1
|
Wu J, Xiong L, Huang X, Li C, Li F, Wong JWC. Silver sulfide nanoparticles eliminate the stimulative effects of earthworms on nutrient uptake by soybeans in high organic matter soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174433. [PMID: 38960153 DOI: 10.1016/j.scitotenv.2024.174433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/03/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
A significant knowledge gap exists regarding the impact of soil organic matter on the bioavailability of Ag2S-NPs (environmentally relevant forms of Ag-NPs) in soil-earthworm-plant systems. This study used two soils with varying organic matter content, both with and without earthworms, to investigate the bioavailability of Ag2S-NPs. The findings revealed an 80 % increase in Ag bioaccessibility to soybeans in soils with high organic matter content compared to soils with low organic matter. Additionally, the presence of earthworms significantly increased Cl concentrations from 24.3-62.2 mg L-1 to 80.1-147.2 mg L-1, triggering the elevated bioavailability of Ag. Interestingly, Ag2S-NPs eliminated the stimulative effects of earthworms on plant nutrient uptake. In the presence of earthworms, the high organic matter soil amended with Ag2S-NPs exhibited lower concentrations of essential elements (Ca, Cu, Fe, K, and P) in plant tissues compared to soils without earthworms. Our study presents evidence of the transformation of Ag2S-NPs into Ag-NPs across various soil solutions, resulting in the formation of Ag nanoparticle complexes. Particularly noteworthy is the significant reduction in particle sizes in soils incubated with earthworms and high organic matter content, from 85.0 nm to 40.2 nm. Notably, in the rhizosphere soil, a decrease in the relative abundance of nutrient cycling-related phyla was observed, with reductions of 18.5 % for Proteobacteria and 30.0 % for Actinobacteriota. These findings offer valuable insights into the biological and biochemical consequences of Ag2S-NP exposure on earthworm-mediated plant nutrient acquisition.
Collapse
Affiliation(s)
- Jingtao Wu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Lei Xiong
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia; Smart Water Affairs Research Center, Shenzhen University, Shenzhen 518000, China
| | - Xingyun Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Cui Li
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia; Northwestern Polytechnical University, Research Centre for Ecology and Environmental Sciences, Xi'an 710072, China
| | - Feng Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China; College of Chemistry & Biology and Environmental Engineering, Xiangnan University, Chenzhou 423043, Hunan, PR China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Jonathan W C Wong
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| |
Collapse
|
2
|
Wang P, Zhang H, Hu X, Xu L, An X, Jin T, Ma R, Li Z, Chen S, Du S, Wei G, Chen C. Comparing the Potential of Silicon Nanoparticles and Conventional Silicon for Salinity Stress Alleviation in Soybean ( Glycine max L.): Growth and Physiological Traits and Rhizosphere/Endophytic Bacterial Communities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10781-10793. [PMID: 38709780 DOI: 10.1021/acs.jafc.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In this study, 20-day-old soybean plants were watered with 100 mL of 100 mM NaCl solution and sprayed with silica nanoparticles (SiO2 NPs) or potassium silicate every 3 days over 15 days, with a final dosage of 12 mg of SiO2 per plant. We assessed the alterations in the plant's growth and physiological traits, and the responses of bacterial microbiome within the leaf endosphere, rhizosphere, and root endosphere. The result showed that the type of silicon did not significantly impact most of the plant parameters. However, the bacterial communities within the leaf and root endospheres had a stronger response to SiO2 NPs treatment, showing enrichment of 24 and 13 microbial taxa, respectively, compared with the silicate treatment, which led to the enrichment of 9 and 8 taxonomic taxa, respectively. The rhizosphere bacterial communities were less sensitive to SiO2 NPs, enriching only 2 microbial clades, compared to the 8 clades enriched by silicate treatment. Furthermore, SiO2 NPs treatment enriched beneficial genera, such as Pseudomonas, Bacillus, and Variovorax in the leaf and root endosphere, likely enhancing plant growth and salinity stress resistance. These findings highlight the potential of SiO2 NPs for foliar application in sustainable farming by enhancing plant-microbe interactions to improve salinity tolerance.
Collapse
Affiliation(s)
- Pan Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Leilei Xu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin An
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | - Ruixue Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhefei Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Sen Du
- National Agro-Tech Extension and Service Center, Beijing 100125, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chun Chen
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Samal D, Khandayataray P, Sravani M, Murthy MK. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8400-8428. [PMID: 38182947 DOI: 10.1007/s11356-023-31669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Silver nanoparticles (AgNPs) are widely used in various industries, including textiles, electronics, and biomedical fields, due to their unique optical, electronic, and antimicrobial properties. However, the extensive use of AgNPs has raised concerns about their potential ecotoxicity and adverse effects on the environment. AgNPs can enter the environment through different pathways, such as wastewater, surface runoff, and soil application and can interact with living organisms through adsorption, ingestion, and accumulation, causing toxicity and harm. The small size, high surface area-to-volume ratio, and ability to generate reactive oxygen species (ROS) make AgNPs particularly toxic. Various bioremediation strategies, such as phytoremediation, have been proposed to mitigate the toxic effects of AgNPs and minimize their impact on the environment. Further research is needed to improve these strategies and ensure their safety and efficacy in different environmental settings.
Collapse
Affiliation(s)
- Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Bhopal, Madhya Pradesh, India
| | - Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, 752057, Odisha, India
| | - Meesala Sravani
- Department of Computer Science and Engineering, GMR Institute of Technology, Rajam, 532127, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
4
|
Qiao YJ, Kang J, Song CQ, Zhou N, Zhang P, Song GF. Further study on particle size, stability, and complexation of silver nanoparticles under the composite effect of bovine serum protein and humic acid. RSC Adv 2024; 14:2621-2632. [PMID: 38234870 PMCID: PMC10793641 DOI: 10.1039/d3ra06159k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024] Open
Abstract
Silver nanoparticles (AgNPs) are widely used due to their unique antibacterial properties and excellent photoelectric properties. Wastewater treatment plants form a pool of AgNPs due to the social cycle of wastewater. During biological treatment processes, the particle size and stability of AgNPs change. We studied the particle size changes and stability of silver nanoparticles in the presence of bovine serum albumin (BSA) and humic acid (HA). The experimental results indicated that silver nanoparticles can complex with the functional groups in BSA. For AgNP-BSA composites, as the BSA concentration increases, the size of the silver nanoparticles first decreases and then increases. AgNPs can combine with the amide, amino, and carboxyl groups in HA. As the concentration of HA increases, the particle size and large particle size distribution of AgNPs increase. This increasing trend is more obvious when the HA concentration is lower than 20 mg L-1. When HA and BSA exist at the same time, HA will occupy the adsorption sites of BSA on the surface of AgNPs, and the AgNP-HA complex will dominate the system. This study aims to provide key operational control strategies for the process operation of wastewater treatment plants containing AgNPs and theoretical support for promoting water environment improvement and economic development such as tourism.
Collapse
Affiliation(s)
- Yu-Jing Qiao
- Physical Education College of Zhengzhou University Zhengzhou 450044 China
| | - Jia Kang
- School of Environmental and Municipal Engineering and Ural Institute, North China University of Water Resources and Electric Power Zhengzhou 450046 China
| | - Chu-Qiong Song
- Henan Urban Planning and Design Institute Co., Ltd Zhengzhou 450044 China
| | - Ning Zhou
- School of Environmental and Municipal Engineering and Ural Institute, North China University of Water Resources and Electric Power Zhengzhou 450046 China
| | - Peng Zhang
- School of Environmental and Municipal Engineering and Ural Institute, North China University of Water Resources and Electric Power Zhengzhou 450046 China
| | - Gang-Fu Song
- School of Environmental and Municipal Engineering and Ural Institute, North China University of Water Resources and Electric Power Zhengzhou 450046 China
| |
Collapse
|
5
|
Gangwar J, Kadanthottu Sebastian J, Puthukulangara Jaison J, Kurian JT. Nano-technological interventions in crop production-a review. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:93-107. [PMID: 36733843 PMCID: PMC9886790 DOI: 10.1007/s12298-022-01274-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Agricultural industry is facing huge crisis due to fast changing climate, decreased soil fertility, macro and micronutrient insufficiency, misuse of chemical fertilizers and pesticides, and heavy metal presence in soil. With exponential increase in world's population, food consumption has increased significantly. Maintaining the production to consumption ratio is a significant challenge due to shortage caused by various issues faced by agricultural industry even with the improved agricultural practices. Recent scientific evidence suggests that nanotechnology can positively impact the agriculture sector by reducing the harmful effects of farming operations on human health and nature, as well as improving food productivity and security. Farmers are combining improved agricultural practices like usage of fertilizers, pesticides etc. with nano-based materials to improve the efficiency and productivity of crops. Nano technology is also playing a significant role improving animal health products, food packaging materials, and nanosensors for detecting pathogens, toxins, and heavy metals in soil among others. The nanobased materials have improved the productivity twice with half the resources being utilized. Nanoparticles that are currently in use include titanium dioxide, zinc oxide, silicon oxide, magnesium oxide, gold, and silver used for increasing soil fertility and plant growth. Crop growth, yield, and productivity are improved by controlled release nanofertilizers. In this review we elaborate on the recent developments in the agricultural sector by the usage of nanomaterial based composites which has significantly improved the agricultural sector especially how nanoparticles play an important role in plant growth and soil fertility, in controlling plant diseases by the use of nanopesticides, nanoinsecticides, nanofertilizers, Nanoherbicides, nanobionics, nanobiosensors. The review also highlights the mechanism of migration of nanoparticles in plants and most importantly the effects of nanoparticles in causing plant and soil toxicity.
Collapse
Affiliation(s)
- Jaya Gangwar
- Department of Life Sciences, Christ University, Bangalore, Karnataka 560029 India
| | | | | | - Jissa Theresa Kurian
- Department of Life Sciences, Christ University, Bangalore, Karnataka 560029 India
| |
Collapse
|
6
|
Ngake T, Gulumian M, Cronjé S, Harris R. Modelling and simulation study of the influence of size and surface functionality on the stability of PEG-functionalised AgNPs. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2141809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- T. Ngake
- Department of Physics, University of the Free State, Bloemfontein, South Africa
| | - M. Gulumian
- School of Pathology, Haematology and Molecular Medicine, University of the Witwatersrand, and Water Research Group, North West University, Potchefstroom, South Africa
| | - S. Cronjé
- Department of Physics, University of the Free State, Bloemfontein, South Africa
| | - R.A. Harris
- Department of Physics, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
7
|
Green Synthesis of Silver Nanoparticles Using Thespesia populnea Bark Extract for Efficient Removal of Methylene Blue (MB) Degradation via Photocatalysis with Antimicrobial Activity and for Anticancer Activity. Bioinorg Chem Appl 2022; 2022:7268273. [PMID: 35813489 PMCID: PMC9262567 DOI: 10.1155/2022/7268273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
The green synthesis method was used to effectively fabricate Ag-NPs by using Thespesia populnea bark extract. The structural, morphological, elemental composition, and optical properties of as-synthesized Ag-NPs were characterized by powder X-ray diffraction (P-XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDAX), transmission electron microscopy (TEM), and UV-Vis spectroscopy. Their photocatalytic efficiency as a photocatalyst was examined by degradation of methylene blue (MB) dye under direct sunlight irradiation. After 120 minutes of sunlight irradiation, Ag-NPs show photocatalytic degradation efficiency (DE percent) of 92%. The hydroxyl and superoxide radicals were found to be responsible for biodegradation. To the best of our acquaintance, this is the first research to use Ag-NPs as a photocatalyst for the efficient degradation of MB dye and its antimicrobial activity by using Thespesia populnea bark extract. The cytotoxic viability against SK-MEL cell line with a median inhibitory concentration (IC50) of 45 μL/mg proved its potent anticancer property. Based on the findings, the study revealed the significance of as-synthesized green Ag-NPs over other physically/chemically prepared Ag-NPs.
Collapse
|
8
|
Hoppe M, Köser J, Hund-Rinke K, Schlich K. Ecotoxicity and fate of silver nanomaterial in an outdoor lysimeter study after twofold application by sewage sludge. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:524-535. [PMID: 35262834 PMCID: PMC8940752 DOI: 10.1007/s10646-022-02529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The increasing use of antibacterial silver nanomaterials (AgNM) in consumer products leads to their release into sewers. High amounts of AgNM become retained in sewage sludge, which causes their accumulation in agricultural soils when sewage sludge is applied as fertilizer. This increase in AgNM arouses concerns about toxicity to soil organisms and transfer within trophic levels. Long-term field studies simulating the sewage sludge pathway to soils are sparse, and the effects of a second sewage sludge application are unknown. In this perennial field lysimeter study, a twofold application of AgNM (NM-300K, 2 + 3 mg AgNM/kg dry matter soil (DMS)) and a onefold application of silver nitrate (AgNO3, 2 mg Ag/kg DMS) by sewage sludge to the uppermost 20 cm of the soil (Cambisol) were applied. The response of microorganisms to the applications was determined by measuring the inhibition of ammonium-oxidizing bacteria (AOB). Silver concentration in soil, leachates, and crops were measured after acid digestion by inductively coupled plasma mass spectrometry (ICP-MS). Almost no vertical Ag translocation to deeper soil layers and negligible Ag release to leachates suggest that soil is a large sink for AgNM and AgNO3. For AgNM, an increase in toxicity to AOB was shown after the second sewage sludge application. The application of AgNO3 resulted in long-term toxicity comparable to the toxicity of AgNM. Low root uptake from both AgNM- and AgNO3-spiked lysimeters to crops indicates their incomplete immobilization, which is why food chain uptake cannot completely be excluded. However, the root-shoot barrier for wheat (9.8 → 0.1 mg/kg) and skin body barrier for sugar beets (1.0 → 0.2 mg/kg) will further reduce the accumulation within trophic levels. Moreover, the applied AgNM concentration was above the predicted environmental concentration, which is why the root uptake might be negligible in agricultural practice.
Collapse
Affiliation(s)
- Martin Hoppe
- Federal Institute for Geosciences and Natural Resources, Hanover, Germany.
| | - Jan Köser
- Federal Institute for Geosciences and Natural Resources, Hanover, Germany
| | - Kerstin Hund-Rinke
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Karsten Schlich
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| |
Collapse
|
9
|
Li T, Li Y, Zhang X, Yuan J, Guo J, Wang P, Wei G, Chen C. Distinct response patterns of bacterial communities in Ag- and ZnO-rGO nanocomposite-amended silt loam soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151270. [PMID: 34756902 DOI: 10.1016/j.scitotenv.2021.151270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/26/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
The widespread application of metal-based nanoparticle (MNPs)/reduced graphene oxide (rGO) composites inevitably leads to their release into soils. However, we lack a detailed understanding of the bacterial community response to MNPs-rGO exposure in farmland soils. Here, we conducted a soil microcosm experiment to analyze the potential impact of MNPs-rGO on bacterial communities in two field soils via high-throughput sequencing. The change in alpha diversity of bacterial communities was more susceptible to Ag-rGO and ZnO-rGO treatments than CuO-rGO. In both soils, MNPs-rGO significantly changed the bacterial community structure even at a low dose (1 mg kg-1). The bacterial community structure was most strongly affected by Ag-rGO at 30 days, but the greatest changes occurred in ZnO-rGO at 60 days. The differences in soil properties could shape bacterial communities to MNPs-rGO exposure. Distance-based redundancy analysis and functional annotation of prokaryotic taxa showed that some bacterial species associated with nitrogen cycling were greatly influenced by Ag-rGO and ZnO-rGO exposure. In sum, Ag-rGO and ZnO-rGO may potentially affect bacterial communities and nitrogen turnover under long-term realistic field exposure. These findings present a perspective on the response of bacterial communities to MNPs-rGO and provide a fundamental basis for estimating the ecological behavior of MNPs-rGO.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yuhua Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xike Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jiawei Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, PR China
| | - Pan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Chun Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
10
|
Peixoto S, Loureiro S, Henriques I. The impact of silver sulfide nanoparticles and silver ions in soil microbiome. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126793. [PMID: 34399213 DOI: 10.1016/j.jhazmat.2021.126793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The use of biosolids as fertilizers in agriculture can lead to the exposure of soil biota to sulfidised silver nanoparticles (Ag2S NPs), generated during the wastewater treatment procedures. Considering the crucial role of microorganisms on soil functions, we aimed to study the effects of 10 mg kg-1 soil of Ag2S NPs or AgNO3 on the soil microbiome, using an indoor mesocosm. After 28 days of exposure, Ag2S NPs induced a significant change in the soil microbiome structure, at class, genera and OTU levels. For instance, a significantly higher abundance of Chitinophagia, known for its lignocellulose-degrading activity, was observed in Ag2S NPs-treated soil toward the control. Nevertheless, stronger effects were observed in AgNO3-treated soil, over time, due to its higher silver dissolution rate in porewater. Additionally, only the AgNO3-treated soil stimulates the abundance of ammonia-oxidizing (AOB; amoA gene) and nitrite-oxidizing (NOB; nxrB gene) bacteria, which are involved in the nitrification process. Distinct variants of amoA and nxrB genes emerged in silver-treated soils, suggesting a potential succession of AOB and NOB with different degree of silver-tolerance. Our study highlights the latter effects of Ag2S NPs on the soil microbiome composition, while AgNO3 exerted a stronger effect in both composition and functional parameters.
Collapse
Affiliation(s)
- Sara Peixoto
- University of Aveiro, Department of Biology, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Susana Loureiro
- University of Aveiro, Department of Biology, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Isabel Henriques
- University of Coimbra, Department of Life Sciences, Faculty of Sciences and Technology, Portugal; CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Dodds WK, Guinnip JP, Schechner AE, Pfaff PJ, Smith EB. Fate and toxicity of engineered nanomaterials in the environment: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148843. [PMID: 34280635 DOI: 10.1016/j.scitotenv.2021.148843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/09/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
The global environment annually receives thousands of tons of engineered nanomaterials (ENMs, particles less than 100 nm diameter). These particles have high active surface area, unique chemical properties, and can enter cells. Humanity uses many ENMs for their biological reactivity (e.g. microbicides), but their environmental effects are complex. We cataloged 2102 experimental results on whole organisms for 22 particle classes (mainly on Ag, Zn, Ti, and Cu) to assess biological responses, effective and lethal concentrations, and bioaccumulation of ENMs. Most responses were negative and varied significantly by particle type, functional group of organism, and type of response. Smaller particles tended to be more toxic. Aquatic organisms responded more negatively than did terrestrial organisms. Animals generally were most sensitive and plants least. Silver ENMs generally had the strongest negative effects. Effective and lethal concentrations generally exceeded modeled environmentally relevant concentrations and organisms usually did not accumulate or biomagnify to concentrations above those in their environment. However, most experiments lasted less than a week and were not field studies. Research to date is probably insufficient to understand chronic effects and long-term biomagnification. Numerous unique and untested ENMs continue to enter environments at accelerating rates, and our analysis indicates potential for negative effects. Our data suggest substantial research is still required to understand the ultimate influence of ENMs as they continue to accumulate in the environment. Around 40% of the papers with experimental data for ENMs failed with respect to reporting means, sample sizes, or experimental error, or they did not have proper experimental design (e.g. lack of true controls). We need more high-quality experiments that are more realistic (field or mesocosm), longer duration, contain a wider range of organisms, and account for complex food web structure.
Collapse
Affiliation(s)
- Walter K Dodds
- Division of Biology, Kansas State University, Manhattan, KS 66502, USA.
| | - James P Guinnip
- Division of Biology, Kansas State University, Manhattan, KS 66502, USA
| | - Anne E Schechner
- Division of Biology, Kansas State University, Manhattan, KS 66502, USA
| | - Peter J Pfaff
- Division of Biology, Kansas State University, Manhattan, KS 66502, USA
| | - Emma B Smith
- Division of Biology, Kansas State University, Manhattan, KS 66502, USA
| |
Collapse
|