1
|
Lemesle P, Carravieri A, Poiriez G, Batard R, Blanck A, Deniau A, Faggio G, Fort J, Gallien F, Jouanneau W, le Guillou G, Leray C, McCoy KD, Provost P, Santoni MC, Sebastiano M, Scher O, Ward A, Chastel O, Bustamante P. Mercury contamination and potential health risk to French seabirds: A multi-species and multi-site study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175857. [PMID: 39209169 DOI: 10.1016/j.scitotenv.2024.175857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Mercury (Hg) is a naturally occurring highly toxic element which circulation in ecosystems has been intensified by human activities. Hg is widely distributed, and marine environments act as its main final sink. Seabirds are relevant bioindicators of marine pollution and chicks are particularly suitable for biomonitoring pollutants as they reflect contamination at short spatiotemporal scales. This study aims to quantify blood Hg contamination and identify its drivers (trophic ecology inferred from stable isotopes of carbon (δ13C) and nitrogen (δ15N), geographical location, chick age and species) in chicks of eight seabird species from 32 French sites representing four marine subregions: the English Channel and the North Sea, the Celtic Sea, the Bay of Biscay and the Western Mediterranean. Hg concentrations in blood ranged from 0.04 μg g-1 dry weight (dw) in herring gulls to 6.15 μg g-1 dw in great black-backed gulls. Trophic position (δ15N values) was the main driver of interspecific differences, with species at higher trophic positions showing higher Hg concentrations. Feeding habitat (δ13C values) also contributed to variation in Hg contamination, with higher concentrations in generalist species relying on pelagic habitats. Conversely, colony location was a weak contributor, suggesting a relatively uniform Hg contamination along the French coastline. Most seabirds exhibited low Hg concentrations, with 74% of individuals categorized as no risk, and < 0.5% at moderate risk, according to toxicity thresholds. However, recent work has shown physiological and fitness impairments in seabirds bearing Hg burdens considered to be safe, calling for precautional use of toxicity thresholds, and for studies that evaluate the impact of Hg on chick development.
Collapse
Affiliation(s)
- Prescillia Lemesle
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France; Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France.
| | - Alice Carravieri
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France; Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Gauthier Poiriez
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France
| | - Romain Batard
- Ligue pour la Protection des Oiseaux (LPO), 17300 Rochefort, France
| | - Aurélie Blanck
- Office Français de la Biodiversité (OFB), 94300 Vincennes, France
| | - Armel Deniau
- Ligue pour la Protection des Oiseaux (LPO), 17300 Rochefort, France
| | - Gilles Faggio
- Office de l'Environnement de la Corse (OEC), 20250 Corte, France
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France
| | | | - William Jouanneau
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France
| | | | - Carole Leray
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, 13200 Arles, France
| | - Karen D McCoy
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier - CNRS - IRD, 34090 Montpellier, France
| | - Pascal Provost
- Ligue pour la Protection des Oiseaux (LPO), 17300 Rochefort, France
| | | | - Manrico Sebastiano
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Olivier Scher
- Conservatoire d'espaces naturels d'Occitanie (CEN Occitanie), 34000 Montpellier, France
| | - Alain Ward
- Groupe ornithologique et naturaliste (GON, agrément régional Hauts-de-France), 59000 Lille, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France
| |
Collapse
|
2
|
Evers DC, Ackerman JT, Åkerblom S, Bally D, Basu N, Bishop K, Bodin N, Braaten HFV, Burton MEH, Bustamante P, Chen C, Chételat J, Christian L, Dietz R, Drevnick P, Eagles-Smith C, Fernandez LE, Hammerschlag N, Harmelin-Vivien M, Harte A, Krümmel EM, Brito JL, Medina G, Barrios Rodriguez CA, Stenhouse I, Sunderland E, Takeuchi A, Tear T, Vega C, Wilson S, Wu P. Global mercury concentrations in biota: their use as a basis for a global biomonitoring framework. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:325-396. [PMID: 38683471 PMCID: PMC11213816 DOI: 10.1007/s10646-024-02747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 05/01/2024]
Abstract
An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment. Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000 data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg) availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally, regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized approach that builds on an evidence-based evaluation to assess the Minamata Convention's progress to reduce the impact of global Hg pollution on people and the environment.
Collapse
Affiliation(s)
- David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| | | | - Dominique Bally
- African Center for Environmental Health, BP 826 Cidex 03, Abidjan, Côte d'Ivoire
| | - Nil Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Upsalla, Sweden
| | - Nathalie Bodin
- Research Institute for Sustainable Development Seychelles Fishing Authority, Victoria, Seychelles
| | | | - Mark E H Burton
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Celia Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - John Chételat
- Environment and Cliamte Change Canada, National Wildlife Research Centre, Ottawa, ON, K1S 5B6, Canada
| | - Linroy Christian
- Department of Analytical Services, Dunbars, Friars Hill, St John, Antigua and Barbuda
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Paul Drevnick
- Teck American Incorporated, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Collin Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Luis E Fernandez
- Sabin Center for Environment and Sustainability and Department of Biology, Wake Forest University, Winston-Salem, NC, 29106, USA
- Centro de Innovación Científica Amazonica (CINCIA), Puerto Maldonado, Madre de Dios, Peru
| | - Neil Hammerschlag
- Shark Research Foundation Inc, 29 Wideview Lane, Boutiliers Point, NS, B3Z 0M9, Canada
| | - Mireille Harmelin-Vivien
- Aix-Marseille Université, Université de Toulon, CNRS/INSU/IRD, Institut Méditerranéen d'Océanologie (MIO), UM 110, Campus de Luminy, case 901, 13288, Marseille, cedex 09, France
| | - Agustin Harte
- Basel, Rotterdam and Stockholm Conventions Secretariat, United Nations Environment Programme (UNEP), Chem. des Anémones 15, 1219, Vernier, Geneva, Switzerland
| | - Eva M Krümmel
- Inuit Circumpolar Council-Canada, Ottawa, Canada and ScienTissiME Inc, Barry's Bay, ON, Canada
| | - José Lailson Brito
- Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracana, Rio de Janeiro, RJ, Brazil
| | - Gabriela Medina
- Director of Basel Convention Coordinating Centre, Stockholm Convention Regional Centre for Latin America and the Caribbean, Hosted by the Ministry of Environment, Montevideo, Uruguay
| | | | - Iain Stenhouse
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Elsie Sunderland
- Harvard University, Pierce Hall 127, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Akinori Takeuchi
- National Institute for Environmental Studies, Health and Environmental Risk Division, 16-2 Onogawa Tsukuba, Ibaraki, 305-8506, Japan
| | - Tim Tear
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Claudia Vega
- Centro de Innovaccion Cientifica Amazonica (CINCIA), Jiron Ucayali 750, Puerto Maldonado, Madre de Dios, 17001, Peru
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, N-9296, Tromsø, Norway
| | - Pianpian Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
3
|
Zhao C, Guo Q, Zhang T, Han X, Usman D. Procedures from samples to sulfur isotopic data: A review. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9733. [PMID: 38591181 DOI: 10.1002/rcm.9733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 04/10/2024]
Abstract
RATIONALE Sulfur isotopes have been widely used to solve some key scientific questions, especially in the last two decades with advanced instruments and analytical schemes. Different sulfur speciation and multiple isotopes analyzed in laboratories worldwide and in situ microanalysis have also been reported in many articles. However, methods of sampling to measurements are multifarious, and occasionally some inaccuracies are present in published papers. Vague methods may mislead newcomers to the field, puzzle readers, or lead to incorrect data-based correlations. METHODS We have reviewed multiple methods on sulfur isotopic analyses from the perspectives of sampling, laboratory work, and instrumental analysis in order to help reduce operational inhomogeneity and ensure the fidelity of sulfur isotopic data. We do not deem our proposed solutions as the ultimate standard methods but as a lead-in to the overall introduction and summary of the current methods used. RESULTS It has been shown that external contamination and transformation of different sulfur species should be avoided during the sampling, pretreatment, storage, and chemical treatment processes. Conversion rates and sulfur isotopic fractionations during sulfur extraction, purification, and conversion processes must be verified by researchers using standard or known samples. The unification of absence of isotopic fractionation is needed during all steps, and long-term monitoring of standard samples is recommended. CONCLUSION This review compiles more details on different methods in sampling, laboratory operation, and measurement of sulfur isotopes, which is beneficial for researchers' better practice in laboratories. Microanalyses and molecular studies are the frontier techniques that compare the bulk sample with the elemental analysis/continuous flow-gas source stable isotope ratio mass spectrometry method, but the latter is widely used. The development of sulfur isotopic measurements will lead to the innovation in scientific issues with sulfur proxies.
Collapse
Affiliation(s)
- Changqiu Zhao
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Tonggang Zhang
- College of Geosciences, China University of Petroleum, Beijing, China
| | - Xiaokun Han
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Dawuda Usman
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Rohonczy J, Chételat J, Robinson SA, Arragutainaq L, Heath JP, McClelland C, Mickpegak R, Forbes MR. Contrasting trophic transfer patterns of cadmium and mercury in the Arctic marine food web of east Hudson Bay, Canada. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20586-20600. [PMID: 38374506 PMCID: PMC10927903 DOI: 10.1007/s11356-024-32268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
We investigated trophic transfer of cadmium (Cd) through an Arctic marine food web in Hudson Bay and compared it with mercury (Hg), a metal known to strongly biomagnify. We evaluated blue mussel, sea urchin, common eider, sculpin, Arctic cod, and ringed seal for the influence of dietary and biological variables on variation in Cd and Hg concentrations. Age and size influenced metal concentrations among individuals within a vertebrate species. Consumer carbon and sulfur isotope values were correlated with their Cd and Hg concentrations, indicating habitat-specific feeding influenced metal bioaccumulation. Trophic transfer patterns for Cd depended on the vertebrate tissue, with food web biodilution observed for the muscle but not the liver. Liver Cd concentrations were higher in ringed seal and some common eider relative to prey. In contrast, we observed mercury biomagnification for both tissues. Tissue- and species-specific physiology can explain discrepancies of Cd trophic transfer in this Arctic marine food web.
Collapse
Affiliation(s)
- Jillian Rohonczy
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, K1A 0H3, Canada.
| | - Stacey A Robinson
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, K1A 0H3, Canada
| | | | - Joel P Heath
- Arctic Eider Society, Sanikiluaq, NU, X0A 0W0, Canada
| | - Christine McClelland
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, K1A 0H3, Canada
| | | | - Mark R Forbes
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
5
|
Boutet V, Dominique M, Eccles KM, Branigan M, Dyck M, van Coeverden de Groot P, Lougheed SC, Rutter A, Langlois VS. An exploratory spatial contaminant assessment for polar bear (Ursus maritimus) liver, fat, and muscle from northern Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120663. [PMID: 36395907 PMCID: PMC10163957 DOI: 10.1016/j.envpol.2022.120663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 05/08/2023]
Abstract
Since the industrial era, chemicals have been ubiquitous in worldwide ecosystems. Despite the discontinued release of highly toxic persistent organic pollutants (POPs) in the environment, the levels of some POPs are still being measured in the Canadian Arctic. These contaminants are of great concern due to their persistence, toxicity, and levels of bioaccumulation in food chains. Animals occupying top trophic positions in the Canadian Arctic, particularly polar bears, are exposed to these contaminants mainly through their diet. Our study investigated the levels of 30 metals (including total and methyl mercury) alkaline and alkaline earth metals, 15 polycyclic aromatic compounds and their alkyl congeners (PACs), 6 chlordanes (CHLs), and 20 polychlorinated biphenyls (PCBs), in 49 polar bears from the Canadian Arctic. Contaminant burden was measured in liver, muscle, and fat in bears of different sex, age, and locations. A principal component analysis did not distinguish differences between age and sex profiles for most contaminants. However, the concentrations measured and their distribution in the tissues confirm findings observed in past studies. This study highlights the importance of continual monitoring of polar bear health (e.g., newly detected PACs were measured within this study) and evaluating those impacts for the next generations of polar bears.
Collapse
Affiliation(s)
- V Boutet
- Institut national de la recherche scientifique (INRS), Québec, Canada
| | - M Dominique
- Institut national de la recherche scientifique (INRS), Québec, Canada
| | - K M Eccles
- National Institute of Environmental Health Science, Division of the National Toxicology Program, Durham, USA
| | - M Branigan
- Government of the Northwest Territories, Canada
| | - M Dyck
- Government of Nunavut, Department of Environment, Igloolik, NU, Canada
| | | | - S C Lougheed
- Biology Department, Queen's University, Kingston, ON, Canada
| | - A Rutter
- School of Environmental Studies, Queen's University, Kingston, ON, Canada
| | - V S Langlois
- Institut national de la recherche scientifique (INRS), Québec, Canada.
| |
Collapse
|
6
|
Chastel O, Fort J, Ackerman JT, Albert C, Angelier F, Basu N, Blévin P, Brault-Favrou M, Bustnes JO, Bustamante P, Danielsen J, Descamps S, Dietz R, Erikstad KE, Eulaers I, Ezhov A, Fleishman AB, Gabrielsen GW, Gavrilo M, Gilchrist G, Gilg O, Gíslason S, Golubova E, Goutte A, Grémillet D, Hallgrimsson GT, Hansen ES, Hanssen SA, Hatch S, Huffeldt NP, Jakubas D, Jónsson JE, Kitaysky AS, Kolbeinsson Y, Krasnov Y, Letcher RJ, Linnebjerg JF, Mallory M, Merkel FR, Moe B, Montevecchi WJ, Mosbech A, Olsen B, Orben RA, Provencher JF, Ragnarsdottir SB, Reiertsen TK, Rojek N, Romano M, Søndergaard J, Strøm H, Takahashi A, Tartu S, Thórarinsson TL, Thiebot JB, Will AP, Wilson S, Wojczulanis-Jakubas K, Yannic G. Mercury contamination and potential health risks to Arctic seabirds and shorebirds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156944. [PMID: 35752241 DOI: 10.1016/j.scitotenv.2022.156944] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of mercury (Hg) on Arctic biota in 2011 and 2018, there has been a considerable number of new Arctic bird studies. This review article provides contemporary Hg exposure and potential health risk for 36 Arctic seabird and shorebird species, representing a larger portion of the Arctic than during previous AMAP assessments now also including parts of the Russian Arctic. To assess risk to birds, we used Hg toxicity benchmarks established for blood and converted to egg, liver, and feather tissues. Several Arctic seabird populations showed Hg concentrations that exceeded toxicity benchmarks, with 50 % of individual birds exceeding the "no adverse health effect" level. In particular, 5 % of all studied birds were considered to be at moderate or higher risk to Hg toxicity. However, most seabirds (95 %) were generally at lower risk to Hg toxicity. The highest Hg contamination was observed in seabirds breeding in the western Atlantic and Pacific Oceans. Most Arctic shorebirds exhibited low Hg concentrations, with approximately 45 % of individuals categorized at no risk, 2.5 % at high risk category, and no individual at severe risk. Although the majority Arctic-breeding seabirds and shorebirds appeared at lower risk to Hg toxicity, recent studies have reported deleterious effects of Hg on some pituitary hormones, genotoxicity, and reproductive performance. Adult survival appeared unaffected by Hg exposure, although long-term banding studies incorporating Hg are still limited. Although Hg contamination across the Arctic is considered low for most bird species, Hg in combination with other stressors, including other contaminants, diseases, parasites, and climate change, may still cause adverse effects. Future investigations on the global impact of Hg on Arctic birds should be conducted within a multi-stressor framework. This information helps to address Article 22 (Effectiveness Evaluation) of the Minamata Convention on Mercury as a global pollutant.
Collapse
Affiliation(s)
- Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- La Rochelle Université, 79360 Villiers-en-Bois, France.
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 17000 La Rochelle, France.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA 95620, United States.
| | - Céline Albert
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 17000 La Rochelle, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Niladri Basu
- McGill University, Faculty of Agriculture and Environmental Sciences, Montreal, QC H9X 3V9, Canada
| | | | - Maud Brault-Favrou
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 17000 La Rochelle, France
| | - Jan Ove Bustnes
- Norwegian Institute for Nature Research, FRAM Centre, 9296 Tromsø, Norway
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 75005 Paris, France
| | | | | | - Rune Dietz
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | | | - Igor Eulaers
- Norwegian Polar Institute, Fram center, 9296 Tromsø, Norway; Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Alexey Ezhov
- Murmansk Marine Biological Institute Russian Academy of Science, 183010 Vladimirskaya str. 17 Murmansk, Russia
| | - Abram B Fleishman
- Conservation Metrics, Inc., Santa Cruz, CA, United States of America
| | | | - Maria Gavrilo
- Arctic and Antarctic Research Institute, 199397 St. Petersburg, Russia
| | - Grant Gilchrist
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Raven Road, Carleton University, Ottawa, Ont., Canada K1A 0H3
| | - Olivier Gilg
- Laboratoire Chrono-environnement, UMR 6249, Université de Bourgogne Franche Comté, 25000 Besançon, France; Groupe de Recherche en Ecologie Arctique, 16 rue de Vernot, F-21440 Francheville, France
| | - Sindri Gíslason
- Southwest Iceland Nature Research Centre, Gardvegur 1, 245 Sudurnesjabaer, Iceland
| | - Elena Golubova
- Laboratory of Ornithology, Institute of Biological Problems of the North, RU-685000 Magadan, Portovaya Str., 18, Russia
| | - Aurélie Goutte
- EPHE, PSL Research University, UMR 7619 METIS, F-75005 Paris, France
| | - David Grémillet
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175 Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France,; Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Gunnar T Hallgrimsson
- Department of Life and Environmental Sciences, University of Iceland, 102 Reykjavik, Iceland
| | - Erpur S Hansen
- South Iceland Nature Research Centre, Ægisgata 2, 900 Vestmannaeyjar, Iceland
| | | | - Scott Hatch
- Institute for Seabird Research and Conservation, Anchorage, 99516-3185, AK, USA
| | - Nicholas P Huffeldt
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark; Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
| | - Dariusz Jakubas
- Department of Vertebrate Ecology and Zoology, University of Gdansk, 80-308 Gdansk, Poland
| | - Jón Einar Jónsson
- University of Iceland's Research Center at Snæfellsnes, 340 Stykkishólmur, Iceland
| | - Alexander S Kitaysky
- University of Alaska Fairbanks, Institute of Arctic Biology, Department of Biology & Wildlife, Fairbanks, AK 99775-7000, United States of America
| | | | - Yuri Krasnov
- Murmansk Marine Biological Institute Russian Academy of Science, 183010 Vladimirskaya str. 17 Murmansk, Russia
| | - Robert J Letcher
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Raven Road, Carleton University, Ottawa, Ont., Canada K1A 0H3
| | | | - Mark Mallory
- Biology, Acadia University Wolfville, Nova Scotia B4P 2R6, Canada
| | - Flemming Ravn Merkel
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark; Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
| | - Børge Moe
- Norwegian Institute for Nature Research, 7485 Trondheim, Norway
| | - William J Montevecchi
- Memorial Univerisity of Newfoundland and Labrador, St. John's, Newoundland A1C 3X9, Canada
| | - Anders Mosbech
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Bergur Olsen
- Faroe Marine Reseaqrch Institute, Nóatún 1, FO-110 Tórshavn, Faroe Islands
| | - Rachael A Orben
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Hatfield Marine Science Center, Newport, OR, USA
| | - Jennifer F Provencher
- Science & Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario, Canada K1A 0H3
| | | | - Tone K Reiertsen
- Norwegian Institute for Nature Research, FRAM Centre, 9296 Tromsø, Norway
| | - Nora Rojek
- U.S. Fish and Wildlife Service, Alaska Maritime Wildlife Refuge, Homer, AK, USA
| | - Marc Romano
- U.S. Fish and Wildlife Service, Alaska Maritime Wildlife Refuge, Homer, AK, USA
| | - Jens Søndergaard
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Hallvard Strøm
- Norwegian Polar Institute, Fram center, 9296 Tromsø, Norway
| | - Akinori Takahashi
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Sabrina Tartu
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- La Rochelle Université, 79360 Villiers-en-Bois, France
| | | | - Jean-Baptiste Thiebot
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Alexis P Will
- University of Alaska Fairbanks, Institute of Arctic Biology, Department of Biology & Wildlife, Fairbanks, AK 99775-7000, United States of America; National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, The Fram Centre, Box 6606, Stakkevollan, 9296, Tromsø, Norway
| | | | - Glenn Yannic
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| |
Collapse
|
7
|
Dietz R, Wilson S, Loseto LL, Dommergue A, Xie Z, Sonne C, Chételat J. Special issue on the AMAP 2021 assessment of mercury in the Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157020. [PMID: 35764153 DOI: 10.1016/j.scitotenv.2022.157020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This Editorial presents an overview of the Special Issue on advances in Arctic mercury (Hg) science synthesized from the 2021 assessment of the Arctic Monitoring and Assessment Programme (AMAP). Mercury continues to travel to Arctic environments and threaten wildlife and human health in this circumpolar region. Over the last decade, progress has been achieved in addressing policy-relevant uncertainties in environmental Hg contamination. This includes temporal trends of Hg, its transport to and within the Arctic, methylmercury cycling, climate change influences, biological effects of Hg on fish and wildlife, human exposure to Hg, and forecasting of Arctic responses to different future scenarios of anthropogenic Hg emissions. In addition, important contributions of Indigenous Peoples to Arctic research and monitoring of Hg are highlighted, including through projects of knowledge co-production. Finally, policy-relevant recommendations are summarized for future study of Arctic mercury. This series of scientific articles presents comprehensive information relevant to supporting effectiveness evaluation of the United Nations Minamata Convention on Mercury.
Collapse
Affiliation(s)
- Rune Dietz
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark.
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, N-9296 Tromsø, Norway
| | - Lisa L Loseto
- Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada; Centre for Earth Observation Science, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| | - Aurélien Dommergue
- Institut des Géosciences de l'Environnement, Univ Grenoble Alpes, CNRS, IRD, Grenoble INP, France
| | - Zhouqing Xie
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Christian Sonne
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada
| |
Collapse
|
8
|
Morris AD, Wilson SJ, Fryer RJ, Thomas PJ, Hudelson K, Andreasen B, Blévin P, Bustamante P, Chastel O, Christensen G, Dietz R, Evans M, Evenset A, Ferguson SH, Fort J, Gamberg M, Grémillet D, Houde M, Letcher RJ, Loseto L, Muir D, Pinzone M, Poste A, Routti H, Sonne C, Stern G, Rigét FF. Temporal trends of mercury in Arctic biota: 10 more years of progress in Arctic monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:155803. [PMID: 35561904 DOI: 10.1016/j.scitotenv.2022.155803] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Temporal trend analysis of (total) mercury (THg) concentrations in Arctic biota were assessed as part of the 2021 Arctic Monitoring and Assessment Programme (AMAP) Mercury Assessment. A mixed model including an evaluation of non-linear trends was applied to 110 time series of THg concentrations from Arctic and Subarctic biota. Temporal trends were calculated for full time series (6-46 years) and evaluated with a particular focus on recent trends over the last 20 years. Three policy-relevant questions were addressed: (1) What time series for THg concentrations in Arctic biota are currently available? (2) Are THg concentrations changing over time in biota from the Arctic? (3) Are there spatial patterns in THg trends in biota from the Arctic? Few geographical patterns of recent trends in THg concentrations were observed; however, those in marine mammals tended to be increasing at more easterly longitudes, and those of seabirds tended to be increasing in the Northeast Atlantic; these should be interpreted with caution as geographic coverage remains variable. Trends of THg in freshwater fish were equally increasing and decreasing or non-significant while those in marine fish and mussels were non-significant or increasing. The statistical power to detect trends was greatly improved compared to the 2011 AMAP Mercury Assessment; 70% of the time series could detect a 5% annual change at the 5% significance level with power ≥ 80%, while in 2011 only 19% met these criteria. Extending existing time series, and availability of new, powerful time series contributed to these improvements, highlighting the need for annual monitoring, particularly given the spatial and temporal information needed to support initiatives such as the Minamata Convention on Mercury. Collecting the same species/tissues across different locations is recommended. Extended time series from Alaska and new data from Russia are also needed to better establish circumarctic patterns of temporal trends.
Collapse
Affiliation(s)
- Adam D Morris
- Northern Contaminants Program, Crown-Indigenous Relations and Northern Affairs Canada, 15 Eddy Street, 14th floor, Gatineau, QC K1A 0H4, Canada.
| | - Simon J Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, The Fram Centre, Box 6606 Stakkevollan, 9296 Tromsø, Norway
| | - Rob J Fryer
- Marine Scotland, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | - Philippe J Thomas
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | | | | | | | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360 Villiers en bois, France
| | | | - Rune Dietz
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Marlene Evans
- Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada
| | | | - Steven H Ferguson
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | | | - David Grémillet
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360 Villiers en bois, France; Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Montreal, QC H2Y 2E7, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Lisa Loseto
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| | - Derek Muir
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| | | | - Amanda Poste
- Norwegian Institute for Water Research (NIVA), NO-9296 Tromsø, Norway
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø NO-9296, Norway
| | - Christian Sonne
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Gary Stern
- Centre for Earth Observation Sciences (CEOS), University of Manitoba, 125 Dysart Road, Winnipeg, MB, Canada
| | - Frank F Rigét
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
9
|
Treu G, Sinding MHS, Czirják GÁ, Dietz R, Gräff T, Krone O, Marquard-Petersen U, Mikkelsen JB, Schulz R, Sonne C, Søndergaard J, Sun J, Zubrod J, Eulaers I. An assessment of mercury and its dietary drivers in fur of Arctic wolves from Greenland and High Arctic Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156171. [PMID: 35613645 DOI: 10.1016/j.scitotenv.2022.156171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Mercury has become a ubiquitous hazardous element even ending up in pristine areas such as the Arctic, where it biomagnifies and leaves especially top predators vulnerable to potential health effects. Here we investigate total mercury (THg) concentrations and dietary proxies for trophic position and habitat foraging (δ15N and δ13C, respectively) in fur of 30 Arctic wolves collected during 1869-1998 in the Canadian High Arctic and Greenland. Fur THg concentrations (mean ± SD) of 1.46 ± 1.39 μg g -1 dry weight are within the range of earlier reported values for other Arctic terrestrial species. Based on putative thresholds for Hg-mediated toxic health effects, the studied Arctic wolves have most likely not been at compromised health. Dietary proxies show high dietary plasticity among Arctic wolves deriving nutrition from both marine and terrestrial food sources at various trophic positions. Variability in THg concentrations seem to be related to the wolves' trophic position rather than to different carbon sources or regional differences (East Greenland, the Foxe Basin and Baffin Bay area, respectively). Although the present study remains limited due to the scarce, yet unique historic study material and small sample size, it provides novel information on temporal and spatial variation in Hg pollution of remote Arctic species.
Collapse
Affiliation(s)
- Gabriele Treu
- German Environment Agency, Department Chemicals, DE-06844 Dessau-Roßlau, Germany; Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, DE-10315 Berlin, Germany.
| | - Mikkel-Holger S Sinding
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; Greenland Institute of Natural Resources, Kivioq 2, Nuuk, Greenland
| | - Gábor Á Czirják
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, DE-10315 Berlin, Germany
| | - Rune Dietz
- Department of Ecoscience, Arctic Research Centre, Aarhus University, DK-4000 Roskilde, Denmark
| | - Thomas Gräff
- German Environment Agency, Department Systems on Chemical Safety, DE-6844 Dessau-Roßlau, Germany
| | - Oliver Krone
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, DE-10315 Berlin, Germany
| | | | | | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, DE-76829 Landau, Germany
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, DK-4000 Roskilde, Denmark
| | - Jens Søndergaard
- Department of Ecoscience, Arctic Research Centre, Aarhus University, DK-4000 Roskilde, Denmark
| | - Jiachen Sun
- College of Marine Life Sciences, Ocean University of China, CN-266003 Qingdao, China
| | - Jochen Zubrod
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, DE-76829 Landau, Germany; Zubrod Environmental Data Science, Friesenstrasse 20, 76829 Landau, Germany
| | - Igor Eulaers
- Department of Ecoscience, Arctic Research Centre, Aarhus University, DK-4000 Roskilde, Denmark; Fram Centre, Norwegian Polar Institute, NO-9296 Tromsø, Norway.
| |
Collapse
|
10
|
McKinney MA, Chételat J, Burke SM, Elliott KH, Fernie KJ, Houde M, Kahilainen KK, Letcher RJ, Morris AD, Muir DCG, Routti H, Yurkowski DJ. Climate change and mercury in the Arctic: Biotic interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155221. [PMID: 35427623 DOI: 10.1016/j.scitotenv.2022.155221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Global climate change has led to profound alterations of the Arctic environment and ecosystems, with potential secondary effects on mercury (Hg) within Arctic biota. This review presents the current scientific evidence for impacts of direct physical climate change and indirect ecosystem change on Hg exposure and accumulation in Arctic terrestrial, freshwater, and marine organisms. As the marine environment is elevated in Hg compared to the terrestrial environment, terrestrial herbivores that now exploit coastal/marine foods when terrestrial plants are iced over may be exposed to higher Hg concentrations. Conversely, certain populations of predators, including Arctic foxes and polar bears, have shown lower Hg concentrations related to reduced sea ice-based foraging and increased land-based foraging. How climate change influences Hg in Arctic freshwater fishes is not clear, but for lacustrine populations it may depend on lake-specific conditions, including interrelated alterations in lake ice duration, turbidity, food web length and energy sources (benthic to pelagic), and growth dilution. In several marine mammal and seabird species, tissue Hg concentrations have shown correlations with climate and weather variables, including climate oscillation indices and sea ice trends; these findings suggest that wind, precipitation, and cryosphere changes that alter Hg transport and deposition are impacting Hg concentrations in Arctic marine organisms. Ecological changes, including northward range shifts of sub-Arctic species and altered body condition, have also been shown to affect Hg levels in some populations of Arctic marine species. Given the limited number of populations and species studied to date, especially within Arctic terrestrial and freshwater systems, further research is needed on climate-driven processes influencing Hg concentrations in Arctic ecosystems and their net effects. Long-term pan-Arctic monitoring programs should consider ancillary datasets on climate, weather, organism ecology and physiology to improve interpretation of spatial variation and time trends of Hg in Arctic biota.
Collapse
Affiliation(s)
- Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3 V9, Canada.
| | - John Chételat
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Samantha M Burke
- Minnow Aquatic Environmental Services, Guelph, ON N1H 1E9, Canada
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3 V9, Canada
| | - Kim J Fernie
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC H2Y 5E7, Canada
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, FI-16900 Lammi, Finland
| | - Robert J Letcher
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Adam D Morris
- Northern Contaminants Program, Crown-Indigenous Relations and Northern Affairs Canada, Gatineau, QC J8X 2V6, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - David J Yurkowski
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| |
Collapse
|
11
|
Dietz R, Letcher RJ, Aars J, Andersen M, Boltunov A, Born EW, Ciesielski TM, Das K, Dastnai S, Derocher AE, Desforges JP, Eulaers I, Ferguson S, Hallanger IG, Heide-Jørgensen MP, Heimbürger-Boavida LE, Hoekstra PF, Jenssen BM, Kohler SG, Larsen MM, Lindstrøm U, Lippold A, Morris A, Nabe-Nielsen J, Nielsen NH, Peacock E, Pinzone M, Rigét FF, Rosing-Asvid A, Routti H, Siebert U, Stenson G, Stern G, Strand J, Søndergaard J, Treu G, Víkingsson GA, Wang F, Welker JM, Wiig Ø, Wilson SJ, Sonne C. A risk assessment review of mercury exposure in Arctic marine and terrestrial mammals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154445. [PMID: 35304145 DOI: 10.1016/j.scitotenv.2022.154445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
There has been a considerable number of reports on Hg concentrations in Arctic mammals since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of the exposure to mercury (Hg) in Arctic biota in 2010 and 2018. Here, we provide an update on the state of the knowledge of health risk associated with Hg concentrations in Arctic marine and terrestrial mammal species. Using available population-specific data post-2000, our ultimate goal is to provide an updated evidence-based estimate of the risk for adverse health effects from Hg exposure in Arctic mammal species at the individual and population level. Tissue residues of Hg in 13 species across the Arctic were classified into five risk categories (from No risk to Severe risk) based on critical tissue concentrations derived from experimental studies on harp seals and mink. Exposure to Hg lead to low or no risk for health effects in most populations of marine and terrestrial mammals, however, subpopulations of polar bears, pilot whales, narwhals, beluga and hooded seals are highly exposed in geographic hotspots raising concern for Hg-induced toxicological effects. About 6% of a total of 3500 individuals, across different marine mammal species, age groups and regions, are at high or severe risk of health effects from Hg exposure. The corresponding figure for the 12 terrestrial species, regions and age groups was as low as 0.3% of a total of 731 individuals analyzed for their Hg loads. Temporal analyses indicated that the proportion of polar bears at low or moderate risk has increased in East/West Greenland and Western Hudson Bay, respectively. However, there remain numerous knowledge gaps to improve risk assessments of Hg exposure in Arctic mammalian species, including the establishment of improved concentration thresholds and upscaling to the assessment of population-level effects.
Collapse
Affiliation(s)
- Rune Dietz
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark.
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada.
| | - Jon Aars
- Norwegian Polar Institute, Tromsø NO-9296, Norway
| | | | - Andrei Boltunov
- Marine Mammal Research and Expedition Centre, 36 Nahimovskiy pr., Moscow 117997, Russia
| | - Erik W Born
- Greenland Institute of Natural Resources, P.O. Box 570, DK-3900 Nuuk, Greenland
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Krishna Das
- Freshwater and Oceanic sciences Unit of reSearch (FOCUS), University of Liege, 4000 Liege, Belgium
| | - Sam Dastnai
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Andrew E Derocher
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Jean-Pierre Desforges
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark; Department of Environmental Studies and Science, University of Winnipeg, Winnipeg, MB, Canada
| | - Igor Eulaers
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark; Norwegian Polar Institute, Tromsø NO-9296, Norway
| | - Steve Ferguson
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | - Lars-Eric Heimbürger-Boavida
- Géosciences Environnement Toulouse, CNRS/IRD/Université Paul Sabatier Toulouse III, Toulouse, France; Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| | | | - Bjørn M Jenssen
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark; Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Stephen Gustav Kohler
- Department of Chemistry, Norwegian University of Science and Technology, Realfagbygget, E2-128, Gløshaugen, NO-7491 Trondheim, Norway
| | - Martin M Larsen
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Ulf Lindstrøm
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway; Department of Arctic Technology, Institute of Marine Research, FRAM Centre, NO-9007 Tromsø, Norway
| | - Anna Lippold
- Norwegian Polar Institute, Tromsø NO-9296, Norway
| | - Adam Morris
- Northern Contaminants Program, Crown-Indigenous Relations and Northern Affairs Canada, 15 Eddy Street, 14th floor, Gatineau, Quebec K1A 0H4, Canada
| | - Jacob Nabe-Nielsen
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Nynne H Nielsen
- Greenland Institute of Natural Resources, P.O. Box 570, DK-3900 Nuuk, Greenland
| | - Elizabeth Peacock
- USGS Alaska Science Center, 4210 University Dr., Anchorage, AK 99508-4626, USA
| | - Marianna Pinzone
- Department of Environmental Studies and Science, University of Winnipeg, Winnipeg, MB, Canada
| | - Frank F Rigét
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Aqqalu Rosing-Asvid
- Greenland Institute of Natural Resources, P.O. Box 570, DK-3900 Nuuk, Greenland
| | - Heli Routti
- Norwegian Polar Institute, Tromsø NO-9296, Norway
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, DE-25761 Büsum, Germany
| | - Garry Stenson
- Northwest Atlantic Fisheries Centre, Department DFO-MPO, 80 EastWhite Hills vie, St John's A1C 5X1, Newfoundland and Labrador, Canada
| | - Gary Stern
- Centre for Earth Observation Sciences (CEOS), Clayton H. Riddell Faculty of Environment, Earth and Resources, University of Manitoba, 586Wallace Bld, 125 Dysart Rd., Winnipeg, Manitoba R3T, 2N2, Canada
| | - Jakob Strand
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Jens Søndergaard
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Gabriele Treu
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Gisli A Víkingsson
- Marine and Freshwater Research Institute, Skúlagata 4, 101 Reykjavík, Iceland
| | - Feiyue Wang
- Centre for Earth Observation Sciences (CEOS), Clayton H. Riddell Faculty of Environment, Earth and Resources, University of Manitoba, 586Wallace Bld, 125 Dysart Rd., Winnipeg, Manitoba R3T, 2N2, Canada
| | - Jeffrey M Welker
- University of Alaska Anchorage, Anchorage 99508, United States; University of Oulu, Oulu 90014, Finland; University of the Arctic, Rovaniemi 96460, Finland
| | - Øystein Wiig
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, N-0318 Oslo, Norway
| | - Simon J Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, Box 6606 Stakkevollan, N-9296 Tromsø, Norway
| | - Christian Sonne
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| |
Collapse
|
12
|
Lippold A, Boltunov A, Aars J, Andersen M, Blanchet MA, Dietz R, Eulaers I, Morshina TN, Sevastyanov VS, Welker JM, Routti H. Spatial variation in mercury concentrations in polar bear (Ursus maritimus) hair from the Norwegian and Russian Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153572. [PMID: 35121036 DOI: 10.1016/j.scitotenv.2022.153572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
We examined spatial variation in total mercury (THg) concentrations in 100 hair samples collected between 2008 and 2016 from 87 polar bears (Ursus maritimus) from the Norwegian (Svalbard Archipelago, western Barents Sea) and Russian Arctic (Kara Sea, Laptev Sea, and Chukchi Sea). We used latitude and longitude of home range centroid for the Norwegian bears and capture position for the Russian bears to account for the locality. We additionally examined hair stable isotope values of carbon (δ13C) and nitrogen (δ15N) to investigate feeding habits and their possible effect on THg concentrations. Median THg levels in polar bears from the Norwegian Arctic (1.99 μg g-1 dry weight) and the three Russian Arctic regions (1.33-1.75 μg g-1 dry weight) constituted about 25-50% of levels typically reported for the Greenlandic or North American populations. Total Hg concentrations in the Norwegian bears increased with intake of marine and higher trophic prey, while δ13C and δ15N did not explain variation in THg concentrations in the Russian bears. Total Hg levels were higher in northwest compared to southeast Svalbard. δ13C and δ15N values did not show any spatial pattern in the Norwegian Arctic. Total Hg concentrations adjusted for feeding ecology showed similar spatial trends as the measured concentrations. In contrast, within the Russian Arctic, THg levels were rather uniformly distributed, whereas δ13C values increased towards the east and south. The results indicate that Hg exposure in Norwegian and Russian polar bears is at the lower end of the pan-Arctic spectrum, and its spatial variation in the Norwegian and Russian Arctic is not driven by the feeding ecology of polar bears.
Collapse
Affiliation(s)
- Anna Lippold
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
| | - Andrei Boltunov
- Marine Mammal Research and Expedition Centre, 36 Nahimovskiy pr., Moscow 117997, Russia
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
| | | | - Marie-Anne Blanchet
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway; UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Rune Dietz
- Aarhus University, Institute of Ecoscience, Arctic Research Centre, Roskilde 4000, Denmark
| | - Igor Eulaers
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway; Aarhus University, Institute of Ecoscience, Arctic Research Centre, Roskilde 4000, Denmark
| | - Tamara N Morshina
- Research and Production Association "Typhoon", 249038 Obninsk, Kaluga Region, Russia
| | | | - Jeffrey M Welker
- University of Alaska Anchorage, Anchorage 99508, United States; University of Oulu, Oulu 90014, Finland; University of the Arctic, Rovaniemi 96460, Finland
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway.
| |
Collapse
|
13
|
Tartu S, Blévin P, Bustamante P, Angelier F, Bech C, Bustnes JO, Chierici M, Fransson A, Gabrielsen GW, Goutte A, Moe B, Sauser C, Sire J, Barbraud C, Chastel O. A U-Turn for Mercury Concentrations over 20 Years: How Do Environmental Conditions Affect Exposure in Arctic Seabirds? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2443-2454. [PMID: 35112833 DOI: 10.1021/acs.est.1c07633] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is highly toxic in its methylated form (MeHg), and global change is likely to modify its bioavailability in the environment. However, it is unclear how top predators will be impacted. We studied blood Hg concentrations of chick-rearing black-legged kittiwakes Rissa tridactyla (2000-2019) in Svalbard (Norway). From 2000 to 2019, Hg concentrations followed a U-shaped trend. The trophic level, inferred from nitrogen stable isotopes, and chlorophyll a (Chl a) concentrations better predicted Hg concentrations, with positive and U-shaped associations, respectively. As strong indicators of primary productivity, Chl a concentrations can influence production of upper trophic levels and, thus, fish community assemblage. In the early 2000s, the high Hg concentrations were likely related to a higher proportion of Arctic prey in kittiwake's diet. The gradual input of Atlantic prey in kittiwake diet could have resulted in a decrease in Hg concentrations until 2013. Then, a new shift in the prey community, added to the shrinking sea ice-associated release of MeHg in the ocean, could explain the increasing trend of Hg observed since 2014. The present monitoring provides critical insights about the exposure of a toxic contaminant in Arctic wildlife, and the reported increase since 2014 raises concern for Arctic seabirds.
Collapse
Affiliation(s)
- Sabrina Tartu
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Pierre Blévin
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
- Fram Centre, Akvaplan-niva AS, Tromsø 9296, Norway
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS, La Rochelle Université, La Rochelle 17000, France
- Institut Universitaire de France (IUF), Paris 75005, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Claus Bech
- Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Jan Ove Bustnes
- Fram Centre, Norwegian Institute for Nature Research (NINA), Tromsø 9296, Norway
| | - Melissa Chierici
- Fram Centre, Institute of Marine Research (IMR), Tromsø 9296, Norway
| | | | | | - Aurélie Goutte
- EPHE, PSL Research University, UMR 7619 METIS, Paris F-75005, France
| | - Børge Moe
- Norwegian Institute for Nature Research (NINA), Trondheim 7034, Norway
| | - Christophe Sauser
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Julien Sire
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| |
Collapse
|
14
|
Desforges JP, Outridge P, Hobson KA, Heide-Jørgensen MP, Dietz R. Anthropogenic and Climatic Drivers of Long-Term Changes of Mercury and Feeding Ecology in Arctic Beluga ( Delphinapterus leucas) Populations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:271-281. [PMID: 34914363 DOI: 10.1021/acs.est.1c05389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We assessed long-term changes in the feeding ecology and mercury (Hg) accumulation in Eastern High Arctic-Baffin Bay beluga (Delphinapterus leucas) using total Hg and stable isotope (δ13C, δ15N) assays in teeth samples from historical (1854-1905) and modern (1985-2000) populations. Mean δ13C values in teeth declined significantly over time, from -13.01 ± 0.55‰ historically to -14.41 ± 0.28‰ in 2000, while no consistent pattern was evident for δ15N due to high individual variability within each period. The temporal shift in isotopic niche is consistent with beluga feeding ecology changing in recent decades to a more pelagic and less isotopically diverse diet or an ecosystem wide change in isotope profiles. Mercury concentrations in modern beluga teeth were 3-5 times higher on average than those in historical beluga. These results are similar to the long-term trends of Hg and feeding ecology reported in other beluga populations and in other Arctic marine predators. Similar feeding ecology shifts across regions and species indicate a consistent increased pelagic diet response to climate change as the Arctic Ocean progressively warmed and lost sea ice. Previously, significant temporal Hg increase in beluga and other Arctic animals was attributed solely to direct inputs of anthropogenic Hg from long-range sources. Recent advances in understanding the Arctic marine Hg cycle suggest an additional, complementary possibility─increased inputs of terrestrial Hg of mixed anthropogenic-natural origin, mobilized from permafrost and other Arctic soils by climate warming. At present, it is not possible to assign relative importance to the two processes in explaining the rise of Hg concentrations in modern Arctic marine predators.
Collapse
Affiliation(s)
- Jean-Pierre Desforges
- Department of Environmental Studies and Sciences, University of Winnipeg, Winnipeg, Manitoba R3B 2E9, Canada
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Peter Outridge
- Geological Survey of Canada, Natural Resources Canada, Ottawa, Ontario K1A 0E8, Canada
- Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba R3T 2N6, Canada
| | - Keith A Hobson
- Environment and Climate Change Canada, Saskatoon, Saskatchewan S7N 0X4, Canada
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | | | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, DK-4000 Roskilde, Denmark
| |
Collapse
|
15
|
Di Beneditto APM, Kehrig HDA, Pestana IA. From Past Use to Present Effects: Total Mercury in Crustaceans and Fish in the Inner Estuary of Paraíba do Sul River, Southeast Brazil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:124-130. [PMID: 33704548 DOI: 10.1007/s00128-021-03167-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Total mercury (Hg) concentration and stable isotope ratios (δ13C and δ15N) were used as chemical tracers in two crustaceans and four fish species that are targets of subsistence fishery in the inner estuary of the Paraíba do Sul River. This fluvial environment in southeast Brazil has a large historical utilization of Hg. δ15N was a better predictor of Hg concentration in the muscle (edible part) than δ13C; i.e., the Hg concentration was more closely related to the trophic position of species than species' trophic habitat. Consumers at higher trophic levels had higher Hg concentrations. The Hg concentration was below the maximum permissible limits established by the Brazilian Government in fishery products, and there are no human risks related to its consumption.
Collapse
Affiliation(s)
- Ana Paula Madeira Di Beneditto
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, CBB, Av. Alberto Lamego 2000, Parque Califórnia, Campos dos Goytacazes, RJ, 28013- 602, Brazil.
| | - Helena do Amaral Kehrig
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, CBB, Av. Alberto Lamego 2000, Parque Califórnia, Campos dos Goytacazes, RJ, 28013- 602, Brazil
| | - Inácio Abreu Pestana
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, CBB, Av. Alberto Lamego 2000, Parque Califórnia, Campos dos Goytacazes, RJ, 28013- 602, Brazil
| |
Collapse
|
16
|
Dietz R, Desforges JP, Rigét FF, Aubail A, Garde E, Ambus P, Drimmie R, Heide-Jørgensen MP, Sonne C. Analysis of narwhal tusks reveals lifelong feeding ecology and mercury exposure. Curr Biol 2021; 31:2012-2019.e2. [PMID: 33705717 DOI: 10.1016/j.cub.2021.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
The ability of animals to respond to changes in their environment is critical to their persistence. In the Arctic, climate change and mercury exposure are two of the most important environmental threats for top predators.1-3 Rapid warming is causing precipitous sea-ice loss, with consequences on the distribution, composition, and dietary ecology of species4-7 and, thus, exposure to food-borne mercury.8 Current understanding of global change and pollution impacts on Arctic wildlife relies on single-time-point individual data representing a snapshot in time. These data often lack comprehensive temporal resolution and overlook the cumulative lifelong nature of stressors as well as individual variation. To overcome these challenges, we explore the unique capacity of narwhal tusks to characterize chronological lifetime biogeochemical profiles, allowing for investigations of climate-induced dietary changes and contaminant trends. Using temporal patterns of stable isotopes (δ13C and δ15N) and mercury concentrations in annually deposited dentine growth layer groups in 10 tusks from Northwest Greenland (1962-2010), we show surprising plasticity in narwhal feeding ecology likely resulting from climate-induced changes in sea-ice cover, biological communities, and narwhal migration. Dietary changes consequently impacted mercury exposure primarily through trophic magnification effects. Mercury increased log-linearly over the study period, albeit with an unexpected rise in recent years, likely caused by increased emissions and/or greater bioavailability in a warmer, ice-free Arctic. Our findings are consistent with an emerging pattern in the Arctic of reduced sea-ice leading to changes in the migration, habitat use, food web, and contaminant exposure in Arctic top predators.
Collapse
Affiliation(s)
- Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Aarhus 4000, Denmark.
| | - Jean-Pierre Desforges
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Frank F Rigét
- Department of Bioscience, Arctic Research Centre, Aarhus University, Aarhus 4000, Denmark
| | - Aurore Aubail
- Department of Bioscience, Arctic Research Centre, Aarhus University, Aarhus 4000, Denmark; Littoral Environnement et Sociétés, UMR 7266 CNRS/Université de La Rochelle, La Rochelle 17042, France
| | - Eva Garde
- Greenland Institute of Natural Resources, Nuuk 3900, Greenland
| | - Per Ambus
- Department of Geosciences and Natural Resource Management, Center for Permafrost (Cenperm), Copenhagen K 1350, Denmark
| | - Robert Drimmie
- Environmental Isotope Laboratory, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Aarhus 4000, Denmark
| |
Collapse
|
17
|
Elliott KH, Braune BM, Elliott JE. Beyond bulk δ 15N: Combining a suite of stable isotopic measures improves the resolution of the food webs mediating contaminant signals across space, time and communities. ENVIRONMENT INTERNATIONAL 2021; 148:106370. [PMID: 33476789 DOI: 10.1016/j.envint.2020.106370] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/27/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Top predators are used as indicators of contaminant trends across space and time. However, signals are integrated over complex food webs, and variation in diet may confound such signals. Trophic position, assessed by bulk δ15N, is widely used to infer the variation in diet relevant to contamination, yet a single variable cannot completely describe complex food webs. Thus, we examined relationships across three aquatic systems varying from a single species to a small food web using bulk values from four isotopes and 21 amino acid-specific values. Because variation in baseline ('source') δ15N can confound estimates of trophic position , we calculated trophic position from the difference between δ15Ntrophic (δ15N for amino acids that change with trophic position) and δ15Nsource (δ15N for amino acids that do not change with trophic position). Across all three systems, variation in δ15Nsource explained over half of the variation in bulk δ15N, and stable isotope values that reflected the base of the food web (δ13C, δ18O, δ34S) predicted contaminants as well or better than δ15N-which was supported by a meta-analysis of other studies. In ospreys feeding in lakes, variation in δ15Nsource across space created a spurious relationship between ΣDDT and apparent trophic position, and masked a relationship between ΣPCB and trophic position. In a seabird guild, changes in diet over time obscured temporal variation in contaminants over five decades. In Arctic fish and invertebrates, more accurate trophic magnification factors were calculated using δ15Ntrophic-source. Thus, (1) using δ15Ntrophic-source, instead of bulk δ15N, avoided incorrect conclusions and improved accuracy of trophic magnification factors necessary to assess risk to top predators; and (2) diet assessed with multiple spatial isotopes, rather than δ15N alone, was essential to understand patterns in contaminants across space, time and biological communities. Trophic position was most important for lipophilic 'legacy' contaminants (ΣDDT, ΣPCB) and habitat was most important for other contaminants (ΣPBDE, ΣPFAS, mercury). We argue that the use of amino acid-specific analysis of δ15N alongside 'non-trophic' isotopes should be a core feature of any study that examines the influence of trophic position on chemical pollution, as required for a chemical to be added to international conventions such as the Stockholm Convention.
Collapse
Affiliation(s)
- Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Sainte Anne-de-Bellevue H9X 3V9, Canada.
| | - Birgit M Braune
- Science & Technology Branch, Environment and Climate Change Canada, Ottawa K1A 0H3, Canada
| | - John E Elliott
- Science & Technology Branch, Environment and Climate Change Canada, Delta V4K 3N2, Canada
| |
Collapse
|
18
|
Houde M, Taranu ZE, Wang X, Young B, Gagnon P, Ferguson SH, Kwan M, Muir DC. Mercury in Ringed Seals (Pusa hispida) from the Canadian Arctic in Relation to Time and Climate Parameters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2462-2474. [PMID: 33025637 PMCID: PMC7756774 DOI: 10.1002/etc.4865] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 08/19/2020] [Indexed: 05/05/2023]
Abstract
Mercury is found in Arctic marine mammals that are important in the diet of northern Indigenous peoples. The objectives of the present long-term study, spanning a 45-yr period, were to 1) investigate the temporal trends of total mercury (THg; muscle and liver) and selenium (Se; liver) in ringed seals (Pusa hispida) from different regions of the Canadian Arctic; and 2) examine possible relationships with age, diet, and climate parameters such as air temperature, precipitation, climatic indices, and ice-coverage. Ringed seals were collected by hunters in northern communities in the Beaufort Sea, Central Arctic, Eastern Baffin Island, Hudson Bay, and Ungava/Nunatsiavut regions (Canada) between 1972 and 2017. Mercury levels did not change through time in seal liver, but THg levels in muscle decreased in seals from Hudson Bay (-0.91%/yr) and Ungava/Nunatsiavut (-1.30%/yr). Carbon stable isotope values in seal muscle decreased significantly through time in 4 regions. Selenium-to-THg ratios were found to be >1 for all years and regions. Variation partitioning analyses across regions indicated that THg trends in seals were mostly explained by age (7.3-21.7%), climate parameters (3.5-12.5%), and diet (up to 9%); climate indices (i.e., Arctic and North Atlantic Oscillations, Pacific/North American pattern) explained the majority of the climate portion. The THg levels had a positive relationship with Arctic Oscillation for multiple regions. Associations of THg with air temperature, total precipitation, and sea-ice coverage, as well as with North Atlantic Oscillation and Pacific/North American pattern were found to vary with tissue type and geographical area. Environ Toxicol Chem 2020;39:2462-2474. © 2020 Her Majesty the Queen in Right of Canada. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Fisheries and Oceans Canada.
Collapse
Affiliation(s)
- Magali Houde
- Environment and Climate Change CanadaMontrealQuebecCanada
| | | | - Xiaowa Wang
- Environment and Climate Change CanadaBurlingtonOntarioCanada
| | - Brent Young
- Arctic Aquatic Research DivisionDepartment of Fisheries and OceansWinnipegManitobaCanada
| | - P. Gagnon
- Environment and Climate Change CanadaMontrealQuebecCanada
| | - Steve H. Ferguson
- Arctic Aquatic Research DivisionDepartment of Fisheries and OceansWinnipegManitobaCanada
| | | | - Derek C.G. Muir
- Environment and Climate Change CanadaBurlingtonOntarioCanada
| |
Collapse
|
19
|
Peterson SH, Ackerman JT, Hartman CA, Casazza ML, Feldheim CL, Herzog MP. Mercury exposure in mammalian mesopredators inhabiting a brackish marsh. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 273:115808. [PMID: 33497946 DOI: 10.1016/j.envpol.2020.115808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/18/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Bioaccumulation of environmental contaminants in mammalian predators can serve as an indicator of ecosystem health. We examined mercury concentrations of raccoons (Procyon lotor; n = 37 individuals) and striped skunks (Mephitis mephitis; n = 87 individuals) in Suisun Marsh, California, a large brackish marsh that is characterized by contiguous tracts of tidal marsh and seasonally impounded wetlands. Mean (standard error; range) total mercury concentrations in adult hair grown from 2015 to 2018 were 28.50 μg/g dw (3.05 μg/g dw; range: 4.46-81.01 μg/g dw) in raccoons and 4.85 μg/g dw (0.54 μg/g dw; range: 1.53-27.02 μg/g dw) in striped skunks. We reviewed mammalian hair mercury concentrations in the literature and raccoon mercury concentrations in Suisun Marsh were among the highest observed for wild mammals. Although striped skunk hair mercury concentrations were 83% lower than raccoons, they were higher than proposed background levels for mercury in mesopredator hair (1-5 μg/g). Hair mercury concentrations in skunks and raccoons were not related to animal size, but mercury concentrations were higher in skunks in poorer body condition. Large inter-annual differences in hair mercury concentrations suggest that methylmercury exposure to mammalian predators varied among years. Mercury concentrations of raccoon hair grown in 2017 were 2.7 times greater than hair grown in 2015, 1.7 times greater than hair grown in 2016, and 1.6 times greater than hair grown in 2018. Annual mean raccoon and skunk hair mercury concentrations increased with wetland habitat area. Furthermore, during 2017, raccoon hair mercury concentrations increased with the proportion of raccoon home ranges that was wetted habitat, as quantified using global positioning system (GPS) collars. The elevated mercury concentrations we observed in raccoons and skunks suggest that other wildlife at similar or higher trophic positions may also be exposed to elevated methylmercury bioaccumulation in brackish marshes.
Collapse
Affiliation(s)
- Sarah H Peterson
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive Suite D, Dixon, CA, 95620, USA.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive Suite D, Dixon, CA, 95620, USA
| | - C Alex Hartman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive Suite D, Dixon, CA, 95620, USA
| | - Michael L Casazza
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive Suite D, Dixon, CA, 95620, USA
| | - Cliff L Feldheim
- California Department of Water Resources, 3500 Industrial Blvd #131, West Sacramento, CA 95691, USA
| | - Mark P Herzog
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive Suite D, Dixon, CA, 95620, USA
| |
Collapse
|