1
|
Martian PC, Tertis M, Leonte D, Hadade N, Cristea C, Crisan O. Cyclic peptides: A powerful instrument for advancing biomedical nanotechnologies and drug development. J Pharm Biomed Anal 2025; 252:116488. [PMID: 39388867 DOI: 10.1016/j.jpba.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Cyclic peptides have emerged as an essential tool in the advancement of biomedical nanotechnologies, offering unique structural and functional advantages over linear peptides. This review article aims to highlight the roles of cyclic peptides in the development of biomedical fields, with a particular focus on their application in drug discovery and delivery. Cyclic peptides exhibit exceptional stability, bioavailability, and binding specificity, making them ideal candidates for therapeutic and diagnostic applications. We explore the synthesis and design strategies that enable the precise control of cyclic peptide structures, leading to enhanced performance in targeting specific cellular pathways. The article also highlights recent breakthroughs in the use of cyclic peptides for creating innovative drug delivery systems, including nanoparticle conjugates and peptide-drug conjugates, which have shown promise in improving the efficacy and safety profiles of existing traditional treatments. The integration of cyclic peptides into nanotechnological frameworks holds significant promise for addressing unmet medical needs, providing a foundation for future advancements in personalized medicine and targeted drug delivery.
Collapse
Affiliation(s)
- Paul Cristian Martian
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Denisa Leonte
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| | - Niculina Hadade
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania.
| | - Ovidiu Crisan
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| |
Collapse
|
2
|
Mehrani M, Lella M, Graham KA, Borotto NB, Tal-Gan Y. Development of urea-bridged cyclic dominant negative pneumococcus competence-stimulating peptide analogs. Org Biomol Chem 2024. [PMID: 39714135 DOI: 10.1039/d4ob01524j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cyclization is a widely used approach to exert conformational restraint on linear peptide sequences. Herein, urea bridge chemistry was deployed to achieve side chain-to-side chain peptide cyclization on the Streptococcus pneumoniae CSP1-E1A peptide scaffold. To determine the effects of ring size and bridge position on the overall peptide conformation and find the ideal area within the CSP sequence for cyclization, we performed biological evaluation as well as secondary structure analysis on all the cyclic analogs. Biological evaluation results exhibited that even minor modifications to cyclic analogs for each of the cyclization positions could significantly alter the interaction between the peptide and its target receptor, ComD. Furthermore, structural analysis using circular dichroism (CD) and Trapped Ion Mobility Spectrometry (TIMS) emphasized the significance of incorporating the bridge position as a parameter to be modified, in addition to the traditional ring position and ring size parameters. Overall, our results showcase the importance of comprehensive conformational screening in fine-tuning the secondary structure of cyclic peptide analogs. This knowledge could be very useful for future studies aimed at optimizing peptide : protein interactions.
Collapse
Affiliation(s)
- Mona Mehrani
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Muralikrishna Lella
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Katherine A Graham
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Nicholas B Borotto
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA.
| |
Collapse
|
3
|
Herrera-Guzmán K, Jaime-Vasconcelos MÁ, Torales E, Chacón I, Gaviño R, García-Ríos E, Cárdenas J, Morales-Serna JA. A practical method for the synthesis of small peptides using DCC and HOBt as activators in H 2O-THF while avoiding the use of protecting groups. RSC Adv 2024; 14:39968-39976. [PMID: 39703739 PMCID: PMC11657080 DOI: 10.1039/d4ra07847k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
The synthesis of peptides in solution proceeds through successive steps involving the removal of a protecting group and the formation of the peptide bond. While most methodological efforts have focused on the development of new protecting groups and coupling agents, methodologies based on minimal protecting groups have been less explored. In this research, a peptide synthesis methodology was developed using DCC and HOBt in THF-H2O, avoiding the use of protecting groups, reducing reaction times, and reusing HOBt during successive couplings. The reaction conditions allow the production of peptides that can directly serve as the starting material for the next coupling, leading to the creation of small peptide sequences, which in turn are precursors to biologically important molecules. Here we explore the example of Sansalvamide as a template for other active peptides. Unlike SPPS, our methodology constructs the sequence from the N-terminus to C-terminus. This unique approach could streamline peptide synthesis and facilitate the development of complex peptides efficiently.
Collapse
Affiliation(s)
- Karina Herrera-Guzmán
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria Ciudad de Mexico 04510 Mexico
| | - Miguel Ángel Jaime-Vasconcelos
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria Ciudad de Mexico 04510 Mexico
| | - Eréndira Torales
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria Ciudad de Mexico 04510 Mexico
| | - Itzel Chacón
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria Ciudad de Mexico 04510 Mexico
| | - Rubén Gaviño
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria Ciudad de Mexico 04510 Mexico
| | - Eréndira García-Ríos
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria Ciudad de Mexico 04510 Mexico
| | - Jorge Cárdenas
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria Ciudad de Mexico 04510 Mexico
| | - José A Morales-Serna
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan Tuxtepec Oaxaca 68301 Mexico
| |
Collapse
|
4
|
Sharma KK, Sharma K, Rao K, Sharma A, Rathod GK, Aaghaz S, Sehra N, Parmar R, VanVeller B, Jain R. Unnatural Amino Acids: Strategies, Designs, and Applications in Medicinal Chemistry and Drug Discovery. J Med Chem 2024; 67:19932-19965. [PMID: 39527066 DOI: 10.1021/acs.jmedchem.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Peptides can operate as therapeutic agents that sit within a privileged space between small molecules and larger biologics. Despite examples of their potential to regulate receptors and modulate disease pathways, the development of peptides with drug-like properties remains a challenge. In the quest to optimize physicochemical parameters and improve target selectivity, unnatural amino acids (UAAs) have emerged as critical tools in peptide- and peptidomimetic-based drugs. The utility of UAAs is illustrated by clinically approved drugs such as methyldopa, baclofen, and gabapentin in addition to small drug molecules, for example, bortezomib and sitagliptin. In this Perspective, we outline the strategy and deployment of UAAs in FDA-approved drugs and their targets. We further describe the modulation of the physicochemical properties in peptides using UAAs. Finally, we elucidate how these improved pharmacological parameters and the role played by UAAs impact the progress of analogs in preclinical stages with an emphasis on the role played by UAAs.
Collapse
Affiliation(s)
- Krishna K Sharma
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, Punjab 160 062, India
| | - Kamya Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, Punjab 160 062, India
| | - Anku Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, Punjab 160 062, India
| | - Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, Punjab 160 062, India
| | - Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, Punjab 160 062, India
| | - Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, Punjab 160 062, India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, Punjab 160 062, India
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, Punjab 160 062, India
| |
Collapse
|
5
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Kurita T, Numata K. The structural and functional impacts of rationally designed cyclic peptides on self-assembly-mediated functionality. Phys Chem Chem Phys 2024; 26:28776-28792. [PMID: 39555904 DOI: 10.1039/d4cp02759k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Compared with their linear counterparts, cyclic peptides, characterized by their unique topologies, offer superior stability and enhanced functionality. In this review article, the rational design of cyclic peptide primary structures and their significant influence on self-assembly processes and functional capabilities are comprehensively reviewed. We emphasize how strategically modifying amino acid sequences and ring sizes critically dictate the formation and properties of peptide nanotubes (PNTs) and complex assemblies, such as rotaxanes. Adjusting the number of amino acid residues and side chains allows researchers to tailor the diameter, surface properties, and functions of PNTs precisely. In addition, we discuss the complex host-guest chemistry of cyclic peptides and their ability to form rotaxanes, highlighting their potential in the development of mechanically interlocked structures with novel functionalities. Moreover, the critical role of computational methods for accurately predicting the solution structures of cyclic peptides is also highlighted, as it enables the design of novel peptides with tailored properties for a range of applications. These insights set the stage for groundbreaking advances in nanotechnology, drug delivery, and materials science, driven by the strategic design of cyclic peptide primary structures.
Collapse
Affiliation(s)
- Taichi Kurita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Institute for Advanced Biosciences, Keio University, Nipponkoku 403-1, Daihouji, Tsuruoka, Yamagata 997-0017, Japan
| |
Collapse
|
7
|
Yang L, Cao S, Liu L, Zhu R, Wu D. cyclicpeptide: a Python package for cyclic peptide drug design. Brief Bioinform 2024; 26:bbae714. [PMID: 39783893 PMCID: PMC11713021 DOI: 10.1093/bib/bbae714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
The unique cyclic structure of cyclic peptides grants them remarkable stability and bioactivity, making them powerful candidates for treating various diseases. However, the lack of standardized tools for cyclic peptide data has hindered their potential in today's artificial intelligence-driven efficient drug design landscape. To bridge this gap, here we introduce a Python package named cyclicpeptide specifically for cyclic peptide drug design. This package provides standardized tools such as Structure2Sequence, Sequence2Structure, and format transformation to process, convert, and standardize cyclic peptide structure and sequence data. Additionally, it includes GraphAlignment for cyclic peptide-specific alignment and search and PropertyAnalysis to enhance the understanding of their drug-like properties and potential applications. This comprehensive suite of tools aims to streamline the integration of cyclic peptides into modern drug discovery pipelines, accelerating the development of cyclic peptide-based therapeutics.
Collapse
Affiliation(s)
- Liu Yang
- National Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, P. R. China
| | - Suqi Cao
- National Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, P. R. China
| | - Lei Liu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200072, P. R. China
| | - Ruixin Zhu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200072, P. R. China
| | - Dingfeng Wu
- National Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, P. R. China
| |
Collapse
|
8
|
Amu G, Zhang G, Jing N, Ma Y. Developing Stapled Aptamers with a Constrained Conformation for Osteogenesis Imperfect Therapeutics. J Med Chem 2024; 67:18883-18894. [PMID: 39470582 DOI: 10.1021/acs.jmedchem.4c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Despite the extensive development of aptamers in basic research, only a limited number have successfully progressed to clinical trials. This limitation is primarily attributed to the inherent instability of aptamers' conformation, resulting in low affinity, poor serum stability, and inconsistent potency, posing a significant challenge to their stabilization. Herein, we established a feasible strategy to develop staple aptamers using the predicted binding conformations and titration cross-linking (TTC) method. Through this strategy, we successfully synthesized various stapled sclerostin aptamers with over 70% yield. Importantly, we demonstrated that stapled aptamers significantly enhanced their affinity (approximately 20-fold) and serum stability (negligible degradation within 32 h). Moreover, in an osteogenesis imperfecta mouse model (Col1a2+/G610C mice), the stapled aptamer (named c-0127OA) exhibited a potent antagonistic effect on sclerostin, leading to enhanced anabolic bone anabolic potential. Collectively, our established stapling strategy is effective in stabilizing aptamers' conformation, with c-0127OA emerging as a promising therapeutic candidate for osteogenesis imperfecta.
Collapse
Affiliation(s)
- Gubu Amu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Ge Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, Hong Kong SAR 999077, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR 999077, China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Rd., Beijing 100000, China
| | - Yuan Ma
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, Hong Kong SAR 999077, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
9
|
Naveen K, Rawat VS, Verma R, Gnanamani E. Catalyst-free ring opening of azlactones in water microdroplets. Chem Commun (Camb) 2024; 60:13263-13266. [PMID: 39445768 DOI: 10.1039/d4cc04487h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A catalyst-free method was developed for the ring opening of azlactones (also known as oxazolones) in water microdroplets. Azlactone was dissolved in a water : acetonitrile (1 : 1) mixture, and the solution is sprayed by using nitrogen gas at a pressure of 120 psi to generate microdroplets. This method promoted selective cleavage of the lactone bond to afford the corresponding N-benzoyl derivatives in up to 94% isolated yield with no epimerization. Our method produces the ring-opening products in milliseconds (up to 94 μmol for 33.3 minutes), and may have utility for high-throughput synthesis applications.
Collapse
Affiliation(s)
- Kumar Naveen
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Vishesh Singh Rawat
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Rahul Verma
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Elumalai Gnanamani
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
10
|
Nielipińska D, Rubiak D, Pietrzyk-Brzezińska AJ, Małolepsza J, Błażewska KM, Gendaszewska-Darmach E. Stapled peptides as potential therapeutics for diabetes and other metabolic diseases. Biomed Pharmacother 2024; 180:117496. [PMID: 39362065 DOI: 10.1016/j.biopha.2024.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
The field of peptide drug research has experienced notable progress, with stapled peptides featuring stabilized α-helical conformation, emerging as a promising field. These peptides offer enhanced stability, cellular permeability, and binding affinity and exhibit potential in the treatment of diabetes and metabolic disorders. Stapled peptides, through the disruption of protein-protein interactions, present varied functionalities encompassing agonism, antagonism, and dual-agonism. This comprehensive review offers insight into the technology of peptide stapling and targeting of crucial molecular pathways associated with glucose metabolism, insulin secretion, and food intake. Additionally, we address the challenges in developing stapled peptides, including concerns pertaining to structural stability, peptide helicity, isomer mixture, and potential side effects.
Collapse
Affiliation(s)
- Dominika Nielipińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| | - Dominika Rubiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Agnieszka J Pietrzyk-Brzezińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland.
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| |
Collapse
|
11
|
Cheung T, Tam LKB, Tam W, Zhang L, Kai H, Thor W, Wu Y, Lam P, Yeung Y, Xie C, Chau H, Lo W, Zhang T, Wong K. Facile Peptide Macrocyclization and Multifunctionalization via Cyclen Installation. SMALL METHODS 2024; 8:e2400006. [PMID: 38593368 PMCID: PMC11579550 DOI: 10.1002/smtd.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Cyclen-peptide bioconjugates are usually prepared in multiple steps that require individual preparation and purification of the cyclic peptide and hydrophilic cyclen derivatives. An efficient strategy is discovered for peptide cyclization and functionalization toward lanthanide probe via three components intermolecular crosslinking on solid-phase peptide synthesis with high conversion yield. Multifunctionality can be conferred by introducing different modular parts or/and metal ions on the cyclen-embedded cyclopeptide. As a proof-of-concept, a luminescent Eu3+ complex and a Gd3+-based contrasting agent for in vitro optical imaging and in vivo magnetic resonance imaging, respectively, are demonstrated through utilizing this preparation of cyclen-embedded cyclic arginylglycylaspartic acid (RGD) peptide.
Collapse
Affiliation(s)
- Tsz‐Lam Cheung
- Department of ChemistryHong Kong Baptist University224 Waterloo Road, Kowloon Tong, KowloonHong KongChina
| | - Leo K. B. Tam
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong KongChina
| | - Wing‐Sze Tam
- Department of ChemistryHong Kong Baptist University224 Waterloo Road, Kowloon Tong, KowloonHong KongChina
| | - Leilei Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Scienceand College of BiophotonicsSouth China Normal UniversityGuangzhou510631China
| | - Hei‐Yui Kai
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong KongChina
| | - Waygen Thor
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong KongChina
| | - Yue Wu
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong KongChina
- Department of SurgeryThe Chinese University of Hong KongSha TinHong KongChina
| | - Pak‐Lun Lam
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong KongChina
| | - Yik‐Hoi Yeung
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong KongChina
| | - Chen Xie
- Department of Clinical OncologyUniversity of Hong KongPok Fu Lam, Hong Kong IslandHong KongChina
| | - Ho‐Fai Chau
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong KongChina
| | - Wai‐Sum Lo
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong KongChina
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Scienceand College of BiophotonicsSouth China Normal UniversityGuangzhou510631China
| | - Ka‐Leung Wong
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong KongChina
| |
Collapse
|
12
|
Zheng FH, Cui ZH, Wang YX, Zhu WJ, Wei HM, Xue JH, Wan XC, Fang GM. Thiazolidine Deprotection Using an Organic Solvent Extractable Aldehyde Scavenger for One-Pot Four-Segment Ligation. Org Lett 2024; 26:7701-7706. [PMID: 39230191 DOI: 10.1021/acs.orglett.4c02816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We report a simple and convenient N-terminal thiazolidine (Thz) deprotection strategy and its application in one-pot multisegment ligation. In this strategy, O-benzylhydroxylamine (O-BHA) is used to efficiently and rapidly convert Thz into N-terminal cysteine. O-BHA can be easily separated from the ligation buffer by organic solvent extraction, avoiding the degradation of the peptide thioester by O-BHA. The utility of the O-BHA-based one-pot ligation strategy has been demonstrated in the assembly of CC chemokine ligand-2.
Collapse
Affiliation(s)
- Feng-Hao Zheng
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zhi-Hui Cui
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Yu-Xuan Wang
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Wen-Jing Zhu
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Hui-Min Wei
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jun-Hao Xue
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Xiao-Cui Wan
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Ge-Min Fang
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
13
|
Song L, Jiang S, Yang Q, Huang W, Qiu Y, Chen Z, Sun X, Wang T, Wu S, Chen Y, Zeng H, Wang Z, Kang L. Development of a Novel Peptide-Based PET Tracer [ 68Ga]Ga-DOTA-BP1 for BCMA Detection in Multiple Myeloma. J Med Chem 2024; 67:15118-15130. [PMID: 39167092 DOI: 10.1021/acs.jmedchem.4c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
B-cell maturation antigen (BCMA) has emerged as a promising tumor marker for the diagnosis and treatment of multiple myeloma. The noninvasive and rapid detection of BCMA expression in vivo provides significant value in screening and evaluating multiple myeloma patients receiving BCMA-targeted therapy. We identified the BCMA-targeting peptide BP1 from a one-bead-one-compound (OBOC) peptide library using a high-throughput microarray strategy. The BCMA-targeting specificity and affinity of BP1 were assessed by surface plasmon resonance imaging (SPRi), flow cytometry, and confocal imaging. BCMA-positive (H929) and BCMA-negative (K562) subcutaneous tumor models were established and labeled with 68Ga for BP1, followed by PET imaging and biodistribution studies. PET imaging demonstrated that 68Ga-labeled BP1 has significant specific uptake in multiple myeloma, enabling rapid identification of BCMA expression and precise delineation of the disease. Thus, BP1 represents an ideal candidate for multiple myeloma imaging.
Collapse
Affiliation(s)
- Lele Song
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Sujun Jiang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Yongkang Qiu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xinyao Sun
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Tianyao Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Sitong Wu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Yongshou Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Huajie Zeng
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
14
|
Lamartina CW, Chartier CA, Hirano JM, Shah NH, Rovis T. Crafting Unnatural Peptide Macrocycles via Rh(III)-Catalyzed Carboamidation. J Am Chem Soc 2024. [PMID: 39024122 DOI: 10.1021/jacs.4c05248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Contemporary developments in the field of peptide macrocyclization methodology are imperative for enabling the advance of drug design in medicinal chemistry. This report discloses a Rh(III)-catalyzed macrocyclization via carboamidation, reacting acryloyl-peptide-dioxazolone precursors and arylboronic acids to form complex cyclic peptides with concomitant incorporation of noncanonical α-amino acids. The diverse and modular technology allows for expedient access to a wide variety of cyclic peptides from 4 to 15 amino acids in size and features simultaneous formation of unnatural phenylalanine and tyrosine derivatives with up to >20:1 diastereoselectivity. The reaction showcases an expansive substrate scope with 45 examples and is compatible with the majority of standard protected amino acids used in Fmoc-solid phase peptide synthesis. The methodology is applied to the synthesis of multiple peptidomimetic macrocyclic analogs, including derivatives of cyclosomatostatin and gramicidin S.
Collapse
Affiliation(s)
| | - Cassandra A Chartier
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jillian M Hirano
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Neel H Shah
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
15
|
Zeng P, Wang H, Zhang P, Leung SSY. Unearthing naturally-occurring cyclic antibacterial peptides and their structural optimization strategies. Biotechnol Adv 2024; 73:108371. [PMID: 38704105 DOI: 10.1016/j.biotechadv.2024.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Natural products with antibacterial activity are highly desired globally to combat against multidrug-resistant (MDR) bacteria. Antibacterial peptide (ABP), especially cyclic ABP (CABP), is one of the abundant classes. Most of them were isolated from microbes, demonstrating excellent bactericidal effects. With the improved proteolytic stability, CABPs are normally considered to have better druggability than linear peptides. However, most clinically-used CABP-based antibiotics, such as colistin, also face the challenges of drug resistance soon after they reached the market, urgently requiring the development of next-generation succedaneums. We present here a detail review on the novel naturally-occurring CABPs discovered in the past decade and some of them are under clinical trials, exhibiting anticipated application potential. According to their chemical structures, they were broadly classified into five groups, including (i) lactam/lactone-based CABPs, (ii) cyclic lipopeptides, (iii) glycopeptides, (iv) cyclic sulfur-rich peptides and (v) multiple-modified CABPs. Their chemical structures, antibacterial spectrums and proposed mechanisms are discussed. Moreover, engineered analogs of these novel CABPs are also summarized to preliminarily analyze their structure-activity relationship. This review aims to provide a global perspective on research and development of novel CABPs to highlight the effectiveness of derivatives design in identifying promising antibacterial agents. Further research efforts in this area are believed to play important roles in fighting against the multidrug-resistance crisis.
Collapse
Affiliation(s)
- Ping Zeng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Honglan Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pengfei Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
16
|
Chen H, Zhang Y, Wen Y, Fan X, Sciolino N, Lin Y, Breindel L, Dai Y, Shekhtman A, Xue XS, Zhang Q. Production of constrained L-cyclo-tetrapeptides by epimerization-resistant direct aminolysis. Nat Commun 2024; 15:5372. [PMID: 38918367 PMCID: PMC11199569 DOI: 10.1038/s41467-024-49329-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
The synthesis of constrained 12-membered rings is notably difficult. The main challenges result from constraints during the linear peptide cyclization. Attempts to overcome constraints through excessive activation frequently cause peptidyl epimerization, while insufficient activation of the C-terminus hampers cyclization and promotes intermolecular oligomer formation. We present a β-thiolactone framework that enables the synthesis of cyclo-tetrapeptides via direct aminolysis. This tactic utilizes a mechanism that restricts C-terminal carbonyl rotation while maintaining high reactivity, thereby enabling efficient head-to-tail amidation, reducing oligomerization, and preventing epimerization. A broad range of challenging cyclo-tetrapeptides ( > 20 examples) are synthesized in buffer and exhibits excellent tolerance toward nearly all proteinogenic amino acids. Previously unattainable macrocycles, such as cyclo-L-(Pro-Tyr-Pro-Val), have been produced and identified as μ-opioid receptor (MOR) agonists, with an EC50 value of 2.5 nM. Non-epimerizable direct aminolysis offers a practical solution for constrained peptide cyclization, and the discovery of MOR agonist activity highlights the importance of overcoming synthetic challenges for therapeutic development.
Collapse
Affiliation(s)
- Huan Chen
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Yuchen Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Yuming Wen
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Xinhao Fan
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Nicholas Sciolino
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Yanyun Lin
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Leonard Breindel
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Yuanwei Dai
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA.
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China.
| | - Qiang Zhang
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA.
| |
Collapse
|
17
|
Wan XC, Zhu WJ, Chen Y, Cui ZH, Zhang H, Zheng FH, Zhang YN, Fang GM. Thioproline-Based Oxidation Strategy for Direct Preparation of N-Terminal Thiazolidine-Containing Peptide Thioesters from Peptide Hydrazides. Org Lett 2024; 26:5021-5026. [PMID: 38842216 DOI: 10.1021/acs.orglett.4c01687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
We describe a simple and robust oxidation strategy for preparing N-terminal thiazolidine-containing peptide thioesters from peptide hydrazides. We find for the first time that l-thioproline can be used as a protective agent to prevent the nitrosation of N-terminal thiazolidine during peptide hydrazide oxidation. The thioproline-based oxidation strategy has been successfully applied to the chemical synthesis of CC chemokine ligand-2 (69aa) and omniligase-C (113aa), thereby demonstrating its utility in hydrazide-based native chemical ligation.
Collapse
Affiliation(s)
- Xiao-Cui Wan
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Wen-Jing Zhu
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Ying Chen
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zhi-Hui Cui
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Hua Zhang
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Feng-Hao Zheng
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Yan-Ni Zhang
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Ge-Min Fang
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
18
|
Ding Y, Lambden E, Peate J, Picken LJ, Rees TW, Perez-Ortiz G, Newgas SA, Spicer LAR, Hicks T, Hess J, Ulmschneider MB, Müller MM, Barry SM. Rapid Peptide Cyclization Inspired by the Modular Logic of Nonribosomal Peptide Synthetases. J Am Chem Soc 2024; 146:16787-16801. [PMID: 38842580 PMCID: PMC11191687 DOI: 10.1021/jacs.4c04711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Nonribosomal cyclic peptides (NRcPs) are structurally complex natural products and a vital pool of therapeutics, particularly antibiotics. Their structural diversity arises from the ability of the multidomain enzyme assembly lines, nonribosomal peptide synthetases (NRPSs), to utilize bespoke nonproteinogenic amino acids, modify the linear peptide during elongation, and catalyze an array of cyclization modes, e.g., head to tail, side chain to tail. The study and drug development of NRcPs are often limited by a lack of easy synthetic access to NRcPs and their analogues, with selective macrolactamization being a major bottleneck. Herein, we report a generally applicable chemical macrocyclization method of unprecedented speed and selectivity. Inspired by biosynthetic cyclization, it combines the deprotected linear biosynthetic precursor peptide sequence with a highly reactive C-terminus to produce NRcPs and analogues in minutes. The method was applied to several NRcPs of varying sequences, ring sizes, and cyclization modes including rufomycin, colistin, and gramicidin S with comparable success. We thus demonstrate that the linear order of modules in NRPS enzymes that determines peptide sequence encodes the key structural information to produce peptides conformationally biased toward macrocyclization. To fully exploit this conformational bias synthetically, a highly reactive C-terminal acyl azide is also required, alongside carefully balanced pH and solvent conditions. This allows for consistent, facile cyclization of exceptional speed, selectivity, and atom efficiency. This exciting macrolactamization method represents a new enabling technology for the biosynthetic study of NRcPs and their development as therapeutics.
Collapse
Affiliation(s)
- Yaoyu Ding
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Edward Lambden
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Jessica Peate
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Lewis J. Picken
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Thomas W. Rees
- The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.
| | - Gustavo Perez-Ortiz
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Sophie A. Newgas
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Lucy A. R. Spicer
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Thomas Hicks
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Jeannine Hess
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
- The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.
| | - Martin B. Ulmschneider
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Manuel M. Müller
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Sarah M. Barry
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| |
Collapse
|
19
|
Lin J, Chen S, Butt UD, Yan M, Wu B. A comprehensive review on ziconotide. Heliyon 2024; 10:e31105. [PMID: 38779019 PMCID: PMC11110537 DOI: 10.1016/j.heliyon.2024.e31105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Managing severe chronic pain is a challenging task, given the limited effectiveness of available pharmacological and non-pharmacological treatments. This issue continues to be a significant public health concern, requiring a substantial therapeutic response. Ziconotide, a synthetic peptide initially isolated from Conus magus in 1982 and approved by the US Food and Drug Administration and the European Medicines Agency in 2004, is the first-line intrathecal method for individuals experiencing severe chronic pain refractory to other therapeutic measures. Ziconotide produces powerful analgesia by blocking N-type calcium channels in the spinal cord, which inhibits the release of pain-relevant neurotransmitters from the central terminals of primary afferent neurons. However, despite possessing many favorable qualities, including the absence of tolerance development, respiratory depression, and withdrawal symptoms (largely due to the absence of a G-protein mediation mechanism), ziconotide's application is limited due to factors such as intrathecal administration and a narrow therapeutic window resulting from significant dose-related undesired effects of the central nervous system. This review aims to provide a comprehensive and clinically relevant summary of the literatures concerning the pharmacokinetics and metabolism of intrathecal ziconotide. It will also describe strategies intended to enhance clinical efficacy while reducing the incidence of side effects. Additionally, the review will explore the current efforts to refine the structure of ziconotide for better clinical outcomes. Lastly, it will prospect potential developments in the new class of selective N-type voltage-sensitive calcium-channel blockers.
Collapse
Affiliation(s)
- Jinping Lin
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Shuwei Chen
- Fuyang People's Hospital, Hangzhou 311400, China
| | | | - Min Yan
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan 321000, China
| |
Collapse
|
20
|
Yamada A, Takei T, Kawakami T, Taniguchi Y, Sekiguchi K, Hojo H. Application of cysteinyl prolyl ester for the synthesis of cyclic peptides containing an RGD sequence and their biological activity measurement. Front Chem 2024; 12:1391678. [PMID: 38873405 PMCID: PMC11169864 DOI: 10.3389/fchem.2024.1391678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Cysteinyl RGD-peptidyl cysteinyl prolyl esters, which have different configurations at the cysteine and proline residues, were synthesized by the solid-phase method and cyclized by the native chemical ligation reaction. Cyclization efficiently proceeded to give cyclic peptides, regardless of the difference in the configuration. The peptides were further derivatized to the corresponding desulfurized or methylated cyclic peptides at the Cys residues. The inhibition activity to αvβ6 integrin binding was then analyzed by ELISA. The results showed that the activity varied depending on the difference in the configuration and modification of the cysteinyl prolyl ester (CPC) moiety, demonstrating the usefulness of this method in the search for a good inhibitor of the protein-protein interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
21
|
Bekker GJ, Oshima K, Araki M, Okuno Y, Kamiya N. Binding Mechanism between Platelet Glycoprotein and Cyclic Peptide Elucidated by McMD-Based Dynamic Docking. J Chem Inf Model 2024; 64:4158-4167. [PMID: 38751042 DOI: 10.1021/acs.jcim.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
The cyclic peptide OS1 (amino acid sequence: CTERMALHNLC), which has a disulfide bond between both termini cysteine residues, inhibits complex formation between the platelet glycoprotein Ibα (GPIbα) and the von Willebrand factor (vWF) by forming a complex with GPIbα. To study the binding mechanism between GPIbα and OS1 and, therefore, the inhibition mechanism of the protein-protein GPIbα-vWF complex, we have applied our multicanonical molecular dynamics (McMD)-based dynamic docking protocol starting from the unbound state of the peptide. Our simulations have reproduced the experimental complex structure, although the top-ranking structure was an intermediary one, where the peptide was bound in the same location as in the experimental structure; however, the β-switch of GPIbα attained a different conformation. Our analysis showed that subsequent refolding of the β-switch results in a more stable binding configuration, although the transition to the native configuration appears to take some time, during which OS1 could dissociate. Our results show that conformational changes in the β-switch are crucial for successful binding of OS1. Furthermore, we identified several allosteric binding sites of GPIbα that might also interfere with vWF binding, and optimization of the peptide to target these allosteric sites might lead to a more effective inhibitor, as these are not dependent on the β-switch conformation.
Collapse
Affiliation(s)
- Gert-Jan Bekker
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kanji Oshima
- Bio-Pharma Research Laboratories, Kaneka Corporation, 1-8 Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688, Japan
| | - Mitsugu Araki
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasushi Okuno
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Narutoshi Kamiya
- Graduate School of Information Science, University of Hyogo, 7-1-28 minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
22
|
Chen FJ, Lin W, Chen FE. Non-symmetric stapling of native peptides. Nat Rev Chem 2024; 8:304-318. [PMID: 38575678 DOI: 10.1038/s41570-024-00591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Stapling has emerged as a powerful technique in peptide chemistry. It enables precise control over peptide conformation leading to enhanced properties such as improved stability and enhanced binding affinity. Although symmetric stapling methods have been extensively explored, the field of non-symmetric stapling of native peptides has received less attention, largely as a result of the formidable challenges it poses - in particular the complexities involved in achieving the high chemo-selectivity and site-selectivity required to simultaneously modify distinct proteinogenic residues. Over the past 5 years, there have been significant breakthroughs in addressing these challenges. In this Review, we describe the latest strategies for non-symmetric stapling of native peptides, elucidating the protocols, reaction mechanisms and underlying design principles. We also discuss current challenges and opportunities this field offers for future applications, such as ligand discovery and peptide-based therapeutics.
Collapse
Affiliation(s)
- Fa-Jie Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
| | - Wanzhen Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Fen-Er Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, P. R. China.
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
23
|
Li Y, Wu M, Fu Y, Xue J, Yuan F, Qu T, Rissanou AN, Wang Y, Li X, Hu H. Therapeutic stapled peptides: Efficacy and molecular targets. Pharmacol Res 2024; 203:107137. [PMID: 38522761 DOI: 10.1016/j.phrs.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Peptide stapling, by employing a stable, preformed alpha-helical conformation, results in the production of peptides with improved membrane permeability and enhanced proteolytic stability, compared to the original peptides, and provides an effective solution to accelerate the rapid development of peptide drugs. Various reviews present peptide stapling chemistries, anchoring residues and one- or two-component cyclization, however, therapeutic stapled peptides have not been systematically summarized, especially focusing on various disease-related targets. This review highlights the latest advances in therapeutic peptide drug development facilitated by the application of stapling technology, including different stapling techniques, synthetic accessibility, applicability to biological targets, potential for solving biological problems, as well as the current status of development. Stapled peptides as therapeutic drug candidates have been classified and analysed mainly by receptor- and ligand-based stapled peptide design against various diseases, including cancer, infectious diseases, inflammation, and diabetes. This review is expected to provide a comprehensive reference for the rational design of stapled peptides for different diseases and targets to facilitate the development of therapeutic peptides with enhanced pharmacokinetic and biological properties.
Collapse
Affiliation(s)
- Yulei Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Minghao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yinxue Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jingwen Xue
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fei Yuan
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tianci Qu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Anastassia N Rissanou
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Honggang Hu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
24
|
Di Matteo V, Esposito G, Costantino V, Della Sala G, Teta R, Mangoni A. When Synthesis Gets It Wrong: Unexpected Epimerization Using PyBOP in the Synthesis of the Cyclic Peptide Thermoactinoamide A. JOURNAL OF NATURAL PRODUCTS 2024; 87:948-953. [PMID: 38411075 DOI: 10.1021/acs.jnatprod.3c01229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Chemical synthesis is commonly seen as the final proof of the structure of complex natural products, but even a seemingly easy and well-established synthetic procedure may lead to an unexpected result. This is what happened with the synthesis of thermoactinoamide A (1a), an antimicrobial and antitumor nonribosomal cyclic hexapeptide produced by the thermophilic bacterium Thermoactinomyces vulgaris. The synthetic thermoactinoamide A outsourced to a company and the one described in a synthetic paper showed spectroscopic data identical to each other but different from those of the natural product. After a detailed spectroscopic, degradative, and synthetic study, the synthetic compound was shown to be an epimer (1b) of the intended target compound, originating during the cyclization reaction by extensive epimerization at the activated C-terminal amino acid. This allowed confirmation of the structure of the natural product.
Collapse
Affiliation(s)
- Viviana Di Matteo
- Department of Pharmacy, Universitá degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Germana Esposito
- Department of Pharmacy, Universitá degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Valeria Costantino
- Department of Pharmacy, Universitá degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Gerardo Della Sala
- Department of Eco-Sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via F.A. Acton, Molosiglio, 80133 Napoli, Italy
| | - Roberta Teta
- Department of Pharmacy, Universitá degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Alfonso Mangoni
- Department of Pharmacy, Universitá degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
25
|
Liu L, Yang L, Cao S, Gao Z, Yang B, Zhang G, Zhu R, Wu D. CyclicPepedia: a knowledge base of natural and synthetic cyclic peptides. Brief Bioinform 2024; 25:bbae190. [PMID: 38678388 PMCID: PMC11056021 DOI: 10.1093/bib/bbae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 04/30/2024] Open
Abstract
Cyclic peptides offer a range of notable advantages, including potent antibacterial properties, high binding affinity and specificity to target molecules, and minimal toxicity, making them highly promising candidates for drug development. However, a comprehensive database that consolidates both synthetically derived and naturally occurring cyclic peptides is conspicuously absent. To address this void, we introduce CyclicPepedia (https://www.biosino.org/iMAC/cyclicpepedia/), a pioneering database that encompasses 8744 known cyclic peptides. This repository, structured as a composite knowledge network, offers a wealth of information encompassing various aspects of cyclic peptides, such as cyclic peptides' sources, categorizations, structural characteristics, pharmacokinetic profiles, physicochemical properties, patented drug applications, and a collection of crucial publications. Supported by a user-friendly knowledge retrieval system and calculation tools specifically designed for cyclic peptides, CyclicPepedia will be able to facilitate advancements in cyclic peptide drug development.
Collapse
Affiliation(s)
- Lei Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200072, P. R. China
| | - Liu Yang
- National Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, P. R. China
| | - Suqi Cao
- National Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, P. R. China
| | - Zhigang Gao
- Department of General Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, P. R. China
| | - Bin Yang
- Shanghai Southgene Technology Co., Ltd., Shanghai 201203, China
| | - Guoqing Zhang
- National Genomics Data Center & Bio-Med Big Data Center, Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Ruixin Zhu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200072, P. R. China
| | - Dingfeng Wu
- National Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, P. R. China
| |
Collapse
|
26
|
Wang M, Pan D, Zhang Q, Lei Y, Wang C, Jia H, Mou L, Miao X, Ren X, Xu Z. Site-Selective Polyfluoroaryl Modification and Unsymmetric Stapling of Unprotected Peptides. J Am Chem Soc 2024; 146:6675-6685. [PMID: 38427024 DOI: 10.1021/jacs.3c12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Peptide stapling is recognized as an effective strategy for improving the proteolytic stability and cell permeability of peptides. In this study, we present a novel approach for the site-selective unsymmetric perfluoroaryl stapling of Ser and Cys residues in unprotected peptides. The stapling reaction proceeds smoothly under very mild conditions, exhibiting a remarkably rapid reaction rate. It can furnish stapled products in both liquid and solid phases, and the presence of nucleophilic groups other than Cys thiol within the peptide does not impede the reaction, resulting in uniformly high yields. Importantly, the chemoselective activation of Ser β-C(sp3)-H enables the unreacted -OH to serve as a reactive handle for subsequent divergent modification of the staple moiety with various therapeutic functionalities, including a clickable azido group, a polar moiety, a lipid tag, and a fluorescent dye. In our study, we have also developed a visible-light-induced chemoselective C(sp3)-H polyfluoroarylation of the Ser β-position. This reaction avoids interference with the competitive reaction of Ser -OH, enabling the precise late-stage polyfluoroarylative modification of Ser residues in various unprotected peptides containing other highly reactive amino acid residues. The biological assay suggested that our peptide stapling strategy would potentially enhance the proteolytic stability and cellular permeability of peptides.
Collapse
Affiliation(s)
- Mengran Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Da Pan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Qi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongjia Lei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haoyuan Jia
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lingyun Mou
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaokang Miao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoyu Ren
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China
| |
Collapse
|
27
|
Wang H, Wang D, Wu Y, Zhao Y. Macrocycle-Based Hierarchically Porous Hydrogen-Bonded Organic Frameworks. Chemistry 2024; 30:e202303618. [PMID: 38117667 DOI: 10.1002/chem.202303618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/22/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are porous crystalline materials. The pores in HOFs are usually non-covalent extrinsic pores constructed through the formation of the framework. Supramolecular macrocycles with intrinsic pores in their structures are good candidates for constructing HOFs with intrinsic pores from the macrocycles themselves, thus leading to hierarchically porous structures. Combining the macrocycle and HOFs will endow these hierarchically porous materials with enhanced properties and special functionalities. This review summarizes recent advances in macrocycle-based HOFs, including the macrocycles used for constructing HOFs, the hierarchically porous structures of the HOFs, and the applications induced by the hierarchically HOFs porous structures. This review provides insights for future research on macrocycle-based hierarchically porous HOFs and the appropriate applications of the unique structures.
Collapse
Affiliation(s)
- Hui Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266042, Qingdao, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266042, Qingdao, China) Please change the image of the Frontispiece from the current image to the TOC image
| | - Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266042, Qingdao, China
| | - Yumin Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266042, Qingdao, China) Please change the image of the Frontispiece from the current image to the TOC image
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266042, Qingdao, China
| |
Collapse
|
28
|
Zhao Z, Laps S, Gichtin JS, Metanis N. Selenium chemistry for spatio-selective peptide and protein functionalization. Nat Rev Chem 2024; 8:211-229. [PMID: 38388838 DOI: 10.1038/s41570-024-00579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
The ability to construct a peptide or protein in a spatio-specific manner is of great interest for therapeutic and biochemical research. However, the various functional groups present in peptide sequences and the need to perform chemistry under mild and aqueous conditions make selective protein functionalization one of the greatest synthetic challenges. The fascinating paradox of selenium (Se) - being found in both toxic compounds and also harnessed by nature for essential biochemical processes - has inspired the recent exploration of selenium chemistry for site-selective functionalization of peptides and proteins. In this Review, we discuss such approaches, including metal-free and metal-catalysed transformations, as well as traceless chemical modifications. We report their advantages, limitations and applications, as well as future research avenues.
Collapse
Affiliation(s)
- Zhenguang Zhao
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Shay Laps
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jacob S Gichtin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
29
|
Zeng W, Xue J, Geng H, Liu X, Yang J, Shen W, Yuan Y, Qiang Y, Zhu Q. Research progress on chemical modifications of tyrosine residues in peptides and proteins. Biotechnol Bioeng 2024; 121:799-822. [PMID: 38079153 DOI: 10.1002/bit.28622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/11/2023] [Accepted: 11/26/2023] [Indexed: 02/20/2024]
Abstract
The chemical modifications (CMs) of protein is an important technique in chemical biology, protein-based therapy, and material science. In recent years, there has been rapid advances in the development of CMs of peptides and proteins, providing new approaches for peptide and protein functionalization, as well as drug discovery. In this review, we highlight the methods for chemically modifying tyrosine (Tyr) residues in different regions, offering a comprehensive exposition of the research content related to Tyr modification. This review summarizes and provides an outlook on Tyr residue modification, aiming to offer readers assistance in the site-selective modification of macromolecules and to facilitate application research in this field.
Collapse
Affiliation(s)
- Wei Zeng
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianyuan Xue
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Haoxing Geng
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xia Liu
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jin Yang
- Department of Biotechnology and the Quality Management, Zhejiang Pharmaceutical Industry Co. Ltd., Hangzhou, China
| | - Wei Shen
- Department of Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yuqing Yuan
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yujie Qiang
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qing Zhu
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
30
|
Geers DWT, Gavriel K, Neumann K. Rapid, traceless and facile peptide cyclization enabled by tetrazine-thiol exchange. J Pept Sci 2024; 30:e3548. [PMID: 37779097 DOI: 10.1002/psc.3548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
Cyclic peptides offer many advantages compared to their linear counterparts, including prolonged stability within the biological environment and enhanced binding affinity. Typically, peptides are cyclized by forming an amide bond, either on-resin or in solution, through extensive use of orthogonal protecting groups or chemoselective ligation strategies, respectively. Here, we show that the chemoselective tetrazine-thiol exchange is a powerful tool for rapid in situ cyclization of peptides without the need for additional activation reagents or extensive protecting group reshuffling. The reaction between N-terminal sulfide-bearing unsymmetric tetrazines and internal cysteines occurs spontaneously within a mildly acidic environment (pH 6.5) and is of traceless nature. The rapidly available unsymmetric sulfide tetrazine building blocks can be incorporated on resin using standard solid-phase peptide synthesis protocols and are orthogonal to trifluoroacetic acid cleavage conditions. The cyclized peptides display high stability, even when incubated with a large excess of free thiols. Due to its traceless and mild nature, we expect that the tetrazine-thiol exchange will be of high value for the in situ formation of cyclic peptide libraries, thus being applicable in drug discovery and development.
Collapse
Affiliation(s)
- Daniëlle W T Geers
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Katerina Gavriel
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Kevin Neumann
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Du Z, Ma Y, Shen Y, Jiang X, Zhou Y, Shi T. Exploring the substrate stereoselectivity and catalytic mechanism of nonribosomal peptide macrocyclization in surugamides biosynthesis. iScience 2024; 27:108876. [PMID: 38313049 PMCID: PMC10835440 DOI: 10.1016/j.isci.2024.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
SurE, the first reported penicillin-binding protein-like thioesterase (PBP-like TE), is known as a new off-loading cyclase, which catalyzes heterochiral coupling in nonribosomal peptides (NRPs). However, the structural rationale for substrate stereoselectivity and enzymatic mechanism remains mysterious. Here, computational models, integrating MD simulations and QM/MM methods, unveiled SurE's substrate recognition and catalytic process. An oxyanion hole stabilized the C-terminal D-residue during recognition. Residue R446 anchored the substrate for macrocyclization. A vital hydrogen-bonding network (Y154, K66, N156), verified by mutation results, was responsible for the recognition of N-terminal L-residue and involvement in catalytic process with a calculated 19.4 kcal/mol energy barrier. Four novel-designed peptide precursors were effectively cyclized into cyclopeptides by SurE based on computational analysis. Our results provide a comprehensive understanding of SurE's catalytic mechanism and guiding design of versatile PBP-like TEs for novel macrocyclic NRPs.
Collapse
Affiliation(s)
- Zeqian Du
- State Key Laboratory of Microbial Metabolism, Joint International Research, Laboratory of Metabolic and Developmental Sciences, School of Life Sciences, and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinhao Ma
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yaoyao Shen
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yongjun Zhou
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research, Laboratory of Metabolic and Developmental Sciences, School of Life Sciences, and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
32
|
Cao L, Xu Z, Shang T, Zhang C, Wu X, Wu Y, Zhai S, Zhan Z, Duan H. Multi_CycGT: A Deep Learning-Based Multimodal Model for Predicting the Membrane Permeability of Cyclic Peptides. J Med Chem 2024; 67:1888-1899. [PMID: 38270541 DOI: 10.1021/acs.jmedchem.3c01611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Cyclic peptides are gaining attention for their strong binding affinity, low toxicity, and ability to target "undruggable" proteins; however, their therapeutic potential against intracellular targets is constrained by their limited membrane permeability, and researchers need much time and money to test this property in the laboratory. Herein, we propose an innovative multimodal model called Multi_CycGT, which combines a graph convolutional network (GCN) and a transformer to extract one- and two-dimensional features for predicting cyclic peptide permeability. The extensive benchmarking experiments show that our Multi_CycGT model can attain state-of-the-art performance, with an average accuracy of 0.8206 and an area under the curve of 0.8650, and demonstrates satisfactory generalization ability on several external data sets. To the best of our knowledge, it is the first deep learning-based attempt to predict the membrane permeability of cyclic peptides, which is beneficial in accelerating the design of cyclic peptide active drugs in medicinal chemistry and chemical biology applications.
Collapse
Affiliation(s)
- Lujing Cao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhenyu Xu
- AI Department, Shanghai Highslab Therapeutics, Inc., Shanghai 201203, China
| | - Tianfeng Shang
- AI Department, Shanghai Highslab Therapeutics, Inc., Shanghai 201203, China
| | - Chengyun Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- AI Department, Shanghai Highslab Therapeutics, Inc., Shanghai 201203, China
| | - Xinyi Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yejian Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Silong Zhai
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhajun Zhan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongliang Duan
- Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| |
Collapse
|
33
|
Matabaro E, Witte L, Gherlone F, Vogt E, Kaspar H, Künzler M. Promiscuity of Omphalotin A Biosynthetic Enzymes Allows de novo Production of Non-Natural Multiply Backbone N-Methylated Peptide Macrocycles in Yeast. Chembiochem 2024; 25:e202300626. [PMID: 38059521 DOI: 10.1002/cbic.202300626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023]
Abstract
Multiple backbone N-methylation and macrocyclization improve the proteolytic stability and oral availability of therapeutic peptides. Chemical synthesis of such peptides is challenging, in particular for the generation of peptide libraries for screening purposes. Enzymatic backbone N-methylation and macrocyclization occur as part of both non-ribosomal and ribosomal peptide biosynthesis, exemplified by the fungal natural products cyclosporin A and omphalotin A, respectively. Omphalotin A, a 9fold backbone N-methylated dodecamer isolated from the agaricomycete Omphalotus olearius, can be produced in Pichia pastoris by coexpression of the ophMA and ophP genes coding for the peptide precursor protein harbouring an autocatalytic peptide α-N-methyltransferase domain, and a peptide macrocyclase, respectively. Since both OphMA and OphP were previously shown to be relatively promiscuous in terms of peptide substrates, we expressed mutant versions of ophMA, encoding OphMA variants with altered core peptide sequences, along with wildtype ophP and assessed the production of the respective peptide macrocycles by the platform by high-performance liquid chromatography, coupled with tandem mass spectrometry (HPLC-MS/MS). Our results demonstrate the successful production of fifteen non-natural omphalotin-derived macrocycles, containing polar, aromatic and charged residues, and, thus, suggest that the system may be used as biotechnological platform to generate libraries of non-natural multiply backbone N-methylated peptide macrocycles.
Collapse
Affiliation(s)
- Emmanuel Matabaro
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog Weg 4, HCI F423, 8093, Zürich, Switzerland
| | - Luca Witte
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog Weg 4, HCI F423, 8093, Zürich, Switzerland
| | - Fabio Gherlone
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog Weg 4, HCI F423, 8093, Zürich, Switzerland
| | - Eva Vogt
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog Weg 4, HCI F423, 8093, Zürich, Switzerland
| | - Hannelore Kaspar
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog Weg 4, HCI F423, 8093, Zürich, Switzerland
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog Weg 4, HCI F423, 8093, Zürich, Switzerland
| |
Collapse
|
34
|
Ding J, Ding X, Liao W, Lu Z. Red blood cell-derived materials for cancer therapy: Construction, distribution, and applications. Mater Today Bio 2024; 24:100913. [PMID: 38188647 PMCID: PMC10767221 DOI: 10.1016/j.mtbio.2023.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer has become an increasingly important public health issue owing to its high morbidity and mortality rates. Although traditional treatment methods are relatively effective, they have limitations such as highly toxic side effects, easy drug resistance, and high individual variability. Meanwhile, emerging therapies remain limited, and their actual anti-tumor effects need to be improved. Nanotechnology has received considerable attention for its development and application. In particular, artificial nanocarriers have emerged as a crucial approach for tumor therapy. However, certain deficiencies persist, including immunogenicity, permeability, targeting, and biocompatibility. The application of erythrocyte-derived materials will help overcome the above problems and enhance therapeutic effects. Erythrocyte-derived materials can be acquired via the application of physical and chemical techniques from natural erythrocyte membranes, or through the integration of these membranes with synthetic inner core materials using cell membrane biomimetic technology. Their natural properties such as biocompatibility and long circulation time make them an ideal choice for drug delivery or nanoparticle biocoating. Thus, red blood cell-derived materials are widely used in the field of biomedicine. However, further studies are required to evaluate their efficacy, in vivo metabolism, preparation, design, and clinical translation. Based on the latest research reports, this review summarizes the biology, synthesis, characteristics, and distribution of red blood cell-derived materials. Furthermore, we provide a reference for further research and clinical transformation by comprehensively discussing the applications and technical challenges faced by red blood cell-derived materials in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Jianghua Ding
- Department of Hematology & Oncology, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
| | - Xinjing Ding
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| | - Weifang Liao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
- Department of Medical Laboratory, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
| | - Zhihui Lu
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| |
Collapse
|
35
|
de Raffele D, Ilie IM. Unlocking novel therapies: cyclic peptide design for amyloidogenic targets through synergies of experiments, simulations, and machine learning. Chem Commun (Camb) 2024; 60:632-645. [PMID: 38131333 DOI: 10.1039/d3cc04630c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Existing therapies for neurodegenerative diseases like Parkinson's and Alzheimer's address only their symptoms and do not prevent disease onset. Common therapeutic agents, such as small molecules and antibodies struggle with insufficient selectivity, stability and bioavailability, leading to poor performance in clinical trials. Peptide-based therapeutics are emerging as promising candidates, with successful applications for cardiovascular diseases and cancers due to their high bioavailability, good efficacy and specificity. In particular, cyclic peptides have a long in vivo stability, while maintaining a robust antibody-like binding affinity. However, the de novo design of cyclic peptides is challenging due to the lack of long-lived druggable pockets of the target polypeptide, absence of exhaustive conformational distributions of the target and/or the binder, unknown binding site, methodological limitations, associated constraints (failed trials, time, money) and the vast combinatorial sequence space. Hence, efficient alignment and cooperation between disciplines, and synergies between experiments and simulations complemented by popular techniques like machine-learning can significantly speed up the therapeutic cyclic-peptide development for neurodegenerative diseases. We review the latest advancements in cyclic peptide design against amyloidogenic targets from a computational perspective in light of recent advancements and potential of machine learning to optimize the design process. We discuss the difficulties encountered when designing novel peptide-based inhibitors and we propose new strategies incorporating experiments, simulations and machine learning to design cyclic peptides to inhibit the toxic propagation of amyloidogenic polypeptides. Importantly, these strategies extend beyond the mere design of cyclic peptides and serve as template for the de novo generation of (bio)materials with programmable properties.
Collapse
Affiliation(s)
- Daria de Raffele
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Ioana M Ilie
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
36
|
Abstract
Cyclic peptides are fascinating molecules abundantly found in nature and exploited as molecular format for drug development as well as other applications, ranging from research tools to food additives. Advances in peptide technologies made over many years through improved methods for synthesis and drug development have resulted in a steady stream of new drugs, with an average of around one cyclic peptide drug approved per year. Powerful technologies for screening random peptide libraries, and de novo generating ligands, have enabled the development of cyclic peptide drugs independent of naturally derived molecules and now offer virtually unlimited development opportunities. In this review, we feature therapeutically relevant cyclic peptides derived from nature and discuss the unique properties of cyclic peptides, the enormous technological advances in peptide ligand development in recent years, and current challenges and opportunities for developing cyclic peptides that address unmet medical needs.
Collapse
Affiliation(s)
- Xinjian Ji
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Alexander L Nielsen
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
37
|
Lucana MC, Lucchi R, Gosselet F, Díaz-Perlas C, Oller-Salvia B. BrainBike peptidomimetic enables efficient transport of proteins across brain endothelium. RSC Chem Biol 2024; 5:7-11. [PMID: 38179197 PMCID: PMC10763564 DOI: 10.1039/d3cb00194f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/25/2023] [Indexed: 01/06/2024] Open
Abstract
Protein therapeutics cannot reach the brain in sufficient amounts because of their low permeability across the blood-brain barrier. Here we report a new family of bicyclic peptide shuttles, BrainBikes, capable of increasing transport of proteins, including antibody derivatives, in a human cell-based model of the blood-brain barrier.
Collapse
Affiliation(s)
- Maria C Lucana
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull Barcelona 08017 Spain
| | - Roberta Lucchi
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull Barcelona 08017 Spain
| | - Fabien Gosselet
- Université d'Artois, Blood-Brain Barrier Laboratory Lens 62300 France
| | | | | |
Collapse
|
38
|
Jiang X, Gao L, Li Z, Shen Y, Lin ZH. Development and Challenges of Cyclic Peptides for Immunomodulation. Curr Protein Pept Sci 2024; 25:353-375. [PMID: 37990433 DOI: 10.2174/0113892037272528231030074158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 11/23/2023]
Abstract
Cyclic peptides are polypeptide chains formed by cyclic sequences of amide bonds between protein-derived or non-protein-derived amino acids. Compared to linear peptides, cyclic peptides offer several unique advantages, such as increased stability, stronger affinity, improved selectivity, and reduced toxicity. Cyclic peptide has been proved to have a promising application prospect in the medical field. In addition, this paper mainly describes that cyclic peptides play an important role in anti-cancer, anti-inflammatory, anti-virus, treatment of multiple sclerosis and membranous nephropathy through immunomodulation. In order to know more useful information about cyclic peptides in clinical research and drug application, this paper also summarizes cyclic peptides currently in the clinical trial stage and cyclic peptide drugs approved for marketing in the recent five years. Cyclic peptides have many advantages and great potential in treating various diseases, but there are still many challenges to be solved in the development process of cyclic peptides.
Collapse
Affiliation(s)
- Xianqiong Jiang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
| | - Li Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
| | - Zhilong Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- Chongqing Key Laboratory of Target Based Drug Screening and Activity Evaluation, Chongqing University of Technology, Chongqing 400054, China
| | - Zhi-Hua Lin
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
- Chongqing College of Traditional Chinese Medicine, 402760
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- Chongqing Key Laboratory of Target Based Drug Screening and Activity Evaluation, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
39
|
Mi T, Siriwibool S, Burgess K. Streamlined Protein-Protein Interface Loop Mimicry. Angew Chem Int Ed Engl 2023; 62:e202307092. [PMID: 37849440 DOI: 10.1002/anie.202307092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Cyclic peptides comprising endocyclic organic fragments, "cyclo-organopeptides", can be probes for perturbing protein-protein interactions (PPIs). Finding loop mimics is difficult because of high conformational variability amongst targets. Backbone Matching (BM), introduced here, helps solve this problem in the illustrative cases by facilitating efficient evaluation of virtual cyclo-organopeptide core-structure libraries. Thus, 86 rigid organic fragments were selected to build a library of 602 cyclo-organopeptides comprising Ala and organic parts: "cyclo-{-(Ala)n -organo-}". The central hypothesis is "hit" library members have accessible low energy conformers corresponding to backbone structures of target protein loops, while library members which cannot attain this conformation are probably unworthy of further evaluation. BM thereby prioritizes candidate loop mimics, so that less than 10 cyclo-organopeptides are needed to be prepared to find leads for two illustrative PPIs: iNOS ⋅ SPSB2, and uPA ⋅ uPAR.
Collapse
Affiliation(s)
- Tianxiong Mi
- Department of Chemistry, Texas A & M University, 77842, College Station, TX, USA
| | - Siriwalee Siriwibool
- School of Chemistry, Institute of Science, Suranaree University of Technology, 30000, Nakhon Ratchasima, Thailand
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, 77842, College Station, TX, USA
| |
Collapse
|
40
|
Gu Y, Guo Y, Deng Y, Song H, Nian R, Liu W. Development of a highly sensitive immunoassay based on pentameric nanobodies for carcinoembryonic antigen detection. Anal Chim Acta 2023; 1279:341840. [PMID: 37827654 DOI: 10.1016/j.aca.2023.341840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM-5) is a well-characterized biomarker for the clinical diagnosis of various cancers. Nanobodies, considered the smallest antibody fragments with intact antigen-binding capacity, have gained significant attention in disease diagnosis and therapy. Due to their peculiar properties, nanobodies have become promising alternative diagnostic reagents in immunoassay. However, nanobodies-based immunoassay is still hindered by small molecular size and low antigen capture efficacy. Therefore, there is a pressing need to develop novel nanobody-based immunoassays with superior performance. RESULTS A novel pentameric nanobodies-based immunoassay (PNIA) was developed with enhanced sensitivity and specificity for CEACAM-5 detection. The binding epitopes of three anti-CEACAM-5 nanobodies (Nb1, Nb2 and Nb3) were analyzed. To enhance the capture and detection efficacy of CEACAM-5 in the immunoassay, we engineered bispecific nanobodies (Nb1-Nb2-rFc) as the capture antibody, and developed the FITC-labeled pentameric nanobodies (Nb3-VT1B) as the detection antibody. The binding affinities of Nb1-Nb2-rFc (1.746 × 10-10) and Nb3-VT1B (1.279 × 10-11) were significantly higher than those of unmodified nanobodies (Nb1-rFc, 4.063 × 10-9; Nb2-rFc, 2.136 × 10-8; Nb3, 3.357 × 10-9). The PNIA showed a linear range of 0.625-160 ng mL-1 with a correlation coefficient R2 of 0.9985, and a limit of detection of 0.52 ng mL-1, which was 24-fold lower than the immunoassay using monomeric nanobody. The PNIA was validated with the spiked human serum. The average recoveries ranged from 91.8% to 102% and the coefficients of variation ranged from 0.026% to 0.082%. SIGNIFICANCE AND NOVELTY The advantages of nanobodies offer a promising alternative to conventional antibodies in disease diagnosis. The novel PNIA demonstrated superior sensitivity and high specificity for the detection of CEACAM-5 antigen. This bispecific or multivalent nanobody design will provide some new insights into the design of immunoassays for clinical diagnosis.
Collapse
Affiliation(s)
- Yi Gu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; University of Chinese Academy of Sciences, No 19(A), Yuquan Road, Beijing, 100049, China
| | - Yang Guo
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; University of Chinese Academy of Sciences, No 19(A), Yuquan Road, Beijing, 100049, China
| | - Yang Deng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; University of Chinese Academy of Sciences, No 19(A), Yuquan Road, Beijing, 100049, China
| | - Haipeng Song
- Shenzhen Innova Nanobodi Co., Ltd, No. 1301 Guanguang Road, Shenzhen, 518110, China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; Shandong Energy Institute, No. 189, Songling Road, Qingdao, 266101, China; Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao, 266101, China.
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; Shandong Energy Institute, No. 189, Songling Road, Qingdao, 266101, China; Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao, 266101, China.
| |
Collapse
|
41
|
Wei T, Liu J, Li C, Tan Y, Wei R, Wang J, Wu H, Li Q, Liu H, Tang Y, Li X. Revealing the extracellular function of HMGB1 N-terminal region acetylation assisted by a protein semi-synthesis approach. Chem Sci 2023; 14:10297-10307. [PMID: 37772093 PMCID: PMC10530822 DOI: 10.1039/d3sc01109g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
HMGB1 (high-mobility group box 1) is a non-histone chromatin-associated protein that has been widely reported as a representative damage-associated molecular pattern (DAMP) and to play a pivotal role in the proinflammatory process once it is in an extracellular location. Accumulating evidence has shown that HMGB1 undergoes extensive post-translational modifications (PTMs) that actively regulate its conformation, localization, and intermolecular interactions. However, fully characterizing the functional implications of these PTMs has been challenging due to the difficulty in accessing homogeneous HMGB1 with site-specific PTMs of interest. In this study, we developed a streamlined protein semi-synthesis strategy via salicylaldehyde ester-mediated chemical ligations (Ser/Thr ligation and Cys/Pen ligation, STL/CPL). This methodology enabled us to generate a series of N-terminal region acetylated HMGB1 proteins. Further studies revealed that acetylation regulates HMGB1-heparin interaction and modulates HMGB1's stability against thrombin, representing a regulatory switch to control HMGB1's extracellular activity.
Collapse
Affiliation(s)
- Tongyao Wei
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jiamei Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Can Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Yi Tan
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ruohan Wei
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jinzheng Wang
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Hongxiang Wu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Qingrong Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Heng Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Yubo Tang
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| |
Collapse
|
42
|
Manicardi A, Theppawong A, Van Troys M, Madder A. Proximity-Induced Ligation and One-Pot Macrocyclization of 1,4-Diketone-Tagged Peptides Derived from 2,5-Disubstituted Furans upon Release from the Solid Support. Org Lett 2023; 25:6618-6622. [PMID: 37656900 PMCID: PMC10510716 DOI: 10.1021/acs.orglett.3c02289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 09/03/2023]
Abstract
1,4-Dione-containing peptides are generated during the cleavage of 2,5-disubstituted furan-containing systems. The generated electrophilic systems then react with α-effect nucleophiles, following a Paal-Knorr-like mechanism, for the generation of macrocyclic peptides, occurring after simple resuspension of the crude peptide in water. Conveniently, the in situ generation of the electrophile from a stable furan ring avoids the complications associated with the synthesis of carbonyl-containing peptides. Detailed investigation of the reaction characteristics was first performed on supramolecular coiled-coil systems.
Collapse
Affiliation(s)
- Alex Manicardi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Atiruj Theppawong
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Marleen Van Troys
- Department
of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Annemieke Madder
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| |
Collapse
|
43
|
Zhang Y, Liu L, Zhang M, Li S, Wu J, Sun Q, Ma S, Cai W. The Research Progress of Bioactive Peptides Derived from Traditional Natural Products in China. Molecules 2023; 28:6421. [PMID: 37687249 PMCID: PMC10489889 DOI: 10.3390/molecules28176421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Traditional natural products in China have a long history and a vast pharmacological repertoire that has garnered significant attention due to their safety and efficacy in disease prevention and treatment. Among the bioactive components of traditional natural products in China, bioactive peptides (BPs) are specific protein fragments that have beneficial effects on human health. Despite many of the traditional natural products in China ingredients being rich in protein, BPs have not received sufficient attention as a critical factor influencing overall therapeutic efficacy. Therefore, the purpose of this review is to provide a comprehensive summary of the current methodologies for the preparation, isolation, and identification of BPs from traditional natural products in China and to classify the functions of discovered BPs. Insights from this review are expected to facilitate the development of targeted drugs and functional foods derived from traditional natural products in China in the future.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Min Zhang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Shani Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Jini Wu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Qiuju Sun
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Shengjun Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| |
Collapse
|
44
|
Lin S, Mo Z, Wang P, He C. Oxidation and Phenolysis of Peptide/Protein C-Terminal Hydrazides Afford Salicylaldehyde Ester Surrogates for Chemical Protein Synthesis. J Am Chem Soc 2023. [PMID: 37470345 DOI: 10.1021/jacs.3c05190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
With the growing popularity of serine/threonine ligation (STL) and cysteine/penicillamine ligation (CPL) in chemical protein synthesis, facile and general approaches for the preparation of peptide salicylaldehyde (SAL) esters are urgently needed, especially those viable for obtaining expressed protein SAL esters. Herein, we report the access of SAL ester surrogates from peptide hydrazides (obtained either synthetically or recombinantly) via nitrite oxidation and phenolysis by 3-(1,3-dithian-2-yl)-4-hydroxybenzoic acid (SAL(-COOH)PDT). The resulting peptide SAL(-COOH)PDT esters can be activated to afford the reactive peptide SAL(-COOH) esters for subsequent STL/CPL. While being operationally simple for both synthetic peptides and expressed proteins, the current strategy facilitates convergent protein synthesis and combined application of STL with NCL. The generality of the strategy is showcased by the N-terminal ubiquitination of the growth arrest and DNA damage-inducible protein (Gadd45a), the efficient synthesis of ubiquitin-like protein 5 (UBL-5) via a combined N-to-C NCL-STL strategy, and the C-to-N semisynthesis of a myoglobin (Mb) variant.
Collapse
Affiliation(s)
- Shaomin Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zeyuan Mo
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
45
|
Zhou Y, Harvey PJ, Koehbach J, Chan LY, Jones A, Andersson Å, Vetter I, Durek T, Craik DJ. A Chemoenzymatic Approach To Produce a Cyclic Analogue of the Analgesic Drug MVIIA (Ziconotide). Angew Chem Int Ed Engl 2023; 62:e202302812. [PMID: 37148162 PMCID: PMC10952433 DOI: 10.1002/anie.202302812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/07/2023]
Abstract
Ziconotide (ω-conotoxin MVIIA) is an approved analgesic for the treatment of chronic pain. However, the need for intrathecal administration and adverse effects have limited its widespread application. Backbone cyclization is one way to improve the pharmaceutical properties of conopeptides, but so far chemical synthesis alone has been unable to produce correctly folded and backbone cyclic analogues of MVIIA. In this study, an asparaginyl endopeptidase (AEP)-mediated cyclization was used to generate backbone cyclic analogues of MVIIA for the first time. Cyclization using six- to nine-residue linkers did not perturb the overall structure of MVIIA, and the cyclic analogues of MVIIA showed inhibition of voltage-gated calcium channels (CaV 2.2) and substantially improved stability in human serum and stimulated intestinal fluid. Our study reveals that AEP transpeptidases are capable of cyclizing structurally complex peptides that chemical synthesis cannot achieve and paves the way for further improving the therapeutic value of conotoxins.
Collapse
Affiliation(s)
- Yan Zhou
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Peta J. Harvey
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Johannes Koehbach
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Lai Yue Chan
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Alun Jones
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Åsa Andersson
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Irina Vetter
- School of PharmacyInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Thomas Durek
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - David J. Craik
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| |
Collapse
|
46
|
Costa L, Sousa E, Fernandes C. Cyclic Peptides in Pipeline: What Future for These Great Molecules? Pharmaceuticals (Basel) 2023; 16:996. [PMID: 37513908 PMCID: PMC10386233 DOI: 10.3390/ph16070996] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Cyclic peptides are molecules that are already used as drugs in therapies approved for various pharmacological activities, for example, as antibiotics, antifungals, anticancer, and immunosuppressants. Interest in these molecules has been growing due to the improved pharmacokinetic and pharmacodynamic properties of the cyclic structure over linear peptides and by the evolution of chemical synthesis, computational, and in vitro methods. To date, 53 cyclic peptides have been approved by different regulatory authorities, and many others are in clinical trials for a wide diversity of conditions. In this review, the potential of cyclic peptides is presented, and general aspects of their synthesis and development are discussed. Furthermore, an overview of already approved cyclic peptides is also given, and the cyclic peptides in clinical trials are summarized.
Collapse
Affiliation(s)
- Lia Costa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| |
Collapse
|
47
|
Franco HEO, Le AV, Chang NY, Hartman MCT. p-Chloropropynyl Phenylalanine, a Versatile Non-Canonical Amino Acid for Co-Translational Peptide Macrocyclization and Side Chain Diversification. Chembiochem 2023; 24:e202300020. [PMID: 37156744 PMCID: PMC11165969 DOI: 10.1002/cbic.202300020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/07/2023] [Indexed: 05/10/2023]
Abstract
Macrocyclization has proven to be a beneficial strategy to improve upon some of the disadvantages of peptides as therapeutics. Nevertheless, many peptide cyclization strategies are not compatible with in vitro display technologies like mRNA display. Here we describe the novel amino acid p-chloropropynyl phenylalanine (pCPF). pCPF is a substrate for a mutant phenylalanyl-tRNA synthetase and its introduction into peptides via in vitro translation leads to spontaneous peptide macrocyclization in the presence of peptides containing cysteine. Macrocyclization occurs efficiently with a wide variety of ring sizes. Moreover, pCPF can be reacted with thiols after charging onto tRNA, enabling the testing of diverse ncAAs in translation. The versatility of pCPF should facilitate downstream studies of translation and enable the creation of novel macrocyclic peptide libraries.
Collapse
Affiliation(s)
- H. Estheban Osorio Franco
- Chemistry, Virginia Commonwealth University, 1001 W Main St, Richmond, 23284, VA
- Massey Cancer Center, Virginia Commonwealth University
| | - Anthony V. Le
- Chemistry, Virginia Commonwealth University, 1001 W Main St, Richmond, 23284, VA
- Massey Cancer Center, Virginia Commonwealth University
| | - Nathan Y. Chang
- Chemistry, Virginia Commonwealth University, 1001 W Main St, Richmond, 23284, VA
- Massey Cancer Center, Virginia Commonwealth University
| | - Matthew C. T. Hartman
- Chemistry, Virginia Commonwealth University, 1001 W Main St, Richmond, 23284, VA
- Massey Cancer Center, Virginia Commonwealth University
| |
Collapse
|
48
|
Xie XL, Qi JZ, Wan XC, Zhang SD, Zhang YN, Fang GM. Chemical Synthesis of Proteins Using an o-Nitrobenzyl Group as a Robust Temporary Protective Group for N-Terminal Cysteine Protection. Org Lett 2023; 25:3435-3439. [PMID: 37144961 DOI: 10.1021/acs.orglett.3c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We report here a robust and practical strategy for chemical protein synthesis using an o-nitrobenzyl group as a temporary protective group for an N-terminal cysteine residue of intermediate hydrazide fragments. By reinvestigating the photoremoval of an o-nitrobenzyl group, we establish a robust and reliable strategy for its quantitative photodeprotection. The o-nitrobenzyl group is completely stable to oxidative NaNO2 treatment and has been applied to the convergent chemical synthesis of programmed death ligand 1 fragment, providing a practical avenue for hydrazide-based native chemical ligation.
Collapse
Affiliation(s)
- Xiao-Lei Xie
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Jing-Ze Qi
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Xiao-Cui Wan
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Suo-De Zhang
- Hefei KS-V Peptide Biological Technology Co., Ltd., Hefei 230031, P.R. China
| | - Yan-Ni Zhang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Ge-Min Fang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| |
Collapse
|
49
|
Gou F, Shi D, Kou B, Li Z, Yan X, Wu X, Jiang YB. One-Pot Cyclization to Large Peptidomimetic Macrocycles by In Situ-Generated β-Turn-Enforced Folding. J Am Chem Soc 2023; 145:9530-9539. [PMID: 37037798 DOI: 10.1021/jacs.2c11684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Macrocycles have been targets of extensive synthetic efforts for decades because of their potent molecular recognition and self-assembly capabilities. Yet, efficient syntheses of macrocyclic molecules via irreversible covalent bonds remain challenging. Here, we report an efficient approach to large peptidomimetic macrocycles by using the in situ-generated β-turn structural motifs afforded in the amidothiourea moieties from the early steps of the reaction of 2 molecules of bilateral amino acid-based acylhydrazine with 2 molecules of diisothiocyanate. Four chiral and achiral peptidomimetic large macrocycles were successfully synthesized in high yields of 45-63% in a feasible one-pot reaction under sub-molar concentration conditions and were purified by simple filtration. X-ray crystallographic characterization of three macrocycles reveals an important feature that their four β-turn structures, each maintained by four 10-membered intramolecular hydrogen bonds, alternatively network the four aromatic arms. This affords an interesting conformation switching mode upon anion binding. Binding of SO42- to 1L or 1D that contains 4 alanine residues (with the lowest steric hinderance among the macrocycles) leads to an inside-out structural change of the host macrocycle, as confirmed by the X-ray crystal structure of 1L-SO42- and 1D-SO42- complexes, accompanied by an inversion of the CD signals. On the basis of the strong sulfate affinity of the macrocycles, we succeeded in the removal of sulfate anions from water via a macrocycle-mediated liquid-liquid extraction method. Our synthetic protocol can be easily extended to other macrocycles of varying arms and/or chiral amino acid residues; thus, a variety of structurally and functionally diverse macrocycles are expected to be readily made.
Collapse
Affiliation(s)
- Fei Gou
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Di Shi
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Bohan Kou
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Zhao Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Xiaosheng Yan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xin Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
50
|
Tyler TJ, Durek T, Craik DJ. Native and Engineered Cyclic Disulfide-Rich Peptides as Drug Leads. Molecules 2023; 28:molecules28073189. [PMID: 37049950 PMCID: PMC10096437 DOI: 10.3390/molecules28073189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Bioactive peptides are a highly abundant and diverse group of molecules that exhibit a wide range of structural and functional variation. Despite their immense therapeutic potential, bioactive peptides have been traditionally perceived as poor drug candidates, largely due to intrinsic shortcomings that reflect their endogenous heritage, i.e., short biological half-lives and poor cell permeability. In this review, we examine the utility of molecular engineering to insert bioactive sequences into constrained scaffolds with desired pharmaceutical properties. Applying lessons learnt from nature, we focus on molecular grafting of cyclic disulfide-rich scaffolds (naturally derived or engineered), shown to be intrinsically stable and amenable to sequence modifications, and their utility as privileged frameworks in drug design.
Collapse
Affiliation(s)
- Tristan J. Tyler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|