral recognition, kinetic data, intermediates, as well as basic organic parameters, such as acid-base and hydrogen-bonding. This review deals with these aspects demonstrating the essential role of the 31P NMR spectroscopy. The recent publications (the last ten years) will be explored, discussing the experiments of 31P NMR and the strategies accomplished to detect and/or quantify distinct organophosphorus molecules, approaching reaction mechanism, stability, stereochemistry, and the utility as a probe.
Collapse
Affiliation(s)
- João Marcos Anghinoni
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Irum
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Haroon Ur Rashid
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Eder João Lenardão
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Márcio Santos Silva
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
3
|
Singh RK, Verma K, Kumar GCM, Jalageri MB. Potential of Graphene-Functionalized Polymer Surfaces for Dental Applications: A Systematic review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-21. [PMID: 39190630 DOI: 10.1080/09205063.2024.2396224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Graphene, a two-dimensional carbon nanomaterial, has garnered widespread attention across various fields due to its outstanding properties. In dental implantology, researchers are exploring the use of graphene-functionalized polymer surfaces to enhance both the osseointegration process and the long-term success of dental implants. This review consolidates evidence from in-vivo and in-vitro studies, highlighting graphene's capacity to improve bone-to-implant contact, exhibit antibacterial properties, and enhance mechanical strength. This research investigates the effects of incorporating graphene derivatives into polymer materials on tissue response and compatibility. Among 123 search results, 14 articles meeting the predefined criteria were analyzed. The study primarily focuses on assessing the impact of GO and rGO on cellular function and stability in implants. Results indicate promising improvements in cellular function and stability with the use of GO-coated or composited implants. However, it is noted that interactions between Graphene derivatives and polymers may alter the inherent properties of the materials. Therefore, further rigorous research is deemed imperative to fully elucidate their potential in human applications. Such comprehensive understanding is essential for unlocking the extensive benefits associated with the utilization of Graphene derivatives in biomedical contexts.
Collapse
Affiliation(s)
- Rohit Kumar Singh
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - Khyati Verma
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - G C Mohan Kumar
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - Mallikarjun B Jalageri
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| |
Collapse
|
4
|
Huang C, Sun R, Bao L, Tian X, Pan C, Li M, Shen W, Guo K, Wang B, Lu X, Gao S. A hard molecular nanomagnet from confined paramagnetic 3d-4f spins inside a fullerene cage. Nat Commun 2023; 14:8443. [PMID: 38114506 PMCID: PMC10730828 DOI: 10.1038/s41467-023-44194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Reducing inter-spin distance can enhance magnetic interactions and allow for the realization of outstanding magnetic properties. However, achieving reduced distances is technically challenging. Here, we construct a 3d-4f metal cluster (Dy2VN) inside a C80 cage, affording a heretofore unseen metallofullerene containing both paramagnetic 3d and 4f metal ions. The significantly suppressed 3d-4f (Dy-V) distances, due to the unique cage confinement effect, were observed by crystallographic and theoretical analysis of Dy2VN@Ih(7)-C80. These reduced distances result in an enhanced magnetic coupling (Jtotal, Dy-V = 53.30 cm-1; Jtotal, Dy-Dy = -6.25 cm-1), leading to a high magnetic blocking temperature compared to reported 3d-4f single-molecule magnets and strong coercive field of 2.73 Tesla. Our work presents a new class of single-molecule magnets with both paramagnetic 3d and 4f metals confined in a fullerene cage, offering superior and tunable magnetic properties due to the unique cage confinement effect and the diverse composition of the entrapped magnetic core.
Collapse
Affiliation(s)
- Chenli Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Rong Sun
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China.
| | - Xinyue Tian
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Changwang Pan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Mengyang Li
- School of Physics, Xidian University, Xi'an, 710071, China
| | - Wangqiang Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Bingwu Wang
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China.
- College of Chemistry and Chemical Engineering, Hainan University, No. 58, Renmin Avenue, Haikou, 570228, P. R. China.
| | - Song Gao
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
5
|
Reynes JF, Isoni V, García F. Tinkering with Mechanochemical Tools for Scale Up. Angew Chem Int Ed Engl 2023; 62:e202300819. [PMID: 37114517 DOI: 10.1002/anie.202300819] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 04/29/2023]
Abstract
Mechanochemistry provides an environmentally benign platform to develop more sustainable chemical processes by limiting raw materials, energy use, and waste generation while using physically smaller equipment. A continuously growing research community has steadily showcased examples of beneficial mechanochemistry applications at both the laboratory and the preparative scale. In contrast to solution-based chemistry, mechanochemical processes have not yet been standardized, and thus scaling up is still a nascent discipline. The purpose of this Minireview is to highlight similarities, differences and challenges of the various approaches that have been successfully applied for a range of chemical applications at various scales. We hope to provide a discussion starting point for those interested in further developing mechanochemical processes for commercial use and/or industrialisation.
Collapse
Affiliation(s)
- Javier F Reynes
- Departamento de Química Orgánica e Inorgánica Facultad de Química, Universidad de Oviedo, Av. Julián Clavería, 8, 33006, Oviedo, Asturias, Spain
| | - Valerio Isoni
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1, Pesek Road, Jurong Island, Singapore
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica Facultad de Química, Universidad de Oviedo, Av. Julián Clavería, 8, 33006, Oviedo, Asturias, Spain
- School of Chemistry, Monash University Clayton, Victoria, 3800, Australia
| |
Collapse
|
6
|
Shi Y, Zhao H, Zhao Y. An Efficient Synthesis of Oxygen-Bridged Spirooxindoles via Microwave-Promoted Multicomponent Reaction. Molecules 2023; 28:molecules28083508. [PMID: 37110742 PMCID: PMC10146779 DOI: 10.3390/molecules28083508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
A microwave-promoted multicomponent reaction of isatins, α-amino acids and 1,4-dihydro-1,4-epoxynaphthalene is achieved under environmentally friendly conditions, delivering oxygen-bridged spirooxindoles within 15 min in good to excellent yields. The attractive features of the 1,3-dipolar cycloaddition are the compatibility of various primary amino acids and the high efficiency of the short reaction time. Moreover, the scale-up reaction and synthetic transformations of spiropyrrolidine oxindole further demonstrate its synthetic utility. This work provides powerful means to expand the structural diversity of spirooxindole as a promising scaffold for novel drug discovery.
Collapse
Affiliation(s)
- Yaojing Shi
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Hua Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Makhaev VD, Petrova LA. Mechanically Stimulated Solid-State Interaction of Platinum Tetrachloride with Sodium β-Diketonates. Molecules 2023; 28:molecules28083496. [PMID: 37110730 PMCID: PMC10145686 DOI: 10.3390/molecules28083496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/25/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
A new mechanically stimulated solid-state reaction of PtCl4 with sodium β-diketonates has been discovered. Platinum (II) β-diketonates were obtained by grinding excess sodium trifluoroacetylacetonate Na(tfac) or hexafluoroacetylacetonate Na(hfac) in a vibration ball mill, followed by subsequent heating of the resulting mixture. The reactions occur under much milder conditions (at about 170 °C) compared to similar reactions of PtCl2 or K2PtCl6 (at about 240 °C). Excess diketonate salt plays the role of a reducing agent in the conversion of Pt (IV) salt to Pt (II) compounds. The effect of grinding on properties of the ground mixtures was studied by XRD, IR, and thermal analysis methods. The difference in the course of the interaction of PtCl4 with Na(hfac) or Na(tfac) indicates the dependence of the reaction on the ligand properties. The probable reaction mechanisms were discussed. This method of synthesis of platinum (II) β-diketonates makes it possible to substantially reduce the variety of reagents used, the number of reaction steps, the reaction time, the use of solvents, and waste generation compared to conventional solution-based methods.
Collapse
Affiliation(s)
- Victor D Makhaev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Larisa A Petrova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| |
Collapse
|
8
|
Liu T, Wang L, Wu K, Wang Q, Yu Z. Mono- and multinuclear pincer-type Ru(II) complex catalysts and their catalytic applications. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
9
|
Akintayo DC, Munzeiwa WA, Jonnalagadda SB, Omondi B. Ring-opening polymerization of lactides and ε-caprolactone catalyzed by Zn(II) aryl carboxylate complexes supported by 4-pyridinyl schiff base ligands. Heliyon 2023; 9:e13514. [PMID: 36846710 PMCID: PMC9950825 DOI: 10.1016/j.heliyon.2023.e13514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Synthesis and catalytic studies of aryl carboxylate Zn (II) complexes is reported. Reaction of substituted (E)-N-phenyl-1-(pyridin-4-yl)methanimine with a methanolic solution of Zn(CH3COO)2 and substituted aryl carboxylate co-ligands gave heteroleptic Zn(II) complexes; [Zn(C6H5COO)2(L1)]2 (1), [Zn(C7H7COO)2(L1)]2 (2), [Zn (4-F-C6H4COO)2(L1)]2 (3), [Zn(C6H5COO)2(L2)]2 (4), [Zn(C7H7COO)2(L2)]2 (5), [Zn (4-F-C6H4COO)2(L2)]2 (6), [Zn(C6H5COO)2(L3)]2 (7), [Zn(C7H7COO)2(L3)]2 (8), [Zn (4-F-C6H4COO)2(L3)]2 (9). The molecular structures of complexes 1 and 4 are dinuclear with the zinc atom in complex 1 adopting a distorted trigonal bipyramidal geometry in a bi-metallacycle while complex 4 is square pyramidal where all four benzoate ligands bridge the zinc metals in a paddle wheel arrangement. All complexes successfully initiated mass/bulk ring-opening polymerization (ROP) of ϵ-caprolactone (ϵ-CL) and lactides (LAs) monomers with or without alcohol co-initiators at elevated temperatures. Complexes 1, 4 and 6 containing the unsubstituted benzoate co-ligands were the most active in their triad; with complex 4 being the most active (k app) of 0.3450 h-1. The physicochemical properties of the polymerization products of l-lactide and rac-lactide in toluene revealed melting temperatures (Tm) between 116.58 °C and 188.03 °C, and decomposition temperatures between 278.78 °C and 331.32 °C suggestive of an isotactic PLA with a metal capped end.
Collapse
Affiliation(s)
- Damilola C. Akintayo
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Wisdom A. Munzeiwa
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
- Chemistry Department, Bindura University of Science Education, Private Bag 1020, Bindura, Zimbabwe
| | - Sreekantha B. Jonnalagadda
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Bernard Omondi
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
10
|
Remy-Speckmann I, Zimmermann BM, Gorai M, Lerch M, Teichert JF. Mechanochemical solid state synthesis of copper(I)/NHC complexes with K 3PO 4. Beilstein J Org Chem 2023; 19:440-447. [PMID: 37091734 PMCID: PMC10113518 DOI: 10.3762/bjoc.19.34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
A protocol for the mechanochemical synthesis of copper(I)/N-heterocyclic carbene complexes using cheap and readily available K3PO4 as base has been developed. This method employing a ball mill is amenable to typical simple copper(I)/NHC complexes but also to a sophisticated copper(I)/N-heterocyclic carbene complex bearing a guanidine moiety. In this way, the present approach circumvents commonly employed silver(I) complexes which are associated with significant and undesired waste formation and the excessive use of solvents. The resulting bifunctional catalyst has been shown to be active in a variety of reduction/hydrogenation transformations employing dihydrogen as terminal reducing agent.
Collapse
Affiliation(s)
- Ina Remy-Speckmann
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Birte M Zimmermann
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Mahadeb Gorai
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Martin Lerch
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Johannes F Teichert
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| |
Collapse
|
11
|
Fiss BG, Douglas G, Ferguson M, Becerra J, Valdez J, Do TO, Friščić T, Moores A. Mechanochemical bottom-up synthesis of phosphorus-linked, heptazine-based carbon nitrides using sodium phosphide. Beilstein J Org Chem 2022; 18:1203-1209. [PMID: 36158176 PMCID: PMC9490069 DOI: 10.3762/bjoc.18.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Herein, we present the bottom-up, mechanochemical synthesis of phosphorus-bridged heptazine-based carbon nitrides (g-h-PCN). The structure of these materials was determined through a combination of powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), 31P magic angle spinning nuclear magnetic resonance (MAS NMR), density functional theory (DFT) and electron energy loss spectroscopy (EELS). Compared to traditional furnace-based techniques, the presented method utilizes milder conditions, as well as shorter reaction times. Both samples of g-h-PCN directly after milling and aging and after an hour of annealing at 300 °C (g-h-PCN300) show a reduction in photoluminescent recombination, as well as a nearly two-time increase in photocurrent under broad spectrum irradiation, which are appealing properties for photocatalysis.
Collapse
Affiliation(s)
- Blaine G Fiss
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada
| | - Georgia Douglas
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada
| | - Michael Ferguson
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada
| | - Jorge Becerra
- Department of Chemical Engineering, Laval University, Québec City, Québec, Canada
| | - Jesus Valdez
- Facility for Electron Microscopy Research (FEMR), McGill University, Montréal, Québec, Canada
| | - Trong-On Do
- Department of Chemical Engineering, Laval University, Québec City, Québec, Canada
| | - Tomislav Friščić
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montréal, Québec, Canada
| |
Collapse
|
12
|
Chemoselective Chan-Lam coupling by directly using copper powders via mechanochemical metal activation for catalysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Ardila-Fierro KJ, Rubčić M, Hernández JG. Cocrystal Formation Precedes the Mechanochemically Acetate-Assisted C-H Activation with [Cp*RhCl 2 ] 2. Chemistry 2022; 28:e202200737. [PMID: 35274769 DOI: 10.1002/chem.202200737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/16/2022]
Abstract
This work reports the experimentally studied mechanochemical formation of rhodacycles by ball milling pyridine- and quinoline-derived substrates and [Cp*RhCl2 ]2 in the presence of NaOAc. Ex-situ analysis of the mechanochemical reactions using powder X-ray diffraction (PXRD), solid-state UV-vis spectroscopy and ATR-FTIR spectroscopy revealed the formation of unexpected cocrystals between the substrates and the rhodium dimer prior to the C-H activation step. This sequence of events differs from the generally accepted steps in solution in which cleavage of [Cp*RhCl2 ]2 is initiated by acetate ions. Additionally, the mechanochemical approach enabled the synthesis of the six-membered rhodacycle [Cp*Rh(2-benzilpyridine)Cl], a metal complex repeatedly reported as inaccessible in solution. Altogether, the results of this investigation clarify some of the fundamental aspects of mechanochemical cyclometallations.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - Mirta Rubčić
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia.,Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia
| |
Collapse
|
14
|
Hylland KT, Schmidtke IL, Wragg DS, Nova A, Tilset M. Synthesis of substituted (N,C) and (N,C,C) Au(III) complexes: the influence of sterics and electronics on cyclometalation reactions. Dalton Trans 2022; 51:5082-5097. [PMID: 35262546 DOI: 10.1039/d2dt00371f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclometalated Au(III) complexes are of interest due to their catalytic, medicinal, and photophysical properties. Herein, we describe the synthesis of derivatives of the type (N,C)Au(OAcF)2 (OAcF = trifluoroacetate) and (N,C,C)AuOAcF by a cyclometalation route, where (N,C) and (N,C,C) are chelating 2-arylpyridine ligands. The scope of the synthesis is explored by substituting the 2-arylpyridine core with electron donor or acceptor substituents at one or both rings. Notably, a variety of functionalized Au(III) complexes can be obtained in one step from the corresponding ligand and Au(OAc)3, eliminating the need for organomercury intermediates, which is commonly reported for similar syntheses. The influence of substituents in the ligand backbone on the resulting complexes was assessed using DFT calculations, 15N NMR spectroscopy and single-crystal X-ray diffraction analysis. A correlation between the electronic properties of the (N,C) ligands and their ability to undergo cyclometalation was found from experimental studies combined with natural charge analysis, suggesting the cyclometalation at Au(III) to take place via an electrophilic aromatic substitution-type mechanism. The formation of Au(III) pincer complexes from tridentate (N,C,C) ligands was investigated by synthesis and DFT calculations, in order to assess the feasibility of C(sp3)-H bond activation as a synthetic pathway to (N,C,C) cyclometalated Au(III) complexes. It was found that C(sp3)-H bond activation is feasible for ligands containing different alkyl groups (isopropyl and ethyl), although the C-H activation is less energetically favored compared to a ligand containing tert-butyl groups.
Collapse
Affiliation(s)
- Knut T Hylland
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway. .,Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1126 Blindern, N-0316 Oslo, Norway
| | - Inga L Schmidtke
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway. .,Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1126 Blindern, N-0316 Oslo, Norway
| | - David S Wragg
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway. .,Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1126 Blindern, N-0316 Oslo, Norway
| | - Ainara Nova
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway. .,Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1126 Blindern, N-0316 Oslo, Norway.,Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway.,UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Mats Tilset
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway. .,Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1126 Blindern, N-0316 Oslo, Norway.,Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| |
Collapse
|
15
|
Pfennig VS, Villella RC, Nikodemus J, Bolm C. Mechanochemical Grignard Reactions with Gaseous CO 2 and Sodium Methyl Carbonate. Angew Chem Int Ed Engl 2022; 61:e202116514. [PMID: 34942056 PMCID: PMC9306648 DOI: 10.1002/anie.202116514] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 11/10/2022]
Abstract
A one-pot, three-step protocol for the preparation of Grignard reagents from organobromides in a ball mill and their subsequent reactions with gaseous carbon dioxide (CO2 ) or sodium methyl carbonate providing aryl and alkyl carboxylic acids in up to 82 % yield is reported. Noteworthy are the short reaction times and the significantly reduced solvent amounts [2.0 equiv. for liquid assisted grinding (LAG) conditions]. Unexpectedly, aryl bromides with methoxy substituents lead to symmetric ketones as major products.
Collapse
Affiliation(s)
- Victoria S. Pfennig
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Romina C. Villella
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Julia Nikodemus
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
16
|
Ryzhakov D, Beillard A, Le bideau F, Al-Shuaeeb RAA, Alami M, Bantreil X, Bonnemoy A, Gautier A, Lamaty F, Messaoudi S. Azoliums and Ag(I)‐N‐Heterocyclic Carbene Thioglycosides: synthesis, reactivity and bioactivity. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Audrey Beillard
- Université de Montpellier: Universite de Montpellier Chemistry FRANCE
| | - Franck Le bideau
- Universite Paris-Saclay Chemistry 5 Rue J. B. Clément, Faculté de PharmacieChâtenay Malabry 92296 Châtenay Malabry FRANCE
| | | | - Mouad Alami
- Paris-Saclay University Faculty of Pharmacy: Universite Paris-Saclay Faculte de Pharmacie Chemistry 5 Rue J. B. Clément, Faculté de PharmacieChâtenay Malabry 92296 Châtenay Malabry FRANCE
| | - Xavier Bantreil
- Montpellier University: Universite de Montpellier chemistry FRANCE
| | - Aurore Bonnemoy
- Institute of Chemistry of Clermont-Ferrand: Institut de Chimie de Clermont-Ferrand chemistry FRANCE
| | | | | | - Samir Messaoudi
- Pharmacy faculty BIOCIS UMR 8076 Chemistry J. B. Clement 92296 Chatenay Malabry FRANCE
| |
Collapse
|
17
|
Pfennig VS, Villella RC, Nikodemus J, Bolm C. Mechanochemical Grignard Reactions with Gaseous CO
2
and Sodium Methyl Carbonate**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Victoria S. Pfennig
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Romina C. Villella
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Julia Nikodemus
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
18
|
Nasri S, Bayat M, Miankooshki FR, Samet NH. Recent developments in green approaches for sustainable synthesis of indole-derived scaffolds. Mol Divers 2022; 26:3411-3445. [PMID: 35031935 DOI: 10.1007/s11030-021-10376-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/30/2021] [Indexed: 01/13/2023]
Abstract
An important issue to discover biological structures is the design of sustainable, safe, clean, cost-effective, excellent efficient synthetic reactions, and minimal energy consumption to provide structural diversity compounds with interesting biological properties. Among five-membered nitrogen-containing heterocyclic compounds, indole-containing scaffolds are heterocyclic structures found in abundance in natural products and various synthetic compounds, which have received remarkable attention in recent years due to their therapeutic and pharmaceutical properties and valuable role in the process of drug discovery. Indoles can be synthesized by various procedures although most of these procedures have their own restrictions and drawbacks such as performing the reaction in a toxic solvent, need of transition-metal catalysts, and amount of waste solvents. Due to the medicinal importance of indole and the need for green methods of drug synthesis, this review highlights the latest green synthetic methods leading to the formation of indole-containing compounds focusing on the past 4 years with typical examples. This review is divided into two sections: green solvents and green techniques that lead to the synthesis of indole-derived scaffolds.
Collapse
Affiliation(s)
- Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | | | - Narges Habibi Samet
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
19
|
Jia W, Li X, Zhi X, Zhong R. Mechanochemical synthesis of half‐sandwich iridium/rhodium complexes with 8‐hydroxyquinoline derivatives ligands. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei‐Guo Jia
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Science Fuzhou China
| | - Xiao‐Dong Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu China
| | - Xue‐Ting Zhi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu China
| | - Rui Zhong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu China
| |
Collapse
|
20
|
Hao X, Li X, Li H, Zhang X, Liu X, Guo F. Mechanosynthesis of polymeric and binuclear copper complexes via dehydrochlorination and their application in solvent-free C–S bond cross-coupling. CrystEngComm 2022. [DOI: 10.1039/d2ce00624c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two copper complexes are readily synthesized from their respective salts by dehydrochlorination reactions and then used as catalysts in mechanosynthesis C–S coupling reactions.
Collapse
Affiliation(s)
- Xiujia Hao
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xinyu Li
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Haitao Li
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xin Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiaozhi Liu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Fang Guo
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
21
|
Frogley BJ, Hill AF, Onagi H, Watson LJ. Organometallic flow chemistry: solvento complexes. Dalton Trans 2022; 51:17354-17360. [DOI: 10.1039/d2dt02583c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In-flow photochemical methods allow the convenient synthesis ‘on-demand’ of ubiquitous tetrahydrofuran organometallic solvento complexes, e.g., [M(THF)(CO)5] (M = Cr, Mo, W) and [M(THF)(CO)2(η-L)] (M = Mn, Re; L = C5H5, C5H4Me, C5Me5).
Collapse
Affiliation(s)
- Benjamin J. Frogley
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia
| | - Anthony F. Hill
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia
| | - Hideki Onagi
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia
| | - Lachlan J. Watson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia
| |
Collapse
|
22
|
Aleksanyan DV, Churusova SG, Brunova VV, Peregudov AS, Shakhov AM, Rybalkina EY, Klemenkova ZS, Kononova EG, Denisov GL, Kozlov VA. Mechanochemistry for the synthesis of non-classical N-metalated palladium(II) pincer complexes. Dalton Trans 2021; 50:16726-16738. [PMID: 34761776 DOI: 10.1039/d1dt03259c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The peculiarities of cyclopalladation of a series of non-classical pincer-type ligands based on monothiooxalyl amides bearing ancillary N- or S-donor groups in the amide units have been scrutinized both under conditions of conventional solution-based synthesis and in the absence of a solvent according to a solid-phase methodology including mechanochemical activation. Grinding the functionalized monothiooxamides with PdCl2(NCPh)2 in a mortar or vibration ball mill is shown to serve as an efficient and green alternative to the synthesis of these complex metal-organic systems in solution that can offer such advantages as the absence of any auxiliary and significant rate and yield enhancement, especially for the challenging ligands. The realization of S,N,N- or S,N,S-monoanionic tridentate coordination in the resulting pincer complexes has been confirmed by multinuclear NMR (including 2D NMR) and IR spectroscopy and, in some cases, X-ray diffraction. The course and outcome of the solid-phase reactions have been studied by a combination of different spectroscopic methods as well as SEM/EDS analysis. The preliminary evaluation of cytotoxic activity against several human cancer cell lines has revealed the high potency of some of the cyclopalladated derivatives obtained, rendering further development of solvent-free synthetic routes to this type of complexes very urgent.
Collapse
Affiliation(s)
- Diana V Aleksanyan
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia.
| | - Svetlana G Churusova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia.
| | - Valentina V Brunova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia.
| | - Alexander S Peregudov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia.
| | - Aleksander M Shakhov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow, 119991 Russia
| | - Ekaterina Yu Rybalkina
- Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe shosse 23, Moscow, 115478 Russia
| | - Zinaida S Klemenkova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia.
| | - Elena G Kononova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia.
| | - Gleb L Denisov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia.
| | - Vladimir A Kozlov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia.
| |
Collapse
|
23
|
Deák A, Jobbágy C, Demeter A, Čelko L, Cihlář J, Szabó PT, Ábrányi-Balogh P, Crawford DE, Virieux D, Colacino E. Mechanochemical synthesis of mononuclear gold(I) halide complexes of diphosphine ligands with tuneable luminescent properties. Dalton Trans 2021; 50:13337-13344. [PMID: 34608904 DOI: 10.1039/d1dt01751a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mechanochemical method is reported for the synthesis of Au(diphos)X complexes of diphosphine (diphos = XantPhos and N-XantPhos) ligands and halide ions (X = Cl and I). The Au(XantPhos)X (1: X = Cl; 2: X = I) and Au(N-XantPhos)Cl (3) complexes exhibited either yellowish green (1) or bluish green (2) emission, whereas 3 was seemingly non-emissive in the solid state at room temperature. Blue- (2B) and bluish green (2G) luminescent concomitant solvates of 2 were obtained by recrystallization. Luminescent colour changes from blue (2B) or bluish green (2G) to yellow were observed when these forms were subjected to mechanical stimulus, while the original emission colour can be recovered in the presence of solvent vapours. Moreover, the luminescence of 2B can be reversibly altered between blue and yellow by heating/cooling-cycles. These results demonstrate the power of mechanochemistry in the rapid (4 min reaction time), efficient (up to 98% yield) and greener synthesis of luminescent and stimuli-responsive gold(I) complexes.
Collapse
Affiliation(s)
- Andrea Deák
- Supramolecular Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, 1117 Budapest, Hungary.
| | - Csaba Jobbágy
- Supramolecular Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, 1117 Budapest, Hungary.
| | - Attila Demeter
- Renewable Energy Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, 1117 Budapest, Hungary
| | - Ladislav Čelko
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Jaroslav Cihlář
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Pál T Szabó
- Centre for Structure Study, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), 1117 Budapest, Magyar Tudósok körútja 2, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), 1117 Budapest, Magyar Tudósok körútja 2, Hungary
| | - Deborah E Crawford
- School of Chemistry and Biosciences, University of Bradford Richmond Road, BD7 1DP, Bradford, UK
| | - David Virieux
- ICGM, Univ Montpellier CNRS, ENSCM, Montpellier, France.
| | | |
Collapse
|
24
|
Al-Hussaini L, Valange S, Gálvez ME, Launay F. Alternative ball-milling synthesis of vanadium-substituted polyoxometalates as catalysts for the aerobic cleavage of C-C and C-O bonds. Dalton Trans 2021; 50:12850-12859. [PMID: 34581347 DOI: 10.1039/d1dt01585k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vanadium-substituted phosphomolybdic acids (H3+x[PMo12-xVxO40], denoted as Vx) are well-known oxidation catalysts that are generally prepared by the hydrothermal treatment of MoO3 and V2O5 in the presence of H3PO4. This synthesis procedure is highly energy consuming and the Vx yields are not always acceptable. In the present work, an alternative hybrid mechanochemical/hydrothermal synthesis of Vx is proposed, comprising the ball-milling of MoO3 and V2O5, followed by a hydrothermal attack. The resulting materials, with 2 ≤ x ≤ 3, obtained from this new route were compared, in terms of yield, energy consumption and catalytic activity, with a reference V3 sample prepared through a conventional hydrothermal treatment. The ball-milling step proved to lead not only to a shorter and far more energy-saving synthesis procedure, but also to high yields of Vx. Moreover, Vx from this alternative route proved to be generally more active than the conventionally prepared V3 in the aerobic oxidative cleavage of C-O and C-C bonds in 2-phenoxyacetophenone, used herein as a lignin model compound.
Collapse
Affiliation(s)
- Louay Al-Hussaini
- Sorbonne Université, CNRS, UMR 7197, Laboratoire de Réactivité de Surface (LRS), F-75005 Paris, France. .,Sorbonne Université, CNRS, UMR 7190, Institut Jean le Rond d'Alembert, F-75005 Paris, France.
| | - Sabine Valange
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, ENSI Poitiers, B1, 1 rue Marcel Doré, F-86073 Poitiers Cedex 9, France
| | - Maria Elena Gálvez
- Sorbonne Université, CNRS, UMR 7190, Institut Jean le Rond d'Alembert, F-75005 Paris, France.
| | - Franck Launay
- Sorbonne Université, CNRS, UMR 7197, Laboratoire de Réactivité de Surface (LRS), F-75005 Paris, France.
| |
Collapse
|
25
|
Budny-Godlewski K, Leszczyński MK, Tulewicz A, Justyniak I, Pinkowicz D, Sieklucka B, Kruczała K, Sojka Z, Lewiński J. A Case Study on the Desired Selectivity in Solid-State Mechano- and Slow-Chemistry, Melt, and Solution Methodologies. CHEMSUSCHEM 2021; 14:3887-3894. [PMID: 34289248 DOI: 10.1002/cssc.202101269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Solution-based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic methods continues to be a hot topic. Here, comparative studies in four different reaction media were conducted, that is, the solid-state mechano- and slow-chemistry synthesis, melted phase, and solution protocols, and the impact of the employed solvent-free solid-state versus liquid-phase synthetic approaches was highlighted on a pool of products. A moderately exothermic model reaction system was chosen based on bis(pentafluorophenyl)zinc, (C6 F5 )2 Zn, and 2,2,6,6-tetramethylpiperidinyl oxide (TEMPO) as a stable nitroxyl radical, anticipating that these reagents may offer a unique landscape for addressing kinetic and thermodynamic aspects of wet and solvent-free solid-state processes. In a toluene solution two distinct paramagnetic Lewis acid-base adducts (C6 F5 )2 Zn(η1 -TEMPO) (1) and (C6 F5 )2 Zn(η1 -TEMPO)2 (2) equilibrated, but only 2 was affordable by crystallization. In turn, crystallization from the melt was the only method yielding single crystals of 1. Moreover, the solid-state approaches were stoichiometry sensitive and allowed for the selective synthesis of both adducts by simple stoichiometric control over the substrates. Density functional theory (DFT) calculations were carried out to examine selected structural and thermodynamic features of the adducts 1 and 2. Compound 2 is a unique non-redox active metal complex supported by two nitroxide radicals, and the magnetic studies revealed weak-to-moderate intramolecular antiferromagnetic interactions between the two coordinated TEMPO molecules.
Collapse
Affiliation(s)
- Krzysztof Budny-Godlewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Michał K Leszczyński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Adam Tulewicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - Krzysztof Kruczała
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - Zbigniew Sojka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - Janusz Lewiński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
26
|
Wróblewska A, Lauriol G, Mlostoń G, Bantreil X, Lamaty F. Expedient synthesis of NOxy-Heterocyclic Carbenes (NOHC) ligands and metal complexes using mechanochemistry. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Fetrow TV, Daly SR. Mechanochemical synthesis and structural analysis of trivalent lanthanide and uranium diphenylphosphinodiboranates. Dalton Trans 2021; 50:11472-11484. [PMID: 34346459 DOI: 10.1039/d1dt01932e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphinodiboranates (H3BPR2BH3-) are a class of borohydrides that have merited a reputation as weakly coordinating anions, which is attributed in part to the dearth of coordination complexes known with transition metals, lanthanides, and actinides. We recently reported how K(H3BPtBu2BH3) exhibits sluggish salt elimination reactivity with f-metal halides in organic solvents such as Et2O and THF. Here we report how this reactivity appears to be further attenuated in solution when the tBu groups attached to phosphorus are exchanged for R = Ph or H, and we describe how mechanochemistry was used to overcome limited solution reactivity with K(H3BPPh2BH3). Grinding three equivalents of K(H3BPPh2BH3) with UI3(THF)4 or LnI3 (Ln = Ce, Pr, Nd) allowed homoleptic complexes with the empirical formulas U(H3BPPh2BH3)3 (1), Ce(H3BPPh2BH3)3 (2), Pr(H3BPPh2BH3)3 (3), and Nd(H3BPPh2BH3)3 (4) to be prepared and subsequently crystallized in good yields (50-80%). Single-crystal XRD studies revealed that all four complexes exist as dimers or coordination polymers in the solid-state, whereas 1H and 11B NMR spectra showed that they exist as a mixture of monomers and dimers in solution. Treating 4 with THF breaks up the dimer to yield the monomeric complex Nd(H3BPPh2BH3)3(THF)3 (4-THF). XRD studies revealed that 4-THF has one chelating and two dangling H3BPPh2BH3- ligands bound to the metal to accommodate binding of THF. In contrast to the results with K(H3BPPh2BH3), attempting the same mechanochemical reactions with Na(H3BPH2BH3) containing the simplest phosphinodiboranate were unsuccessful; only the partial metathesis product U(H3BPH2BH3)I2(THF)3 (5) was isolated in poor yields. Despite these limitations, our results offer new examples showing how mechanochemistry can be used to rapidly synthesize molecular coordination complexes that are otherwise difficult to prepare using more traditional solution methods.
Collapse
Affiliation(s)
- Taylor V Fetrow
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
28
|
Martí-Rujas J, Guo F. Dehydrohalogenation reactions in second-sphere coordination complexes. Dalton Trans 2021; 50:11665-11680. [PMID: 34323900 DOI: 10.1039/d1dt02099d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The latest advances of solid-state dehydrohalogenation and halogenation reactions of hydrogen bonded halometallate salts from the second sphere coordination perspective are reported. Since the second sphere englobes many different materials, our focus has been limited to outer sphere adducts where protonated organic cations act as outer sphere hydrogen bond donors and transition metal anions act as first sphere hydrogen bond acceptors. This is our attempt to analyze dehydrohalogenation/hydrohalogenation reactions viewed as transformations from the second sphere coordination to first sphere coordination of a complex and vice versa. The examples describe a unique solid-state chemistry and reactivity in outer sphere adducts where C-H, N-H and M-X chemical bonds are cleaved and new M-N and H-X bonds are formed (where M = Cu, Zn, Co, Pt, Pd, Hg and X = Cl, Br). The transformations are induced by external stimuli, mainly by mechanochemical and thermal methods. Different reactivities have been observed depending on the lability of the transition metals, the position of the reacting functional groups in the cations and the relative position of organic cations and metal anions. The reverse hydrohalogenation reactions (i.e., from the first sphere coordination to second sphere coordination) via the gas-solid chemisorption process occur even if the materials are non-porous implying a rather dynamic behaviour of these materials. Moreover, due to the implicit changes in the coordination sphere of transition metal ions, dehydrohalogenation/halogenation reactions allow structure-function correlation to be established, for instance involving optical, sensing and magnetic aspects.
Collapse
Affiliation(s)
- Javier Martí-Rujas
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy.
| | | |
Collapse
|
29
|
Design, Sustainable Synthesis and Biological Evaluation of a Novel Dual α2A/5-HT7 Receptor Antagonist with Antidepressant-Like Properties. Molecules 2021; 26:molecules26133828. [PMID: 34201675 PMCID: PMC8270334 DOI: 10.3390/molecules26133828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/26/2022] Open
Abstract
The complex pathophysiology of depression, together with the limits of currently available antidepressants, has resulted in the continuous quest for alternative therapeutic strategies. Numerous findings suggest that pharmacological blockade of α2-adrenoceptor might be beneficial for the treatment of depressive symptoms by increasing both norepinephrine and serotonin levels in certain brain areas. Moreover, the antidepressant properties of 5-HT7 receptor antagonists have been widely demonstrated in a large set of animal models. Considering the potential therapeutic advantages in targeting both α2-adrenoceptors and 5-HT7 receptors, we designed a small series of arylsulfonamide derivatives of (dihydrobenzofuranoxy)ethyl piperidines as dually active ligands. Following green chemistry principles, the designed compounds were synthesized entirely using a sustainable mechanochemical approach. The identified compound 8 behaved as a potent α2A/5-HT7 receptor antagonist and displayed moderate-to-high selectivity over α1-adrenoceptor subtypes and selected serotonin and dopaminergic receptors. Finally, compound 8 improved performance of mice in the forced swim test, displaying similar potency to the reference drug mirtazapine.
Collapse
|
30
|
Boruah JJ, Bhatt ZS, Nathani CR, Bambhaniya VJ, Guha AK, Das SP. Green synthesis of a vanadium(V) Schiff base complex by grinding method: study on its catalytic and anti-bacterial activity. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1942861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeena Jyoti Boruah
- Department of Chemistry, School of Science, RK University, Kasturbadham, Rajkot, Gujarat, India
- Department of Chemistry, Moridhal College, Dhemaji, Assam, India
| | - Zankhana S. Bhatt
- Department of Chemistry, School of Science, RK University, Kasturbadham, Rajkot, Gujarat, India
| | - Chirag R. Nathani
- Department of Chemistry, School of Science, RK University, Kasturbadham, Rajkot, Gujarat, India
| | - Vaishali J. Bambhaniya
- Department of Chemistry, School of Science, RK University, Kasturbadham, Rajkot, Gujarat, India
| | - Ankur Kanti Guha
- Advanced Computational Chemistry Centre, Department of Chemistry, Cotton University, Panbazar, Guwahati, Assam, India
| | - Siva Prased Das
- Department of Chemistry, School of Science, RK University, Kasturbadham, Rajkot, Gujarat, India
| |
Collapse
|
31
|
Lukin S, Užarević K, Halasz I. Raman spectroscopy for real-time and in situ monitoring of mechanochemical milling reactions. Nat Protoc 2021; 16:3492-3521. [PMID: 34089023 DOI: 10.1038/s41596-021-00545-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/25/2021] [Indexed: 11/10/2022]
Abstract
Solid-state milling has emerged as an alternative, sustainable approach for preparing virtually all classes of compounds and materials. In situ reaction monitoring is essential to understanding the kinetics and mechanisms of these reactions, but it has proved difficult to use standard analytical techniques to analyze the contents of the closed, rapidly moving reaction chamber (jar). Monitoring by Raman spectroscopy is an attractive choice, because it allows uninterrupted data collection from the outside of a translucent milling jar. It complements the already established in situ monitoring based on powder X-ray diffraction, which has limited accessibility to the wider research community, because it requires a synchrotron X-ray source. The Raman spectroscopy monitoring setup used in this protocol consists of an affordable, small portable spectrometer, a laser source and a Raman probe. Translucent reaction jars, most commonly made from a plastic material, enable interaction of the laser beam with the solid sample residing inside the closed reaction jar and collection of Raman-scattered photons while the ball mill is in operation. Acquired Raman spectra are analyzed using commercial or open-source software for data analysis (e.g., MATLAB, Octave, Python, R). Plotting the Raman spectra versus time enables qualitative analysis of reaction paths. This is demonstrated for an example reaction: the formation in the solid state of a cocrystal between nicotinamide and salicylic acid. A more rigorous data analysis can be achieved using multivariate analysis.
Collapse
|
32
|
Jia WG, Zhi XT, Li XD, Zhou JP, Zhong R, Yu H, Lee R. Postsynthetic Modification of Half-Sandwich Ruthenium Complexes by Mechanochemical Synthesis. Inorg Chem 2021; 60:4313-4321. [PMID: 33761240 DOI: 10.1021/acs.inorgchem.1c00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A mild and environmentally friendly method to synthesize half-sandwich ruthenium complexes through the Wittig reaction between an aldehyde-tagged half-sandwich ruthenium complex and phosphorus ylide mechanochemically is reported herein. The mechanochemical synthesis of valuable half-sandwich ruthenium complexes resulted in a fast reaction, good yield with simple workup, and the avoidance of harsh reaction conditions and organic solvents. The synthesized half-sandwich ruthenium complexes exhibited high catalytic activity for transfer hydrogenation of ketones using 2-propanol as the hydrogen source and solvent. Density functional theory was carried out to propose a mechanism for the transfer hydrogenation process. The modeling suggests the importance of the labile p-cymene ligand in modulating the reactivity of the catalyst.
Collapse
Affiliation(s)
- Wei-Guo Jia
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, China
| | - Xue-Ting Zhi
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xiao-Dong Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jun-Peng Zhou
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Rui Zhong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Richmond Lee
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
33
|
Makhaev V, Petrova L. Solid-phase synthesis of platinum group metal β-diketonates. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Ni S, Hribersek M, Baddigam SK, Ingner FJL, Orthaber A, Gates PJ, Pilarski LT. Mechanochemical Solvent-Free Catalytic C-H Methylation. Angew Chem Int Ed Engl 2021; 60:6660-6666. [PMID: 33031646 PMCID: PMC7986365 DOI: 10.1002/anie.202010202] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 12/29/2022]
Abstract
The mechanochemical, solvent-free, highly regioselective, rhodium-catalyzed C-H methylation of (hetero)arenes is reported. The reaction shows excellent functional-group compatibility and is demonstrated to work for the late-stage C-H methylation of biologically active compounds. The method requires no external heating and benefits from considerably shorter reaction times than previous solution-based C-H methylation protocols. Additionally, the mechanochemical approach is shown to enable the efficient synthesis of organometallic complexes that are difficult to generate conventionally.
Collapse
Affiliation(s)
- Shengjun Ni
- Department of Chemistry—BMCUppsala UniversityBox 57675123UppsalaSweden
| | - Matic Hribersek
- Department of Chemistry—BMCUppsala UniversityBox 57675123UppsalaSweden
| | | | | | - Andreas Orthaber
- Department of Chemistry—Ångström LaboratoriesUppsala UniversityBox 52375120UppsalaSweden
| | - Paul J. Gates
- School of ChemistryUniversity of BristolCantock's Close, CliftonBristolBS8 1TSUK
| | | |
Collapse
|
35
|
Ma DL, Wu C, Liu H, Wu KJ, Leung CH. Luminescence approaches for the rapid detection of disease-related receptor proteins using transition metal-based probes. J Mater Chem B 2021; 8:3249-3260. [PMID: 31647090 DOI: 10.1039/c9tb01889a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein biomarkers, particularly abnormally expressed receptor proteins, have been proved to be one of the crucial biomarkers for the rapid assessment, diagnosis, prognosis and prediction of specific human diseases. Transition metal based strategies in particular possess delightful strengths in the in-field and real-time visualization of receptor proteins owing to their unique photophysical properties. In this review, we highlight recent advances in the development of detection methods for receptor protein biomarkers using transition metal based approaches, particularly those employing transition metal complexes. We first discuss the strengths and weaknesses of various strategies used for protein biomarker monitoring in live cells. We then describe the principles of the various sensing platforms and their application for receptor protein detection. Finally, we discuss the challenges and future inspirations in this specific field.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China.
| | | | | | | | | |
Collapse
|
36
|
Sawama Y. Hydrogen Generation from Water, Alcohols etc. and Its Application to Organic Reactions. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Ang ZZ, Laxmi S, León F, Kooij JEM, García F, England J. Mechanochemical Synthesis of Tripodal Tris[4-(1,2,3-triazol-5-ylidene)methyl]amine Mesoionic Carbene Ligands and Their Complexation with Silver(I). Inorg Chem 2021; 60:3556-3564. [PMID: 33629844 DOI: 10.1021/acs.inorgchem.0c02429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conjugate acids of 1,2,3-triazolylidene mesoionic carbenes can be prepared in a straightforward fashion by alkylation of 1-substituted 1,2,3-triazoles. However, this becomes a much more challenging proposition when other nucleophilic centers are present, which has curtailed the development of ligands containing multiple 1,2,3-triazolylidene donors. Herein, methylation of a series of tris[(1-aryl-1,2,3-triazol-4-yl)methyl]amines possessing both electron-rich and electron-deficient aromatic substituents, using Me3OBF4, is shown to proceed with much higher chemoselectivity under mechanochemical conditions than when conducted in solution. This provides a means to reliably access a series of tricationic tris[4-(1,2,3-triazolium)methyl]amines in good yields. DFT calculations suggest that a potential reason for this change in regioselectivity is the difference between the background dielectric of the DCM solution versus the solid state, which is predicted to have a large effect on the relative thermodynamic driving force for alkylation of the tertiary amine center versus the triazole rings. Homoleptic silver complexes of the triazolylidene ligands derived therefrom, of formulas [Ag3(1a-d)2](X)3 (X- = BF4-, TfO-), have been isolated and fully characterized. In the case of the ligand bearing the smallest aryl substituents, 1b, argentophilic interactions yield a triangular Ag3 core. The [Ag3(1a-d)2](X)3 silver salts are viable agents for transmetalation to other transition metals, demonstrated here for cobalt. In the case of 1a, the complex [CoII(1a)(NCMe)](OTf)2 was obtained. Therein, the bulky mesityl substituents enforce a tetrahedral geometry, in which only the triazolylidene donors of 1a coordinate (i.e., it acts as a tridentate ligand). Transmetalation of the less sterically encumbered ligand 1b yields six-coordinate cobalt(III) complexes, [CoIII(1b)(Cl)(NCMe)](OTf)2 and [CoIII(1b)(NCMe)2](OTf)3, in which the ligand coordinates in a tetradentate fashion. These are the first examples of tris(1,2,3-triazolylidene) ligands containing an additional coordinating heteroatom and, more generally, of tetradentate 1,2,3-triazolylidene ligands. Crucially, we believe that the divergent chemoselectivity under mechanochemical conditions (vs conventional solution-based chemistry) demonstrated herein offers a pathway by which other challenging synthetic targets, including further multidentate carbene ligands, can be prepared in superior yields.
Collapse
Affiliation(s)
- Zhi Zhong Ang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Shoba Laxmi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Félix León
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Josephine E M Kooij
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Felipe García
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Jason England
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
38
|
O’Neill RT, Boulatov R. The many flavours of mechanochemistry and its plausible conceptual underpinnings. Nat Rev Chem 2021; 5:148-167. [PMID: 37117533 DOI: 10.1038/s41570-020-00249-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Mechanochemistry describes diverse phenomena in which mechanical load affects chemical reactivity. The fuzziness of this definition means that it includes processes as seemingly disparate as motor protein function, organic synthesis in a ball mill, reactions at a propagating crack, chemical actuation, and polymer fragmentation in fast solvent flows and in mastication. In chemistry, the rate of a reaction in a flask does not depend on how fast the flask moves in space. In mechanochemistry, the rate at which a material is deformed affects which and how many bonds break. In other words, in some manifestations of mechanochemistry, macroscopic motion powers otherwise endergonic reactions. In others, spontaneous chemical reactions drive mechanical motion. Neither requires thermal or electrostatic gradients. Distinct manifestations of mechanochemistry are conventionally treated as being conceptually independent, which slows the field in its transformation from being a collection of observations to a rigorous discipline. In this Review, we highlight observations suggesting that the unifying feature of mechanochemical phenomena may be the coupling between inertial motion at the microscale to macroscale and changes in chemical bonding enabled by transient build-up and relaxation of strains, from macroscopic to molecular. This dynamic coupling across multiple length scales and timescales also greatly complicates the conceptual understanding of mechanochemistry.
Collapse
|
39
|
Milbeo P, Quintin F, Moulat L, Didierjean C, Martinez J, Bantreil X, Calmès M, Lamaty F. Synthesis, characterisation and cytotoxic activity evaluation of new metal-salen complexes based on the 1,2-bicyclo[2.2.2]octane bridge. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
40
|
Zhou K, Mao Y, Wu F, Lou S, Xu D. Recent Advances in C—H Bond Functionalization under Mechanochemical Conditions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Fiss BG, Richard AJ, Douglas G, Kojic M, Friščić T, Moores A. Mechanochemical methods for the transfer of electrons and exchange of ions: inorganic reactivity from nanoparticles to organometallics. Chem Soc Rev 2021; 50:8279-8318. [DOI: 10.1039/d0cs00918k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For inorganic metathesis and reduction reactivity, mechanochemistry is demonstrating great promise towards both nanoparticles and organometallics syntheses.
Collapse
Affiliation(s)
- Blaine G. Fiss
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Austin J. Richard
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Georgia Douglas
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Monika Kojic
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Tomislav Friščić
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| |
Collapse
|
42
|
Lara-Cerón JA, Jiménez-Pérez VM, Molina-Paredes AA, Sánchez M, Dias HVR, Ramírez-Montes PI, Muñoz-Flores BM. Preferential intermolecular interactions in a racemic mixture of amino acid Schiff base, conformational structures in solid state, and DFT studies. NEW J CHEM 2021. [DOI: 10.1039/d0nj04720a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, we report the green synthesis of a Shiff base [N-(2-hydroxy-1-naphthylidene)-l-phenylalanine (1)] derived from an α-amino acid through an ultrasound-assisted synthesis method with excellent chemical yield in a short period of time.
Collapse
Affiliation(s)
- Jesús A. Lara-Cerón
- Universidad Autónoma de Nuevo León
- Facultad de Ciencias Químicas
- Ciudad Universitaria
- Nuevo León
- Mexico
| | - Víctor M. Jiménez-Pérez
- Universidad Autónoma de Nuevo León
- Facultad de Ciencias Químicas
- Ciudad Universitaria
- Nuevo León
- Mexico
| | - Areli A. Molina-Paredes
- Universidad Autónoma de Nuevo León
- Facultad de Ciencias Químicas
- Ciudad Universitaria
- Nuevo León
- Mexico
| | - Mario Sánchez
- Centro de Investigación en Materiales Avanzados
- S.C., Alianza Norte 202
- PIIT
- Carretera Monterrey-Aeropuerto Km. 10
- Apodaca
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
| | - Pedro I. Ramírez-Montes
- Universidad Nacional Autónoma de México
- Facultad de Estudios Superiores Cuautitlán
- Departamento de Matemáticas
- 54714 Cuautitlán Izcalli
- Mexico
| | - Blanca M. Muñoz-Flores
- Universidad Autónoma de Nuevo León
- Facultad de Ciencias Químicas
- Ciudad Universitaria
- Nuevo León
- Mexico
| |
Collapse
|
43
|
Ni S, Hribersek M, Baddigam SK, Ingner FJL, Orthaber A, Gates PJ, Pilarski LT. Mechanochemical Solvent‐Free Catalytic C−H Methylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010202] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shengjun Ni
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Matic Hribersek
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Swarna K. Baddigam
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| | | | - Andreas Orthaber
- Department of Chemistry—Ångström Laboratories Uppsala University Box 523 75120 Uppsala Sweden
| | - Paul J. Gates
- School of Chemistry University of Bristol Cantock's Close, Clifton Bristol BS8 1TS UK
| | - Lukasz T. Pilarski
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| |
Collapse
|
44
|
Udvardy A, Szolnoki CT, Gombos R, Papp G, Kováts É, Joó F, Kathó Á. Mechanochemical P-derivatization of 1,3,5-Triaza-7-Phosphaadamantane (PTA) and Silver-Based Coordination Polymers Obtained from the Resulting Phosphabetaines. Molecules 2020; 25:E5352. [PMID: 33207789 PMCID: PMC7697749 DOI: 10.3390/molecules25225352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
We have described earlier that in aqueous solutions, the reaction of 1,3,5-triaza-7-phosphaadamantane (PTA) with maleic acid yielded a phosphonium-alkanoate zwitterion. The same reaction with 2-methylmaleic acid (citraconic acid) proceeded much slower. It is reported here, that in the case of glutaconic and itaconic acids (constitutional isomers of citraconic acid), formation of the corresponding phosphabetaines requires significantly shorter reaction times. The new phosphabetaines were isolated and characterized by elemental analysis, multinuclear NMR spectroscopy and ESI-MS spectrometry. Furthermore, their molecular structures in the solid state were determined by single crystal X-ray diffraction (SC-XRD). Synthesis of the phosphabetaines from PTA and unsaturated dicarboxylic acids was also carried out mechanochemically with the use of a planetary ball mill, and the characteristics of the syntheses in solvent and under solvent-free conditions were compared. In aqueous solutions, the reaction of the new phosphabetaines with Ag(CF3SO3) yielded Ag(I)-based coordination polymers. According to the SC-XRD results, in these polymers the Ag(I)-ion coordinates to the N and O donor atoms of the ligands; however, Ag(I)-Ag(I) interactions were also identified. The Ag(I)-based coordination polymer (CP1.2) formed with the glutaconyl derivative of PTA (1) showed considerable antimicrobial activity against both Gram-negative and Gram-positive bacteria and yeast strains.
Collapse
Affiliation(s)
- Antal Udvardy
- Department of Physical Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary; (C.T.S.); (R.G.); (G.P.); (Á.K.)
| | - Csenge Tamara Szolnoki
- Department of Physical Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary; (C.T.S.); (R.G.); (G.P.); (Á.K.)
- Doctoral School of Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Réka Gombos
- Department of Physical Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary; (C.T.S.); (R.G.); (G.P.); (Á.K.)
| | - Gábor Papp
- Department of Physical Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary; (C.T.S.); (R.G.); (G.P.); (Á.K.)
| | - Éva Kováts
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly Thege Miklós u. 29-33, H-1121 Budapest, Hungary;
| | - Ferenc Joó
- Department of Physical Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary; (C.T.S.); (R.G.); (G.P.); (Á.K.)
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Ágnes Kathó
- Department of Physical Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary; (C.T.S.); (R.G.); (G.P.); (Á.K.)
| |
Collapse
|
45
|
Reaction of Aldoximes with Sodium Chloride and Oxone under Ball-Milling Conditions. Molecules 2020; 25:molecules25163719. [PMID: 32824070 PMCID: PMC7463692 DOI: 10.3390/molecules25163719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
The solvent-free mechanochemical reaction has aroused increasing interest among scientists. Mechanical ball-milling can implement reactions under mild conditions, shorten the reaction time, and improve the reaction efficiency. Particularly, the most attractive characteristic of mechanochemistry is that it can alter the reaction pathway. However, few such examples have been reported so far. In this paper, we report the reaction of aldoximes with NaCl and Oxone under ball-milling conditions to afford N-acyloxyimidoyl chlorides, which are different from those of the liquid-phase counterpart.
Collapse
|
46
|
Canale V, Frisi V, Bantreil X, Lamaty F, Zajdel P. Sustainable Synthesis of a Potent and Selective 5-HT 7 Receptor Antagonist Using a Mechanochemical Approach. J Org Chem 2020; 85:10958-10965. [PMID: 32706254 PMCID: PMC7458427 DOI: 10.1021/acs.joc.0c01044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
A mechanochemical
procedure was developed to obtain PZ-1361, a potent and
selective 5-HT7 receptor antagonist, with
antidepressant properties in rodents. The elaborated protocol offered
several advantages over classical batch synthesis, including improvement
of the overall yield (from 34% to 64%), reduction of reaction time
(from 60 to 5.5 h), limitation of the use of toxic solvents, and the
formation of byproducts. This approach represents a rare example of
the synthesis of biologically active compounds exclusively performed
using mechanochemical reactions.
Collapse
Affiliation(s)
- Vittorio Canale
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Kraków 30-688, Poland
| | - Valeria Frisi
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Kraków 30-688, Poland
| | - Xavier Bantreil
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Frédéric Lamaty
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Paweł Zajdel
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Kraków 30-688, Poland
| |
Collapse
|
47
|
Lukin S, Stolar T, Lončarić I, Milanović I, Biliškov N, di Michiel M, Friščić T, Halasz I. Mechanochemical Metathesis between AgNO 3 and NaX (X = Cl, Br, I) and Ag 2XNO 3 Double-Salt Formation. Inorg Chem 2020; 59:12200-12208. [PMID: 32806016 DOI: 10.1021/acs.inorgchem.0c01196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we describe real-time, in situ monitoring of mechanochemical solid-state metathesis between silver nitrate and the entire series of sodium halides, on the basis of tandem powder X-ray diffraction and Raman spectroscopy monitoring. The mechanistic monitoring reveals that reactions of AgNO3 with NaX (X = Cl, Br, I) differ in reaction paths, with only the reaction with NaBr providing the NaNO3 and AgX products directly. The reaction with NaI revealed the presence of a novel, short-lived intermediate phase, while the reaction with NaCl progressed the slowest through the well-defined Ag2ClNO3 intermediate double salt. While the corresponding iodide and bromide double salts were not observed as intermediates, all three are readily prepared as pure compounds by milling equimolar mixtures of AgX and AgNO3. The in situ observation of reactive intermediates in these simple metathesis reactions reveals a surprising resemblance of reactions involving purely ionic components to those of molecular organic solids and cocrystals. This study demonstrates the potential of in situ reaction monitoring for mechanochemical reactions of ionic compounds as well as completes the application of these techniques to all major compound classes.
Collapse
Affiliation(s)
- Stipe Lukin
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Tomislav Stolar
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Ivor Lončarić
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Igor Milanović
- Department of Physics (010), Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11000, Belgrade, Serbia
| | - Nikola Biliškov
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Marco di Michiel
- ESRF-the European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A 0B8 Montreal, Canada
| | - Ivan Halasz
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
48
|
Stirring or milling? First synthesis of Rh(I)-(di-N-heterocyclic carbene) complexes both in solution and in a ball mill. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
van Bonn P, Bolm C, Hernández JG. Mechanochemical Palladium-Catalyzed Carbonylative Reactions Using Mo(CO) 6. Chemistry 2020; 26:2576-2580. [PMID: 31802549 PMCID: PMC7065133 DOI: 10.1002/chem.201904528] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/08/2019] [Indexed: 12/30/2022]
Abstract
Esters and amides were mechanochemically prepared by palladium-catalyzed carbonylative reactions of aryl iodides by using molybdenum hexacarbonyl as a convenient solid carbonyl source and avoiding a direct handling of gaseous carbon monoxide. Real-time monitoring of the mechanochemical reaction by in situ pressure sensing revealed that CO is rapidly transferred from Mo(CO)6 to the active catalytic system without significant release of molecular carbon monoxide.
Collapse
Affiliation(s)
- Pit van Bonn
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - José G. Hernández
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
50
|
Quintin F, Pinaud J, Lamaty F, Bantreil X. Mechanosynthesis of Noels-type NHC–Ruthenium Complexes and Applications in Ring-Opening Metathesis Polymerization. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- François Quintin
- IBMM, Université Montpellier, CNRS, ENSCM, Montpellier CEDEX 5 34095, France
| | - Julien Pinaud
- ICGM, Université Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Frédéric Lamaty
- IBMM, Université Montpellier, CNRS, ENSCM, Montpellier CEDEX 5 34095, France
| | - Xavier Bantreil
- IBMM, Université Montpellier, CNRS, ENSCM, Montpellier CEDEX 5 34095, France
| |
Collapse
|