1
|
Cheng Y, Lu K, Chen Z, Li N, Wang M. Biochar Reduced the Risks of Human Bacterial Pathogens in Soil via Disturbing Quorum Sensing Mediated by Persistent Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22343-22354. [PMID: 39642235 DOI: 10.1021/acs.est.4c07668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Biochar has great potential in reducing the abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) from soil. However, its efficiency in removing other biological pollutants, such as human bacterial pathogens (HBPs) and virulence factor genes (VFGs), is rarely studied. Herein, by pyrolyzing rice straw (RS) and pine wood (PW) at 350 and 700 °C, we prepared a series of biochar (RS350, RS700, PW350, and PW700) and investigated their impacts on the abundance and pathogenicity of HBPs. Compared with PW biochar, RS biochar effectively reduced the abundance of HBPs by 6.3-40.1%, as well as their pathogenicity, evidenced by an 8.2-10.1% reduction in the abundance of VFGs. Mechanistically, more persistent free radicals (PFRs) were formed in RS biochar than that of PW biochar during pyrolysis, and PFRs triggered the degradation of N-butyryl-l-homoserine lactone (C4-HSL) from 1.05 to 0.68 ng/kg, thereby disturbing the quorum sensing (QS) of HBPs. Once the QS was disturbed, the communications among HBPs were hindered, and their virulence factors were reduced, which ultimately lowered the abundance and pathogenicity of HBPs. Collectively, our study provides insights into the role of biochar in decreasing the risks of HBPs, which is significant in the development of biochar-based technologies for soil remediation.
Collapse
Affiliation(s)
- Yangjuan Cheng
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling & International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Kun Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling & International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zaiming Chen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling & International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Na Li
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling & International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Meizhen Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling & International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
- School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
2
|
Hu K, Lyu H, Hu Z, Shen B, Tang J. Three-dimensionally structured MoS 2@biochar breaks through the bottleneck in antibiotic wastewater treatment: Greater efficiency and self-motivated oxidation pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136871. [PMID: 39689558 DOI: 10.1016/j.jhazmat.2024.136871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Two-dimensional (2D) MoS2 has been widely used to remove antibiotics. However, low selectivity for antibiotic pollutants, dependence on applied energy and oxidant, and secondary contamination are still the bottlenecks of this system for treating antibiotic wastewater. In this study, we proposed a three-dimensional (3D) material (3MoS2/BMBC@MF) based on MoS2 and biochar with melamine sponge as the backbone. Compared with the 2D material (MoS2/BMBC), 3MoS2/BMBC@MF performed significantly better in enrofloxacin (ENR) removal, with an increase in the removal degree from 60.8 % to 88.1 %, and acted mainly through the degradation pathway rather than relying solely on the adsorption effect. It was shown that the direct oxidation process (DOP) behind the 3D materials is the key to the self-activated oxidation pathway. The three-dimensional structure enhances the generation and transfer pathways of persistent free radicals (PFRs) and electrons, realizing a multi-dimensional activation mechanism through its unique three-dimensional network, which greatly improves the redox capacity of the material. Upon exposure to pollutants, 3MoS2/BMBC@MF generates carbon-centered radicals of PFRs, which degrade ENR through mediated electron transfer. Coupled with the three-dimensional structure that contributes to the homogeneous dispersion of the active substances, dense steric active centers are formed in the grid skeleton by redox cycling of Mo ions to degrade antibiotics via DOP. Meanwhile, 3MoS2/BMBC@MF possesses good recyclability and maintains high efficiency in recycling. The structural design of this material not only enhances the removal efficiency and reduces the environmental impact, but also provides new potentials and solutions for practical water treatment of antibiotic contaminants.
Collapse
Affiliation(s)
- Kai Hu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Zhenzhong Hu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Zhou S, Qi X, Tang Y, Yu W, Guan Q, Bu Y, Tan L, Gu G. Activated carbon-mediated arsenopyrite oxidation and arsenic immobilization: ROS formation and its role. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135917. [PMID: 39326147 DOI: 10.1016/j.jhazmat.2024.135917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The oxidative dissolution of arsenopyrite (FeAsS) is a significant source of arsenic contamination in nature. Activated biochar (AC), a widely used environmental remediation agent, is prevalent in ecosystems and participated in various geochemical processes of arsenic and iron-containing sulfide minerals. However, the impact of AC-arsenopyrite association on reactive oxidation species (ROS) generation and its contribution to As transformation were rarely explored. Here, ROS formation and the redox conversion of As during the interaction between AC and arsenopyrite were investigated. AC-mediated arsenopyrite oxidation was a two-stage process. At stage I, the heterogeneous electron transfer from arsenopyrite facilitated O2 reduction on AC, enhancing arsenopyrite dissolution and ROS formation. TBA, PBQ and catalase inhibited 86.40 %, 79.39 % and 49.66 % of As(III) oxidation, respectively, indicating indicated that HO˙, (O2•)- and H2O2 were responsible for As(III) oxidation. However, at stage II, the mobility of As was highly restricted, especially increasing AC addition. Besides adsorption, AC retained appreciable As through catalyzing insoluble ferric arsenate formation and growth by promoting Fe(II) and As(III) oxidation and functioning as nuclei. These findings deepen our understanding of the coupling behavior of AC-arsenopyrite and its influence on geochemical cycling of arsenic in mined surroundings, which has important implications for mitigating arsenic pollution.
Collapse
Affiliation(s)
- Shuang Zhou
- School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xianglong Qi
- School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yetao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Weijian Yu
- School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Qingjun Guan
- School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yongjie Bu
- School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Ling Tan
- School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Guohua Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| |
Collapse
|
4
|
Zhang K, Lin WH, Wang S, Hou D. Pyrogenic carbon modulating TCE dehalogenation through snorkeling electrons under sulfate-reducing conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135903. [PMID: 39307012 DOI: 10.1016/j.jhazmat.2024.135903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 12/01/2024]
Abstract
Microbial dehalogenation, using obligate and facultative organohalide-respiring bacteria (OHRB), has been widely used to remediate halohydrocarbon-polluted sites. Owing to the scarcity of OHRB, and poor efficiency in H2-mediating interspecies electron transfer, microbial dehalogenation relying on OHRB is easily disturbed by Fe(III), sulfate, and nitrate as electron competitors. In the present study, pyrogenic carbon, featuring electron snorkeling, was introduced into the process of microbial dehalogenation, which facilitated the electron transfer from electro-active microbes to halohydrocarbon, then invigorating dehalogenation. As a consequence, fine dehalogenation of trichloroethene (TCE, as representative halohydrocarbon) was obtained, expressed as the nearly complete diminishment of 150 µmol L-1 TCE and the sequestration of high contents of ethene (72.2-122.3 µmol L-1 within 80 d). Such fine dehalogenation was ascribed to the synergy between pyrogenic carbon and electro-active microbes. Multiple microbes in mixed cultures, including Clostridium sp., Sporanaerobacter, Sedimentibacter, Paraclostridium, and Tissierella, stimulated TCE dehalogenation by providing electrons to pyrogenic carbon. Redox moieties on pyrogenic carbon enabled it to snorkel electrons, which facilitated the electron transfer from electro-active microbes to TCE, consequently invigorating TCE dehalogenation. Such microbial dehalogenation free of OHRB demonstrates the effectiveness of a novel strategy for remediating halohydrocarbon-polluted environments.
Collapse
Affiliation(s)
- Kaikai Zhang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei-Han Lin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environ. Pollut. Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Ahmad S, Liu X, Liu L, Waqas M, Zhang J, Hassan MA, Zhang S, Pan B, Tang J. Remediation of chromium contaminated water and soil by nitrogen and iron doped biochars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176435. [PMID: 39326760 DOI: 10.1016/j.scitotenv.2024.176435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/05/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Chromium (Cr) is a toxic and redox-sensitive contaminant that has accumulated in water and soil systems, becoming a serious issue worldwide. Producing novel remedial materials with enhanced removal efficiency from plentiful available sources is a pleasing aspect for Cr removal. This review explores valuable insights into the production of nitrogen doped biochar (N/BC), iron doped biochar (Fe/BC), and iron‑nitrogen doped biochar (Fe-N/BC) and their application for Cr (trivalent (Cr(III)) and hexavalent (Cr(VI)) removal. Specifically, this review focuses on conferring knowledge about producing environmentally friendly N and Fe doped BCs with enhanced surface functionalities, physicochemical properties, and holding capacities for removing Cr(VI) through adsorption and reduction. Affecting factors for Cr(VI) removal by N/BC, Fe/BC, and Fe-N/BC through reviewing the literature on the reaction system pH, mass transfer driving forces, effect of coexisting ions, BC production conditions, and redox potential are overviewed. Notably, isotherm and kinetic models and removal mechanisms of Cr(VI) by N/BC, Fe/BC, and Fe-N/BC with the assistance of characterization analyses, experimental results, and computational modeling methods are explored. Finally, the regeneration, cost evaluation, and environmental implications, as well as the real-world applications and environmental risks of N/BC, Fe/BC, and Fe-N/BC are discussed. This review shows that N and Fe doped BCs are remedial materials that can potentially remediate Cr(VI) contaminated water and soil.
Collapse
Affiliation(s)
- Shakeel Ahmad
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaomei Liu
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Muhammad Waqas
- The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Junhui Zhang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Muhammad Azher Hassan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Sun Z, Hong W, Xue C, Dong N. A comprehensive review of antibiotic resistance gene contamination in agriculture: Challenges and AI-driven solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175971. [PMID: 39236811 DOI: 10.1016/j.scitotenv.2024.175971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Since their discovery, the prolonged and widespread use of antibiotics in veterinary and agricultural production has led to numerous problems, particularly the emergence and spread of antibiotic-resistant bacteria (ARB). In addition, other anthropogenic factors accelerate the horizontal transfer of antibiotic resistance genes (ARGs) and amplify their impact. In agricultural environments, animals, manure, and wastewater are the vectors of ARGs that facilitate their spread to the environment and humans via animal products, water, and other environmental pathways. Therefore, this review comprehensively analyzed the current status, removal methods, and future directions of ARGs on farms. This article 1) investigates the origins of ARGs on farms, the pathways and mechanisms of their spread to surrounding environments, and various strategies to mitigate their spread; 2) determines the multiple factors influencing the abundance of ARGs on farms, the pathways through which ARGs spread from farms to the environment, and the effects and mechanisms of non-antibiotic factors on the spread of ARGs; 3) explores methods for controlling ARGs in farm wastes; and 4) provides a comprehensive summary and integration of research across various fields, proposing that in modern smart farms, emerging technologies can be integrated through artificial intelligence to control or even eliminate ARGs. Moreover, challenges and future research directions for controlling ARGs on farms are suggested.
Collapse
Affiliation(s)
- Zhendong Sun
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Weichen Hong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
7
|
Wang X, Chen H, Qian Y, Li X, Li X, Xu X, Wu Y, Zhang W, Xue G. Sludge-derived hydrochar modulates complete nonradical electron transfer in peroxydisulfate activation via pyrrolic-N and carbon defect: Implication for degrading electron-rich ionizable anilines compounds. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135724. [PMID: 39236539 DOI: 10.1016/j.jhazmat.2024.135724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Nonradical electron transfer process (ETP) is a promising pathway for pollutant degradation in peroxydisulfate-based advanced oxidation processes (PDS-AOPs). However, there is a critical bottleneck to trigger ETP by sludge-derived hydrochar due to its negatively charged surface, inferior porosity and electrical conductivity. Herein, pyrrolic-N doped and carbon defected sludge-derived hydrochar (SDHC-N) was constructed for PDS activation to degrade anilines ionizable organic compounds (IOC) through complete nonradical ETP oxidation. Degradation of anilines IOC was not only affected by the electron-donating capacity but also proton concentration in solution because of the ionizable amino group (-NH2). Diverse effects including proton favor, insusceptible and inhibition were observed. Impressively, addition of HCO3 with strong proton binding capacity boosted aniline degradation nearly 10 times. Moreover, characterizations and theoretical calculations demonstrated that pyrrolic-N increased electron density and created positively charged surface, profoundly promoting generation of SDHC-N-S2O82-* complexes. More delocalized electrons around carbon defect could enhance electron mobility. This work guides a rational design of sludge-derived hydrochar to mediate nonradical ETP oxidation, and provides insights into the impacts of proton on anilines IOC degradation.
Collapse
Affiliation(s)
- Xiaonuan Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yajie Qian
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xianying Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xianbao Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ying Wu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenjuan Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
8
|
Cui S, Wang R, Chen Q, Pugliese L, Wu S. Geobatteries in environmental biogeochemistry: Electron transfer and utilization. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100446. [PMID: 39104555 PMCID: PMC11298864 DOI: 10.1016/j.ese.2024.100446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 08/07/2024]
Abstract
The efficiency of direct electron flow from electron donors to electron acceptors in redox reactions is significantly influenced by the spatial separation of these components. Geobatteries, a class of redox-active substances naturally present in soil-water systems, act as electron reservoirs, reversibly donating, storing, and accepting electrons. This capability allows the temporal and spatial decoupling of redox half-reactions, providing a flexible electron transfer mechanism. In this review, we systematically examine the critical role of geobatteries in influencing electron transfer and utilization in environmental biogeochemical processes. Typical redox-active centers within geobatteries, such as quinone-like moieties, nitrogen- and sulfur-containing groups, and variable-valent metals, possess the potential to repeatedly charge and discharge. Various characterization techniques, ranging from qualitative methods like elemental analysis, imaging, and spectroscopy, to quantitative techniques such as chemical, spectroscopic, and electrochemical methods, have been developed to evaluate this reversible electron transfer capacity. Additionally, current research on the ecological and environmental significance of geobatteries extends beyond natural soil-water systems (e.g., soil carbon cycle) to engineered systems such as water treatment (e.g., nitrogen removal) and waste management (e.g., anaerobic digestion). Despite these advancements, challenges such as the complexity of environmental systems, difficulties in accurately quantifying electron exchange capacity, and scaling-up issues must be addressed to fully unlock their potential. This review underscores both the promise and challenges associated with geobatteries in responding to environmental issues, such as climate change and pollutant transformation.
Collapse
Affiliation(s)
- Shihao Cui
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Rui Wang
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lorenzo Pugliese
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| |
Collapse
|
9
|
Huang H, Gao YJ, Cao ZX, Tian ZQ, Bai YF, Tang ZX, Ali A, Zhao FJ, Wang P. Ecotoxicity of hexavalent chromium [Cr (VI)] in soil presents predominate threats to agricultural production with the increase of soil Cr contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135091. [PMID: 38959828 DOI: 10.1016/j.jhazmat.2024.135091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
The relative severity between chromium (Cr)-mediated ecotoxicity and its bioaccumulation has rarely been compared and evaluated. This study employed pot incubation experiments to simulate the soil environment with increased Cr pollution and study their effects on the growth of crops, including pepper, lettuce, wheat, and rice. Results showed that increasing total Cr presented ascendant ecotoxicity in upland soils when pH > 7.5, and significantly reduced the yield of pepper, lettuce and wheat grain by 0.3-100 %, whereas, this effect was weakened even reversed as the pH decreased. Surprisingly, a series of soils with Cr concentration of 22.7-623.5 mg kg-1 did not cause Cr accumulation in four crops over the Chinese permissible limit. The toxicity of Cr was highly associated with extractable Cr, where Cr (VI) made the greater contributions than Cr (III). Conclusively, the ecotoxicity of Cr poses a greater environmental issue as compared to the bioaccumulation of Cr in crops in upland soils, while extractable Cr (VI) makes the predominant contributions to the ecotoxicity of Cr as the total Cr increased. Our study proposes a synchronous consideration involving total Cr and Cr (VI) as the theoretical basis to establish a more reliable soil quality standard for safe production in China.
Collapse
Affiliation(s)
- Hui Huang
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Yu-Jie Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, Jiangsu 210036, China.
| | - Zheng-Xian Cao
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Zhuo-Qi Tian
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Yun-Fei Bai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Zhi-Xian Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Fang-Jie Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
10
|
Gong Z, Huang M, Wang C, Wang Z, Oh WD, Wu X, Zhou T. Fenton-conditioning of landfill leachate biological sludge enables biochar for efficient Cr(Ⅵ)removal: Occurrence of oxygen-centered free radicals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122070. [PMID: 39098068 DOI: 10.1016/j.jenvman.2024.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Fenton-conditioning is commonly used to improve dewatering ability for municipal biological sludge, however, its application in industries is scarce. In this study, biochar (FT-BC) was successfully synthesized from a Fenton-conditioned landfill leachate biological sludge under oxygen-limited. As compared to the corresponding blank and poly ferric-pretreated biochars (BC and PF-BC), moderate Fenton conditioning of the sludge could enable good removal performance for Cr (Ⅵ) by FT-BC. It was found that the oxygen central free radicals (OCFRs) on the biochar surface was intensively promoted due to Fenton electrophilic addition of ·OH onto the oxygen-containing functional groups in biomass. The amounts of OCFRs correlated positively well with the removal efficiency, indicating these persistent free radicals (PFRs)would mainly responsible for the reductive immobilization of Cr(VI)on the FT-BC surface. This study is expected to provide a new method for reclamation of industrial biological sludges with poor agglomeration by introducing simple Fenton pre-conditioning.
Collapse
Affiliation(s)
- Zupeng Gong
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Mingjie Huang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Chen Wang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China
| | - Wen-da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Xiaohui Wu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Tao Zhou
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
11
|
Wang L, Zhang J, Cheng D, Guo W, Cao X, Xue J, Haris M, Ye Y, Ngo HH. Biochar-based functional materials for the abatement of emerging pollutants from aquatic matrices. ENVIRONMENTAL RESEARCH 2024; 252:119052. [PMID: 38697596 DOI: 10.1016/j.envres.2024.119052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Biochar has emerged as a versatile and efficient multi-functional material, serving as both an adsorbent and catalyst in removing emerging pollutants (EPs) from aquatic matrices. However, pristine biochar's catalytic and adsorption capabilities are hindered by its poor surface functionality and small pore size. Addressing these limitations involves the development of functionalized biochar, a strategic approach aimed at enhancing its physicochemical properties and improving adsorption and catalytic efficiencies. Despite a growing interest in this field, there is a notable gap in existing literature, with no review explicitly concentrating on the efficacy of biochar-based functional materials (BCFMs) for removing EPs in aquatic environments. This comprehensive review aims to fill this void by delving into the engineering considerations essential for designing BCFMs with enhanced physiochemical properties. The focus extends to understanding the treatment efficiency of EPs through mechanisms such as adsorption or catalytic degradation. The review systematically outlines the underlying mechanisms involved in the adsorption and catalytic degradation of EPs by BCFMs. By shedding light on the prospects of BCFMs as a promising multi-functional material, the review underscores the imperative for sustained research efforts. It emphasizes the need for continued exploration into the practical implications of BCFMs, especially under environmentally relevant pollutant concentrations. This holistic approach seeks to contribute to advancing knowledge and applying biochar-based solutions in addressing the challenges posed by emerging pollutants in aquatic ecosystems.
Collapse
Affiliation(s)
- Lei Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia
| | - Xiaoqiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Muhammad Haris
- UNSW Center for Transformational Environmental Technologies, Yixing, 214200, China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia.
| |
Collapse
|
12
|
Wang Y, Yan X, Zhang Y, Qin X, Yu X, Jiang L, Li B. Efficient Removal of Nickel from Wastewater Using Copper Sulfate-Ammonia Complex Modified Activated Carbon: Adsorption Performance and Mechanism. Molecules 2024; 29:2405. [PMID: 38792266 PMCID: PMC11124251 DOI: 10.3390/molecules29102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/04/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The necessity to eliminate nickel (Ni) from wastewater stems from its environmental and health hazards. To enhance the Ni adsorption capacity, this research applied a copper sulfate-ammonia complex (tetraamminecopper (II) sulfate monohydrate, [Cu(NH3)4]SO4·H2O) as a modifying agent for a Phragmites australis-based activated carbon preparation. The physiochemical properties of powdered activated carbon (PAC) and a modified form ([Cu(NH3)4]-PAC) were examined by measuring their surface areas, analyzing their elemental composition, and using Boehm's titration method. Batch experiments were conducted to investigate the impact of various factors, such as Ni(II) concentration, contact time, pH, and ionic strength, on its substance adsorption capabilities. Additionally, the adsorption mechanisms of Ni(II) onto activated carbon were elucidated via Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The findings indicated that modified activated carbon ([Cu(NH3)4]-PAC) exhibited a lower surface area and total volume than the original activated carbon (PAC). The modification of PAC enhanced its surface's relative oxygen and nitrogen content, indicating the incorporation of functional groups containing these elements. Furthermore, the modified activated carbon, [Cu(NH3)4]-PAC, exhibited superior adsorption capacity relative to unmodified PAC. Both adsorbents' adsorption behaviors conformed to the Langmuir model and the pseudo-second-order kinetics model. The Ni(II) removal efficiency of PAC and [Cu(NH3)4]-PAC diminished progressively with rising ionic strength. Modified activated carbon [Cu(NH3)4]-PAC demonstrated notable pH buffering and adaptability. The adsorption mechanism for Ni(II) on activated carbon involves surface complexation, cation exchange, and electrostatic interaction. This research presents a cost-efficient preparation technique for preparing activated carbon with enhanced Ni(II) removal capabilities from wastewater and elucidates its underlying adsorption mechanisms.
Collapse
Affiliation(s)
- Yifei Wang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
- Department of Civil and Environmental Engineering E4130 Engineering Gateway Building, University of California, Irvine, CA 92697-2175, USA
| | - Xiaoxiao Yan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
| | - Yidi Zhang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
| | - Xiaoxin Qin
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
| | - Xubiao Yu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
| | - Li Jiang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
- College of Environmental and Resource Science, Zhejiang University, 866 Yuhuangtang Rd, Hangzhou 310058, China
| | - Bing Li
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
| |
Collapse
|
13
|
Xie J, Latif J, Yang K, Wang Z, Zhu L, Yang H, Qin J, Ni Z, Jia H, Xin W, Li X. A state-of-art review on the redox activity of persistent free radicals in biochar. WATER RESEARCH 2024; 255:121516. [PMID: 38552490 DOI: 10.1016/j.watres.2024.121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/24/2024]
Abstract
Biochar-bound persistent free radicals (biochar-PFRs) attract much attention because they can directly or indirectly mediate the transformation of contaminants in large-scale wastewater treatment processes. Despite this, a comprehensive top-down understanding of the redox activity of biochar-PFRs, particularly consumption and regeneration mechanisms, as well as challenges in redox activity assessment, is still lacking. To tackle this challenge, this review outlines the identification and determination methods of biochar-PFRs, which serve as a prerequisite for assessing the redox activity of biochar-PFRs. Recent developments concerning biochar-PFRs are discussed, with a main emphasis on the reaction mechanisms (both non-free radical and free radical pathways) and their effectiveness in removing contaminants. Importantly, the review delves into the mechanism of biochar-PFRs regeneration, triggered by metal cations, reactive oxygen species, and ultraviolet radiations. Furthermore, this review thoroughly explores the dilemma in appraising the redox activity of biochar-PFRs. Components with unpaired electrons (particular defects and metal ions) interfere with biochar-PFRs signals in electron paramagnetic resonance spectra. Scavengers and extractants of biochar-PFRs also inevitably modify the active ingredients of biochar. Based on these analyses, a practical strategy is proposed to precisely determine the redox activity of biochar-PFRs. Finally, the review concludes by presenting current gaps in knowledge and offering suggestions for future research. This comprehensive examination aims to provide new and significant insights into the redox activity of biochar-PFRs.
Collapse
Affiliation(s)
- Jia Xie
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Junaid Latif
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kangjie Yang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zhiqiang Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Lang Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Huiqiang Yang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jianjun Qin
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zheng Ni
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Wang Xin
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot 010022, China
| | - Xing Li
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot 010022, China
| |
Collapse
|
14
|
Ge Y, Zhu S, Wang K, Liu F, Zhang S, Wang R, Ho SH, Chang JS. One-step synthesis of a core-shell structured biochar using algae (Chlorella) powder and ferric sulfate for immobilizing Hg(II). JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133991. [PMID: 38492405 DOI: 10.1016/j.jhazmat.2024.133991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Mercury (Hg) pollution poses a significant environmental challenge. One promising method for its removal is the sorption of mercuric ions using biochar. FeS-doped biochar (FBC) exhibits effective mercury adsorption, however may release excess iron into the surrounding water. To address this issue, a novel magnetic pyrrhotite/magnetite-doped biochar with a core-shell structure was synthesized for the adsorption of 2-valent mercury (Hg(II)). The proposed synthesis process involved the use of algae powder and ferric sulfate in a one-step method. By varying the ratio of ferric sulfate and alga powder (within the range of 0.18 - 2.5) had a notable impact on the composition of FBC. As the ferric sulfate content increased, the FBC exhibited a higher concentration of oxygen-containing groups. To assess the adsorption capacity, Langmuir and Freundlich adsorption models were applied to the experimental data. The most effective adsorption was achieved with FBC-4, reaching a maximum capacity (Qm) of 95.51 mg/g. In particular, at low Hg(II) concentrations, FBC-5 demonstrated the ability to reduce Hg(II) concentrations to less than 0.05 mg/L within 30 min. Additionally, the stability of FBC was confirmed within the pH range of 3.8 - 7.2. The study also introduced a model to analyze the adsorption preference for different Hg(II) species. Calomel was identified in the mercury saturated FBC, whereas the core-shell structure exhibited excellent conductivity, which most likely contributed to the minimal release of iron. In summary, this research presents a novel and promising method for synthesizing core-shell structured biochar and provides a novel approach to explore the adsorption contribution of different metal species.
Collapse
Affiliation(s)
- Yiming Ge
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shishu Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Feiyu Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shiyu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jo-Shu Chang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
15
|
Xiao W, Zhang Q, Huang M, Zhao S, Chen D, Gao N, Chu T, Ye X. Biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz facilitated Cr(VI) reduction by shaping soil functional microbial communities. CHEMOSPHERE 2024; 353:141636. [PMID: 38447895 DOI: 10.1016/j.chemosphere.2024.141636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/11/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Cr(VI) contamination is widely recognized as one of the major environmental hazards. To address the problem of remediation of soil Cr(VI) contamination and utilization of waste peanut shells, this study comprehensively investigated the effects of peanut shell-derived biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz on Cr(VI) reduction and microbial community succession in soil. This study confirmed that root exudate-loaded peanut shell biochar reduced soil pH while simultaneously increasing DOC, sulfide, and Fe(II) concentrations, thereby facilitating the reduction of Cr(VI), achieving a reduction efficiency of 81.8%. Based on XPS and SEM elemental mapping analyses, Cr(VI) reduction occurred concurrently with the Fe and S redox cycles. Furthermore, the microbial diversity, abundance of the functional genera (Geobacter, Arthrobacter, and Desulfococcus) and the metabolic functions associated with Cr(VI) reduction were enhanced by root exudate-loaded biochar. Root exudate-loaded biochar can promote both direct Cr(VI) reduction mediated by the Cr(VI)-reducing bacteria Arthrobacter, and indirect Cr(VI) reduction through Cr/S/Fe co-transformation mediated by the sulfate-reducing bacteria Desulfococcus and Fe(III)-reducing bacteria Geobacter. This study demonstrates the effectiveness of peanut shell biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz to promote soil Cr(VI) reduction, reveals the mechanism how root exudate-loaded biochar shapes functional microbial communities to facilitate Cr(VI) reduction, and proposes a viable strategy for Cr(VI) remediation and utilization of peanut shell.
Collapse
Affiliation(s)
- Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Miaojie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Na Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tianfen Chu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
16
|
Luo K, Jiang S, Yang Z, Li X, Pang Y, Yang Q. A novel nano-cerium oxide functionalized biochar composite for degradation of organic dye: insight of the photocatalysis mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28658-28670. [PMID: 38561532 DOI: 10.1007/s11356-024-32828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Recently, visible-light-driven photocatalysis attracts much concerns in the remediation of environmental organic pollutants. In this study, the cerium doped biochar was fabricated through the hydrothermal method, and served as an efficient photocatalyst towards rhodamine B degradation under visible light irradiation. Almost 100% of rhodamine B was removed by 2.0 g·L-1 cerium doped biochar after 60 min of visible light irradiation at pH 3, but only about 25.50% and 29.60% of rhodamine B was removed by cerium dioxide and biochar under identical conditions. The degradation process coincided well with the pseudo-first-order kinetic model, and the photodegradation rate constant of cerium doped biochar was 0.0485·min-1, which was respectively 97 and 44 times that of biochar (0.0005·min-1) and cerium dioxide (0.0011·min-1). According to the trapping experiments and electron spin resonance spectroscopy analysis, h+, O2-∙ and ∙OH all participated in the degradation of rhodamine B in the cerium doped biochar photocatalytic systems, and the function of h+ and ∙OH was dominated. Consequently, the biochar could not only be an excellent carrier for supporting cerium dioxide, but also greatly improved its photocatalytic activity. The band gap of cerium doped biochar was narrower than cerium dioxide, which could improve the separation and migration of photogenerated electron-hole pairs under visible-light excitation, thus ultimately enhanced the degradation of rhodamine B. This work provided a deeper understanding of the preparation of biochar-based photocatalyst and its application in the remediation of environmental organic pollution.
Collapse
Affiliation(s)
- Kun Luo
- School of Materials and Environmental Engineering, Changsha University, Changsha, 410022, People's Republic of China
| | - Shu Jiang
- School of Materials and Environmental Engineering, Changsha University, Changsha, 410022, People's Republic of China
| | - Zixin Yang
- School of Materials and Environmental Engineering, Changsha University, Changsha, 410022, People's Republic of China
| | - Xue Li
- School of Materials and Environmental Engineering, Changsha University, Changsha, 410022, People's Republic of China
| | - Ya Pang
- School of Materials and Environmental Engineering, Changsha University, Changsha, 410022, People's Republic of China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
17
|
Alfei S, Pandoli OG. Biochar-Derived Persistent Free Radicals: A Plethora of Environmental Applications in a Light and Shadows Scenario. TOXICS 2024; 12:245. [PMID: 38668468 PMCID: PMC11054495 DOI: 10.3390/toxics12040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
Biochar (BC) is a carbonaceous material obtained by pyrolysis at 200-1000 °C in the limited presence of O2 from different vegetable and animal biomass feedstocks. BC has demonstrated great potential, mainly in environmental applications, due to its high sorption ability and persistent free radicals (PFRs) content. These characteristics enable BC to carry out the direct and PFRs-mediated removal/degradation of environmental organic and inorganic contaminants. The types of PFRs that are possibly present in BC depend mainly on the pyrolysis temperature and the kind of pristine biomass. Since they can also cause ecological and human damage, a systematic evaluation of the environmental behavior, risks, or management techniques of BC-derived PFRs is urgent. PFRs generally consist of a mixture of carbon- and oxygen-centered radicals and of oxygenated carbon-centered radicals, depending on the pyrolytic conditions. Here, to promote the more productive and beneficial use of BC and the related PFRs and to stimulate further studies to make them environmentally safer and less hazardous to humans, we have first reviewed the most common methods used to produce BC, its main environmental applications, and the primary mechanisms by which BC remove xenobiotics, as well as the reported mechanisms for PFR formation in BC. Secondly, we have discussed the environmental migration and transformation of PFRs; we have reported the main PFR-mediated application of BC to degrade inorganic and organic pollutants, the potential correlated environmental risks, and the possible strategies to limit them.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
| | - Omar Ginoble Pandoli
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
- Department of Chemistry, Pontifical Catholic University, Rua Marquês de São Vincente 225, Rio de Janeiro 22451-900, Brazil
| |
Collapse
|
18
|
Alfei S, Pandoli OG. Bamboo-Based Biochar: A Still Too Little-Studied Black Gold and Its Current Applications. J Xenobiot 2024; 14:416-451. [PMID: 38535501 PMCID: PMC10971603 DOI: 10.3390/jox14010026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 11/12/2024] Open
Abstract
Biochar (BC), also referred to as "black gold", is a carbon heterogeneous material rich in aromatic systems and minerals, preparable by the thermal decomposition of vegetable and animal biomasses in controlled conditions and with clean technology. Due to its adsorption ability and presence of persistent free radicals (PFRs), BC has demonstrated, among other uses, great potential in the removal of environmental organic and inorganic xenobiotics. Bamboo is an evergreen perennial flowering plant characterized by a short five-year growth period, fast harvesting, and large production in many tropical and subtropical countries worldwide, thus representing an attractive, low-cost, eco-friendly, and renewable bioresource for producing BC. Due to their large surface area and increased porosity, the pyrolyzed derivatives of bamboo, including bamboo biochar (BBC) or activated BBC (ABBC), are considered great bio-adsorbent materials for removing heavy metals, as well as organic and inorganic contaminants from wastewater and soil, thus improving plant growth and production yield. Nowadays, the increasing technological applications of BBC and ABBC also include their employment as energy sources, to catalyze chemical reactions, to develop thermoelectrical devices, as 3D solar vapor-generation devices for water desalination, and as efficient photothermal-conversion devices. Anyway, although it has great potential as an alternative biomass to wood to produce BC, thus paving the way for new bio- and circular economy solutions, the study of bamboo-derived biomasses is still in its infancy. In this context, the main scope of this review was to support an increasing production of BBC and ABBC and to stimulate further studies about their possible applications, thus enlarging the current knowledge about these materials and allowing their more rational, safer, and optimized application. To this end, after having provided background concerning BC, its production methods, and its main applications, we have reviewed and discussed the main studies on BBC and ABBC and their applications reported in recent years.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Omar Ginoble Pandoli
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
- Departamento de Química, Pontifícia Universidade Católica, Rua Marquês de São Vincente, 225, Rio de Janeiro 22451-900, Brazil
| |
Collapse
|
19
|
Hu S, Liu C, Bu H, Chen M, Fei YH. Efficient reduction and adsorption of Cr(VI) using FeCl 3-modified biochar: Synergistic roles of persistent free radicals and Fe(II). J Environ Sci (China) 2024; 137:626-638. [PMID: 37980045 DOI: 10.1016/j.jes.2023.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 11/20/2023]
Abstract
Transition metal iron and persistent free radicals (PFRs) both affect the redox properties of biochar, but the electron transfer relationship between them and the coupling reduction mechanism of Cr(VI) requires further investigation. To untangle the interplay between iron and PFRs in biochar and the influences on redox properties, FeCl3-modified rice husk biochar (FBCs) was prepared and its reduction mechanism for Cr(VI) without light was evaluated. The FBCs had higher surface positive charges, oxygen-containing functional groups, and PFRs compared with pristine rice husk biochar (BC). Phenoxyl PFRs with high electron-donating capability formed in biochar. The pronounced electron paramagnetic resonance signals showed that the PFRs preferred to form at lower Fe(III) concentrations. While a high concentration of Fe(III) would be reduced to Fe(II) and consumed the formed PFRs. Adsorption kinetics and X-ray photoelectron spectroscopy analysis indicated that the FBCs effectively enhanced the Cr(VI) removal efficiency by 1.54-8.20 fold and the Cr(VI) reduction efficiency by 1.88-9.29 fold compared to those of BC. PFRs quenching and competitive reductant addition experiments revealed that the higher Cr(VI) reduction performance of FBCs was mainly attributed to the formed PFRs, which could contribute to ∼74.0% of Cr(VI) reduction by direct or indirect electron transfer. The PFRs on FBCs surfaces could promote the Fe(III)/Fe(II) cycle through single electron transfer and synergistically accelerate ∼52.3% of Cr(VI) reduction. This study provides an improved understanding of the reduction mechanism of iron-modified biochar PFRs on Cr(VI) in environments.
Collapse
Affiliation(s)
- Shujie Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Chengshuai Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China.
| | - Hongling Bu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ying-Heng Fei
- School of Environment Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Liu X, Chen Z, Lu S, Shi X, Qu F, Cheng D, Wei W, Shon HK, Ni BJ. Persistent free radicals on biochar for its catalytic capability: A review. WATER RESEARCH 2024; 250:120999. [PMID: 38118258 DOI: 10.1016/j.watres.2023.120999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023]
Abstract
Biochar is an economical carbon material for water pollution control, which shows great promise to be applied in the up-scale wastewater remediation processes. Previous studies demonstrate that persistent free radicals (PFRs) on biochar are critical to its reactivity for wastewater remediation. A series of studies have revealed the important roles of PFRs when biochar was applied for organic pollutants degradation as well as the removal of Cr (VI) and As (III) from wastewater. Therefore, this review comprehensively concludes the significance of PFRs for the catalytic capabilities of biochar in advanced oxidation processes (AOPs)-driven organic pollutant removal, and applied in redox processes for Cr (VI) and As (III) remediation. In addition, the mechanisms for PFRs formation during biochar synthesis are discussed. The detection methods are reviewed for the quantification of PFRs on biochar. Future research directions were also proposed on underpinning the knowledge base to forward the applications of biochar in practical real wastewater treatment.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Xingdong Shi
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Fulin Qu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; UNSW Water Research Centre, School of Civil and Environmental Engineering, The University New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
21
|
Zhang Y, Sun Y, He R, Zhao J, Wang J, Yu T, Zhang X, Bildyukevich AV. Effects of excess sludge composting process, environmentally persistent free radicals, and microplastics on antibiotics degradation efficiency of aging biochar. BIORESOURCE TECHNOLOGY 2024; 393:130070. [PMID: 37984667 DOI: 10.1016/j.biortech.2023.130070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Simulation of microbial aging biochar in compost is an important index for evaluating the biochar degradation efficiency of antibiotics. In this study, biochar was prepared by adding microplastics (MPs) to sludge, and the degradation effect of biochar/(peroxymonosulfate, PMS) on antibiotics was evaluated during the compost aging process of biochar. After the compost aging of biochars, the antibiotic degradation efficiency of HPBC500, HPBC500 + polystyrene (PS), HPBC900/PMS, and HPBC900 + PS/PMS decreased by 6.47, 15.2, 10.16, and 10.33 %, respectively. Environmentally persistent free radicals (EPFRs) and defect structure were the main contributors to the activation of PMS. EPFRs produced through PS pyrolysis of biochar exhibited strong reactivity but poor stability during the degradation of antibiotics. Biochar enhanced the growth of microorganisms in compost but reduced its specific surface area. The antibiotic degradation efficiency of the biochar was positively correlated with the concentration of EPFRs. This study elucidated the durability of different biochar toward antibiotic degradation.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China.
| | - Yutai Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Rui He
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Jing Zhao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Jiqin Wang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China.
| | - Tonghuan Yu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Xiaozhuan Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Alexandr V Bildyukevich
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, Surganov str. 13, 220072 Minsk, Republic of Belarus.
| |
Collapse
|
22
|
Wang Y, Wang K, Wang X, Zhao Q, Jiang J, Jiang M. Effect of different production methods on physicochemical properties and adsorption capacities of biochar from sewage sludge and kitchen waste: Mechanism and correlation analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132690. [PMID: 37801977 DOI: 10.1016/j.jhazmat.2023.132690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Different pyrolysis methods, parameters and feedstocks result in biochars with different properties, structures and removal capacities for heavy metals. However, the role of each property on adsorption capacity and corresponding causal relationships remain unclear. Here, we investigated various physicochemical properties of biochar produced via three different methods and two different feedstocks to clarify influences of biomass sources and pyrolysis processes on biochar properties and its heavy metal adsorption performance. Experimental results showed biochars were more aromatic and contained more functional groups after hydrothermal carbonization, while they had developed pores and higher surface areas produced by anaerobic pyrolysis. The inclusion of oxygen resulted in more complete carbonization and higher CEC biochar. Different biochar properties resulted in different adsorption capacities. Biochar produced by aerobic calcination showed higher adsorption efficiency for Cu and Pb. Correlation analysis proved that pH, cation exchange capacity and degree of carbonization positively affected adsorption, while organic matter content and aromaticity were unfavorable for adsorption. Microstructure and components determined biochar macroscopic properties and ultimate adsorption efficiency for metal ions. This study identifies the degree of correlation and pathways of each property on adsorption, which provides guidance for targeted modification of biochar to enhance its performance in heavy metal removal.
Collapse
Affiliation(s)
- Yipeng Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuchan Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Miao Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
23
|
Yang H, Chen N, Wang Z, Liu J, Qin J, Zhu K, Jia H. Biochar-Associated Free Radicals Reduce Soil Bacterial Diversity: New Insight into Ecoenzymatic Stoichiometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20238-20248. [PMID: 37976412 DOI: 10.1021/acs.est.3c06864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The toxicity of environmentally persistent free radicals (EPFRs), often generated during biochar production, on soil bacteria is still not truly reflected when considering the conditions in real soil. Herein, the influence of free radicals within biochar on soil bacteria was investigated from the perspectives of enzyme activity, community structure, and ecoenzymatic stoichiometry. Biochar addition enhanced the contents of EPFRs and derived hydroxyl radicals (•OH) in the soil, while it reduced bacterial alpha diversity by 5.06-35.44%. The results of redundancy analysis and inhibition experiments collectively demonstrated the key role of EPFRs and •OH in reducing the bacterial alpha diversity. Specifically, EPFRs and •OH increased the stoichiometric imbalance by promoting the release of dissolved organic carbon and ammonium N, thus aggravating the P limitation in soil. This was further confirmed by increased alkaline phosphatase activity from 702 to 874 nmol g-1 h-1. The P limitation induced by EPFRs and •OH decreased the bacterial alpha diversity, as evidenced by the negative correlation between P limitation and bacterial alpha diversity (r2 = -0.931 to -0.979, P < 0.01) and the structural equation model. The obtained results demonstrate a ubiquitous but previously overlooked mechanism for bacterial toxicity of biochar-associated free radicals, providing scientific guidance for safe utilization of biochar.
Collapse
Affiliation(s)
- Huiqiang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Na Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Zhiqiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jinbo Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jianjun Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Kecheng Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| |
Collapse
|
24
|
Fang L, Zeng J, Wang H, He F, Wan H, Li M, Ren W, Ding L, Yang L, Luo X. Insights into the proton-enhanced mechanism of hexavalent chromium removal by amine polymers in strong acid wastewater: Reduction of hexavalent chromium and sequestration of trivalent chromium. J Colloid Interface Sci 2023; 650:515-525. [PMID: 37421754 DOI: 10.1016/j.jcis.2023.06.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/17/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
Adsorption is a green technology of treating heavy metal-contaminated strong acid wastewaters for the recycling of heavy metal and reuse of strong acid. Herein, three amine polymers (APs) with different alkalinities and electron donating abilities were prepared to investigate the adsorption-reduction processes of Cr(VI). It was found that the removal of Cr(VI) was controlled by the concentration of -NRH+ on the surface of APs at pH > 2, which relies on the alkalinity of APs. However, the high concentration of NRH+ significantly facilitated the adsorption of Cr(VI) on the surface of APs and accelerated the mass transfer between Cr(VI) and APs at strong acid environment (pH ≤ 2). More importantly, the reduction of Cr(VI) was enhanced at pH ≤ 2, due to the high reduction potential of Cr(VI) (E ≥ 0.437). The ratio of reduction to adsorption (α) of Cr(VI) was above 0.70, and the proportion of Cr(III) bonding on Ph-AP excessed 67.6 %. Finally, a proton-enhanced mechanism of Cr(VI) removal was verified by analyzing FTIR and XPS spectra as well as constructing DFT model. This study provides a theoretical basis for the removal of Cr(VI) in the strong acid wastewater.
Collapse
Affiliation(s)
- Lili Fang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Jinwen Zeng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Huiling Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Fan He
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Huiqin Wan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Mengling Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Lin Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; College of Chemistry, Nanchang University, Nanchang 330031, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China.
| |
Collapse
|
25
|
Wang C, Holm PE, Andersen ML, Thygesen LG, Nielsen UG, Hansen HCB. Phosphorus doped cyanobacterial biochar catalyzes efficient persulfate oxidation of the antibiotic norfloxacin. BIORESOURCE TECHNOLOGY 2023; 388:129785. [PMID: 37722544 DOI: 10.1016/j.biortech.2023.129785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
In this study, cyanobacterial biochars (CBs) enriched/doped with non-metallic elements were prepared by pyrolysis of biomass amended with different N, S, and P containing compounds. Their catalytic reactivity was tested for persulfate oxidation of the antibiotic norfloxacin (NOR). N and S doping failed to improve CB catalytic reactivity, while P doping increased reactivity 5 times compared with un-doped biochar. Biochars produced with organic phosphorus dopants showed the highest reactivity. Post-acid-washing improved catalytic reactivity. In particular, 950 ℃ acid-washed triphenyl-phosphate doped CB showed the largest degradation rate and reached 79% NOR mineralization in 2 h. Main attributes for P-doped CBs high reactivity were large specific surface areas (up to 655 m2/g), high adsorption, high C-P-O content, graphitic P and non-radical degradation pathway (electron transfer). This study demonstrates a new way to reuse waste biomass by producing efficient P-doped metal-free biochars and presents a basic framework for designing carbon-based catalysts for organic pollutant degradation.
Collapse
Affiliation(s)
- Chen Wang
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Peter E Holm
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Mogens Larsen Andersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Lisbeth Garbrecht Thygesen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Ulla Gro Nielsen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Hans Christian Bruun Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
26
|
Liu L, Sun P, Chen Y, Li X, Zheng X. Distinct chromium removal mechanisms by iron-modified biochar under varying pH: Role of iron and chromium speciation. CHEMOSPHERE 2023; 331:138796. [PMID: 37142103 DOI: 10.1016/j.chemosphere.2023.138796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Iron-modified biochar (Fe-biochar) has been widely developed to attenuate Cr(VI) pollution in both acid and alkaline environments. However, there are few comprehensive studies on how the iron speciation in Fe-biochar and chromium speciation in solution influencing the removal of Cr(VI) and Cr(III) under varying pH. Here, multiple Fe-biochar containing Fe3O4 or Fe(0) were prepared and applied to remove aqueous Cr(VI). Kinetics and isotherms suggested that all Fe-biochar could efficiently remove Cr(VI) and Cr(III) via adsorption-reduction-adsorption. The Fe3O4-biochar immobilized Cr(III) by forming FeCr2O4, while amorphous Fe-Cr coprecipitate and Cr(OH)3 was formed when using Fe(0)-biochar. Density functional theory (DFT) analysis further indicated that pH increase caused more negative adsorption energies between Fe(0)-biochar and the pH-dependent Cr(VI)/Cr(III) species. Consequently, the adsorption and immobilization of Cr(VI) and Cr(III) species by Fe(0)-biochar was more favored at higher pH. In comparison, Fe3O4-biochar exhibited weaker adsorption abilities for Cr(VI) and Cr(III), which were in consistent with their less negative adsorption energies. Nonetheless, Fe(0)-biochar merely reduced ∼70% of adsorbed Cr(VI), while ∼90% of adsorbed Cr(VI) was reduced by Fe3O4-biochar. These results unveiled the importance of iron and chromium speciation for chromium removal under varying pH, and might guide the application-oriented design of multifunctional Fe-biochar for broad environmental remediation.
Collapse
Affiliation(s)
- Lecheng Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ping Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Youyuan Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Xiaochen Li
- China Institute for Radiation Protection, Taiyuan, 030000, China
| | - Xilai Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
27
|
Sun Y, Liu C, Gao Y, Zhang T, Jia Y, Wang S. All-in-one strategy to prepare molded biochar with magnetism from sewage sludge for high-efficiency removal of Cd(Ⅱ). JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131488. [PMID: 37121035 DOI: 10.1016/j.jhazmat.2023.131488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023]
Abstract
Biochar in powder could lead to the separation difficulties after using and easy dispersion by wind with non-necessary consumption during the practical application. The current method for preparing molded biochar is multi-step, tedious, and required exogenous reagents. Moreover, the dehydration of sewage sludge with high water content (>85%) causes expensive production cost, limiting its secondary utilization. Therefore, an "all-in-one" strategy was developed to prepare molded biochar with magnetism by using sewage sludge as endogenetic binder, water source, carbon source, as well as magnetic source, and biomass wastes as water moderator and pore-forming agent. The molded biochar showed high removal capacity towards Cd(Ⅱ) of 456.2 mg/g, which was 6 times higher than the commercial activated carbon in powder (69.1 mg/g). The excellent removal performance of the molded biochar was in linear correlation the O/C ratio (R2 =0.855), resulting in the complexation with Cd(Ⅱ). DFT calculations indicated the amounts and species of oxygen changed the electron distribution and electron-donation properties of biochar for Cd(Ⅱ). Moreover, the Na+ exchanges with Cd(Ⅱ) were also an important removal mechanism. This study provided a novel synthesis strategy for the molded biochar with both high particle density and high adsorption capability.
Collapse
Affiliation(s)
- Yueru Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Chuanqun Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Yuan Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.
| | - Tingyu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| |
Collapse
|
28
|
Kim H, Lee SY, Choi JW, Jung KW. Synergistic effect in simultaneous removal of cationic and anionic heavy metals by nitrogen heteroatom doped hydrochar from aqueous solutions. CHEMOSPHERE 2023; 323:138269. [PMID: 36858118 DOI: 10.1016/j.chemosphere.2023.138269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Industrial wastewater typically contains both cationic and anionic heavy metals; therefore, their simultaneous removal must be considered to ensure environmental sustainability. Herein, nitrogen heteroatom (N) doped hydrochar derived from corncob was prepared via facile NH4Cl-aided hydrothermal carbonization and used for the simultaneous adsorption of divalent copper (Cu(II)) and hexavalent chromium (Cr(VI)) in aqueous solutions. During hydrothermal carbonization, NH4Cl played a vital role as the porogen and N dopant, which contributed to the efficient adsorption affinity toward coexisting Cu(II) and Cr(VI). The theoretical maximum adsorption capacities of the N-doped hydrochar were determined to be 1.223 mmol/g for Cu(II) and 1.995 mmol/g for Cr(VI), which were much better than those of the pristine hydrochar. Furthermore, in the binary-component system, the synergistic effect between Cu(II) and Cr(VI) significantly promoted the adsorption affinity of N-doped hydrochar, resulting in adsorption capacities for Cu(II) and Cr(VI) 9.48 and 1.92 times higher than those of the single-component system, respectively. A series of adsorption experiments and spectroscopic analyses demonstrated that multiple mechanisms, including electrostatic shielding, cation bridging, and redox reactions, mutually contributed to the synergistic effect in the adsorption of coexisting Cu(II) and Cr(VI). Overall, the N-doped hydrochar proved to be effective in simultaneously removing both cationic and anionic heavy metal pollutants.
Collapse
Affiliation(s)
- Heegon Kim
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seon Yong Lee
- Department of Earth and Environmental Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jae-Woo Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Energy and Environmental Engineering, KIST School, Korea University of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Kyung-Won Jung
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
29
|
Wu M, Teng X, Liang X, Zhang Y, Huang Z, Yin Y. Supporting nanoscale zero-valent iron onto shrimp shell-derived N-doped biochar to boost its reactivity and electron utilization for selenite sequestration. CHEMOSPHERE 2023; 319:137979. [PMID: 36736475 DOI: 10.1016/j.chemosphere.2023.137979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 12/05/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Nanoscale zero-valent iron (nZVI) has been widely used in the reductive removal of contaminants from water, yet it still fights against the inherent passive cover and the raise of medium pH. In this study, nZVI was supported onto a nitrogen-doped biochar (NBC) that was prepared by pyrolyzing shrimp shell for efficiently sequestrating aqueous selenite (Se(IV)). The resultant composite (NBC-nZVI) revealed a higher reactivity and electron utilization efficiency (EUE) than the bare nZVI in Se(IV) sequestration because of the positive charge, the buffering effect and the good conductivity of NBC. The kinetic rate and EUE of NBC-nZVI were increased by 143.4% and 15.3% compared to the bare nZVI, respectively, at initial pH of 3.0. The high removal capacity of 605.4 mg g-1 for NBC-nZVI was obtained at Se(IV) concentration of 1000 mg L-1, initial pH of 3.0, NBC-nZVI dosage of 1.0 g L-1 and contact time of 12 h. Moreover, NBC-nZVI exhibited a strong tolerance to solution pHs and coexisting compounds (e.g., humic acid) and could reduce the Se(IV) concentration from 5.0 mg L-1 to below the limit of drinking water (50 μg L-1) in real-world samples. This work exemplified a utilization of shrimp shell-derived NBC to simultaneously enhance the reactivity and EUE of nZVI for reductively removing contaminants.
Collapse
Affiliation(s)
- Mingyu Wu
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xin Teng
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xingtang Liang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China.
| | - Yanjun Zhang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yanzhen Yin
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China.
| |
Collapse
|
30
|
Zhu Y, Shi W, Gao H, Li C, Liang W, Nie Y, Shen C, Ai S. A novel aminated lignin/geopolymer supported with Fe nanoparticles for removing Cr(VI) and naphthalene: Intermediates promoting the reduction of Cr(VI). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161379. [PMID: 36621477 DOI: 10.1016/j.scitotenv.2022.161379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
A novel, inexpensive and eco-friendly aminated lignin/geopolymer supported with Fe nanoparticles (Fe@N-L-GM) composite was successfully synthesized using kaolin and lignin as the major precursors. The prepared Fe@N-L-GM had larger specific surface area, rich oxygen-containing and nitrogen-containing functional groups, greater electron transfer ability and interconnective porous structure. The Fe@N-L-GM could be employed as the adsorbent of Cr(VI) and the activator of potassium peroxymonosulfate (PMS) for treatment of Cr(VI) and naphthalene (NAP) in wastewater. The adsorption and degradation results indicated that the maximum adsorption capacity of Cr(VI) could reach 65.83 mg g-1, whereas the maximum NAP degradation efficiency could reach 97.81 %. The adsorbed Cr(VI) was mostly converted to the low toxic Cr(III) through the reduction of electron donors such as Fe(II), amino and hydroxyl groups. The quenching experiment results confirmed that ·OH might be the crucial ROSs in mediating NAP degradation. In the simultaneous removal experiment of Cr(VI) and NAP, the Cr(VI) removal rate was significantly improved in the presence of NAP, while phenol as the degradation intermediate of NAP might be the main substance for promoting the reduction of Cr(VI). This work provided the theoretical foundation and a new type of material for the simultaneous removal of heavy metal and persistent organic pollutants (POPs).
Collapse
Affiliation(s)
- Yifan Zhu
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Weijie Shi
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Hu Gao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Changyu Li
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Wenxu Liang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Yongxin Nie
- College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Cong Shen
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Shiyun Ai
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| |
Collapse
|
31
|
Liu Z, He M, Tang L, Shao B, Liang Q, Wu T, Pan Y, Zhang X, Luo S, He Q, Ge L. Dual redox cycles of Mn(Ⅱ)/Mn(III) and Mn(III)/Mn(IV) on porous Mn/N co-doped biochar surfaces for promoting peroxymonosulfate activation and ciprofloxacin degradation. J Colloid Interface Sci 2023; 634:255-267. [PMID: 36535163 DOI: 10.1016/j.jcis.2022.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Mn and N co-doped biochar (Mn-N-TS) was prepared as an effective catalyst to activate peroxymonosulfate (PMS) for ciprofloxacin (CIP) degradation. As opposed to Mn-TS and N-TS, Mn-N-TS had more active sites containing N and Mn, as well as a greater specific surface area (923.733 m2 g-1). The Mn-N-TS exhibited excellent PMS activation ability. In the Mn-N-TS/PMS system, the CIP removal efficiency was 91.9% in 120 min. Mn and N co-doping could accelerate electron transfer between CIP and PMS molecules. Simultaneously, defect sites, graphitic N, pyridinic N, C═O groups, and Mn(II)/Mn(III)/Mn(IV) redox cycles acted as active sites to activate PMS and generate free radicals (OH, SO4- and 1O2). Furthermore, the Mn-N-TS/PMS system could effectively degrade CIP in a wide pH range, background substances, and actual water. Finally, a probable mechanism of PMS activation by Mn-N-TS was proposed. In conclusion, this work gave a novel direction for the rational design of Mn and N co-doped biochar.
Collapse
Affiliation(s)
- Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Miao He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiansheng Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Songhao Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lin Ge
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
32
|
Ahmad S, Liu L, Zhang S, Tang J. Nitrogen-doped biochar (N-doped BC) and iron/nitrogen co-doped biochar (Fe/N co-doped BC) for removal of refractory organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130727. [PMID: 36630878 DOI: 10.1016/j.jhazmat.2023.130727] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The presence of refractory organic pollutants (ROPs) in the ecosystem is a serious concern because of their impact on environmental constituents as well as their known or suspected ecotoxicity and adverse health effects. According to previous studies, carbonaceous materials, such as biochar (BC), have been widely used to remove pollutants from ecosystems owing to their desirable features, such as relative stability, tunable porosity, and abundant functionalities. Nitrogen (N)-doping and iron/nitrogen (Fe/N) co-doping can tailor BC properties and provide supplementary functional groups as well as extensive active sites on the N-doped and Fe/N co-doped BC surface, which is advantageous for interaction with and removal of ROPs. This review investigates the impact of N-doped and Fe/N co-doped BC on the removal of ROPs through adsorption, activation oxidation, and catalytic reduction due to the synergistic Fe, N, and BC features that modify the physicochemical properties, surface functional groups, and persistent free radicals of BC to aid in the degradation of ROPs. Owing to the attractive properties of N-doped and Fe/N co-doped BCs for the removal of ROPs, this review focuses and evaluates previous experimental investigations on the manufacturing (including precursors and influencing parameters during manufacturing) and characterizations of N-doped and Fe/N co-doped BCs. Additionally, the effective applications and mechanisms of N-doped and Fe/N co-doped BCs in adsorption, activation oxidation, and reductive remediation of ROPs are investigated herein. Moreover, the application of N-doped and Fe/N co-doped BC for progressive environmental remediation based on their effectiveness against co-pollutants, regeneration, stability, affordability, and future research prospects are discussed.
Collapse
Affiliation(s)
- Shakeel Ahmad
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Shanghai Institute of Pollution Control and Ecological Security, Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
33
|
Liu Y, Wang T, Song N, Wang Q, Wu Y, Zhang Y, Yu H. Synergistic reduction of Cr(VI) by graphite N and thiophene S of N, S-co-doped hydrochar derived from waste straw. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160360. [PMID: 36414056 DOI: 10.1016/j.scitotenv.2022.160360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
An efficient, simple, and inexpensive N, S-co-doped hydrochar (SNHC) was synthesized from waste straw by a one-pot hydrothermal process without calcination for the removal of Cr(VI). SNHC demonstrated excellent adsorption performance for Cr(VI) and high stability, achieving a high capacity of 171.33 mg/g (293 K, pH 2) and a capacity retention of 82.73 % after five cycles. The adsorption behavior was determined as a multilayer adsorption process based on chemisorption according to the simulation the results of Freundlich adsorption isotherms and pseudo-second-order models. The characterization of SNHC revealed that graphite N and thiophene S formed by the material were the effective active sites, functioning as electron donors to contribute a significant amount of electrons to reduce Cr(VI) to Cr(III). Therefore, next to electrostatic adsorption and complexation, the synergistic reduction of Cr(VI) by graphite N and thiophene S was the main mechanism for Cr(VI) removal. Additionally, density functional theory calculations indicated a low adsorption energy of thiophene S, which increased the attractive interaction between SNHC and Cr(VI) and played the most important role in reducing Cr(VI). The mechanism of the effect of graphite N and thiophene S on Cr(VI) removal not only offered a comprehensive perspective on the role of N, S co-doped mediation in hydrochar but also provided the basic theory for its practical application.
Collapse
Affiliation(s)
- Yuxin Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tianye Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, PR China
| | - Ningning Song
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, PR China
| | - Quanying Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, PR China
| | - Yuqing Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, PR China; College of Resources and Environment, Jilin Agricultural University, Changchun 130000, PR China
| | - Ying Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, PR China; School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongwen Yu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, PR China.
| |
Collapse
|
34
|
Gu C, Cai M, He P, Zhu J, Gan M. Biogenic carbon encapsulated iron oxides mediated oxalic acid for Cr(VI) reduction in aqueous: Efficient performance, electron transfer and radical mechanisms. CHEMOSPHERE 2023; 313:137557. [PMID: 36535500 DOI: 10.1016/j.chemosphere.2022.137557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Carbonaceous materials have a potential to mediated oxalic acid (OA) for Cr(VI) reduction, but the rational modification is needed for boosting the mediation of electron transfer. Herein, we utilized polyvinyl alcohol to envelop schwertmannite synthesized by Acidithiobacillus ferrooxidans biomineralization, and pyrolyzed them to obtain the carbon encapsulated iron oxides (C-2.0-Sch-PVA). SEM and TEM results demonstrated that a moderate calcination temperature would yield a neural network-like carbon encapsulated structure. C-2.0-Sch-PVA efficiently mediated OA to reduce Cr(VI), 98.4% of Cr(VI) (40 mg L-1) was reduced with 0.75 g L-1 C-2.0-Sch-PVA and 4 mM OA in 60 min. It still performed excellent results in a wide pH range, multiple anions and different water matrixes. The carbon encapsulated structure as electron shuttle mediated the electron transfer, and the O-moieties on its surface were a premise for initiating the Cr(VI) reduction process. The electron transfer from the inner iron oxides to the conjugated structure of the outer carbon shells facilitated Cr(VI) reduction as well. Moreover, OA raised the persistent free radicals' level in C-2.0-Sch-PVA as another important pathway for Cr(VI) reduction. Overall, C-2.0-Sch-PVA provides an excellent demonstration in the carbonaceous materials modification for mediating OA to reduce Cr(VI) in aqueous.
Collapse
Affiliation(s)
- Chunyao Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Miao Cai
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Peng He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
35
|
Yu C, Zhu X, Mohamed A, Dai K, Cai P, Liu S, Huang Q, Xing B. Enhanced Cr(VI) bioreduction by biochar: Insight into the persistent free radicals mediated extracellular electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129927. [PMID: 36152545 DOI: 10.1016/j.jhazmat.2022.129927] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/14/2022] [Accepted: 09/04/2022] [Indexed: 05/22/2023]
Abstract
Biochar can act as a shuttle to accelerate the extracellular electron transfer (EET) by exoelectrogens. However, it is poorly understood how the persistent free radicals (PFRs) in biochar affected EET and the redox reaction. Herein, the effects of the biochar and chitosan modified biochar (CBC) on the Cr(VI) bioreduction by Shewanella oneidensis MR-1 (MR-1) was investigated. Kinetic study indicated that the Cr(VI) bioreduction rate constant by MR-1 was increased by 1.8-33.7 folds in the presence of biochar, and by 2.7-60.2 folds in the presence of CBC, respectively. Moreover, Cr(VI) bioreduction rates increased with the decreasing pH. Results suggested that the electrostatic attraction between Cr(VI) and redox-active particles could accelerate the EET by c-cytochrome due to the promotion of the Cr(VI) migration from aqueous phase to biochar or CBC. Electron paramagnetic resonance analysis suggested that the PFRs affected the electron transfer from the ·O2- generated by MR-1 to Cr(VI) and accelerate the Cr(VI) bioreduction. Remarkably, in the presence of PFRs, this electron shuttling process was dependent on the non-metal-reducing respiratory pathway. Our results offer new insights that free radicals may be widely involved in the EET and strongly impact on the redox reaction in the environment.
Collapse
Affiliation(s)
- Cheng Yu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaoxi Zhu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Abdelkader Mohamed
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China; Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abou Zaabl 13759, Egypt
| | - Ke Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, PR China.
| | - Peng Cai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, PR China
| | - Qiaoyun Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
36
|
A novel multi-components hierarchical porous composite prepared from solid wastes for benzohydroxamic acid degradation. J Colloid Interface Sci 2023; 630:714-726. [PMID: 36347098 DOI: 10.1016/j.jcis.2022.10.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 11/08/2022]
Abstract
In this study, a novel carbon-wrapped-iron hierarchical porous catalyst (Fe/C-Mn800) was prepared from electrolytic manganese residue (EMR) and sewage sludge (SS), which showed outstanding degradation ability toward benzohydroxamic acid (BHA, nearly 90 % was removed within 60 min) with low metal leaching rate. Mechanism exploration found transition metal ions (Fe and Mn) can serve as electron acceptors and facilitate the generation of persistent free radicals (PFRs). These transition metal ions and PFRs mainly participated in the single-electron pathway via activating PMS to generate a large amount of reactive oxygen species (ROS). While the electron negative graphitic N and CO groups not only improve the electronegatively of catalyst, but also acted as the electron sacrificers to favor the electron transfer and directly oxidized the absorbed BHA through the ternary activated outer-sphere complexes. Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) analysis further demonstrated the crucial role of pre-adsorption during the degradation process. This work provided a deep insight into the degradation mechanism of metal/carbon composite and promising opportunity widened the horizon of the high-value utilization of EMR and SS.
Collapse
|
37
|
Xu Z, Gu H, Xiong M, Wang Y, Ma C, Gu S, Jin Y, Meng Y, Zhang D, Xie H, Chen W. Investigate the multipath erasure of nitrobenzene over nanoscale zero-valent-iron/N-doped biochar hybrid with extraordinary reduction performance. ENVIRONMENTAL RESEARCH 2023; 216:114724. [PMID: 36343712 DOI: 10.1016/j.envres.2022.114724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In this study, the facile carbothermal reduction method was enforced using urea as dopant to modify the structure and chemical composition of nanoscale zero-valent-iron/biochar hybrid thereby boosting its reduction performance. Through fine-tuning the N-doped amount, the optimal nZVI/N-doped BC was obtained, which exhibited more active sites (nZVI, persistent free radicals (PFRs), pyrrolic-N) and superior electrochemical conductivity. With these blessings, the electrons originating from galvanic cell reaction could zip along the highway within the hybrid. Taking nitrobenzene (NB) as the target pollutant, the quantitative analysis revealed that the NB reduction and adsorption removal efficiency were dramatically improved by 2.42 and 2.78 times, respectively. What's more, combining the in-situ experimental detection and theoretical calculations, unexpected NB reductive multipath with respect to PFRs and pyrrolic-N accelerating the Fe3+/Fe2+ cycle within the nZVI/N-doped BC system was decoded. The enhancement of Fe3+/Fe2+ cycle improved the electron utilization efficiency and maintained the reduction reactivity of the hybrid. This work raised awareness of the mechanisms regarding the reduction performance of nZVI/N-doped BC elevated by N-doped and the pollutant reductive pathway within the system, uncovered the dusty roles of PFRs and N-species during the reduction process.
Collapse
Affiliation(s)
- Zhihua Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China.
| | - He Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Mengmeng Xiong
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Yongheng Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Chenyang Ma
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Siyi Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Ya Jin
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Yaojia Meng
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Daofang Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310003, China
| | - Weifang Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China.
| |
Collapse
|
38
|
Qu J, Zhang X, Bi F, Wang S, Zhang X, Tao Y, Wang Y, Jiang Z, Zhang Y. Polyethylenimine-grafted nitrogen-doping magnetic biochar for efficient Cr(VI) decontamination: Insights into synthesis and adsorption mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120103. [PMID: 36075332 DOI: 10.1016/j.envpol.2022.120103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Herein, polyethylenimine (PEI)-grafted nitrogen (N)-doping magnetic biochar (PEIMW@MNBCBM) was synthesized, and characterization results showed that the microwave-assisted PEI grafting and ball milling-assisted N doping introduced abundant amino, pyridine N and pyrrole N structures onto biochar, which possessed high affinity to Cr(VI) in the anion form. The as-prepared PEIMW@MNBCBM displayed pH-dependence adsorption performance and high tolerance to co-existing ions with maximum uptake capacity of Cr(VI) identified as 183.02 mg/g. Furthermore, PEIMW@MNBCBM could bind Cr(VI) through electrostatic attraction, complexion, precipitation, reduction and pore filling. Especially, effective reduction of Cr(VI) was ascribed to cooperative electron transfer of partial oxygen-containing functional groups, intramolecular pyridine/pyrrole N, protonated amino and Fe2+ on the adsorbent, while oxygen-containing and amino functional groups from N-doping biochar and PEI synergistically complexed Cr(III) via providing lone pair electrons to form coordinate bonds. Furthermore, the stable precipitation was formed between Fe3+ and Cr(III). Additionally, the Cr(VI) elimination efficiency could maintain 95.83% even after four adsorption-desorption cycles, suggesting PEIMW@MNBCBM as a high-performance adsorbent for Cr(VI) contaminated water remediation.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiubo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Siqi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xinmiao Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
39
|
Huang X, Niu X, Zhang D, Li X, Li H, Wang Z, Lin Z, Fu M. Fate and mechanistic insights into nanoscale zerovalent iron (nZVI) activation of sludge derived biochar reacted with Cr(VI). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115771. [PMID: 35982569 DOI: 10.1016/j.jenvman.2022.115771] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
While nanoscale zero-valent iron modified biochar (nZVI-BC) have been widely investigated for the removal of heavy metals, the corrosion products of nZVI and their interaction with heavy metals have not been revealed yet. In this paper, nZVI-BC was synthesized and applied for the removal of Cr(VI). Batch experiments indicated that the adsorption of Cr(VI) fit Langmuir isotherm, with the maximum removal capacity at 172.4 mg/g at pH 2.0. SEM-EDS, BET, XRD, FT-IR, Raman and XPS investigation suggested that reduction of Cr(VI) to Cr(III) was the major removal mechanism. pH played an important role on the corrosion of nZVI-BC, at pH 4.5 and 2.0, FeOOH and Fe3O4 were detected as the major iron oxide, respectively. Therefore, FeOOH-BC and Fe3O4-BC were further prepared and their interaction with Cr were studied. Combining with DFT calculations, it revealed that Fe3O4 has higher adsorption capacity and was responsible for the effective removal of Cr(VI) through electrostatic attraction and reduction under acidic conditions. However, Fe3O4 will continue to convert to the more stable FeOOH, which is the key to for the subsequent stabilization of the reduced Cr(III). The results showed that the oxide corrosion products of nZVI-BC were subjected to the environment, which will eventually affect the fate and transport of the adsorbed heavy metal.
Collapse
Affiliation(s)
- Xuyin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China.
| | - Xiaoqin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Haoshen Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Ziyuan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhang Lin
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
40
|
Wu L, Li Z, Cheng P, She Y, Wang W, Tian Y, Ma J, Sun Z. Efficient activation of peracetic acid by mixed sludge derived biochar: Critical role of persistent free radicals. WATER RESEARCH 2022; 223:119013. [PMID: 36041369 DOI: 10.1016/j.watres.2022.119013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Peracetic acid (PAA)-based advanced oxidation processes (AOPs) were increasingly identified as the alternative scheme in wastewater treatment. Cost-effective and easily available catalyst for activation of PAA was in urgent demand for promoting engineering application process. In this study, a new type of biochar catalyst derived from pyrolysis of mixture of primary sludge (PSD) and secondary sludge (SSD) was prepared and showed effective PAA activation ability. The degradation of p-chlorophenol (4-CP) improved with PAA activation by mixed sludge derived biochar (PS-SDBC) than secondary sludge derived biochar (S-SDBC) and primary sludge derived biochar (P-SDBC), and the highest removal efficiency achieved by PS-SDBC with the PSD/SSD ratio of 5/5 (kobs=0.057 1/(M·min), pH 9). Correlation analysis firstly indicated that persistent free radicals (PFRs) rather than chemical composition and material structure dominated PAA activation and organic radicals (RO•) was proved to be the major reactive species through electron paramagnetic resonance (EPR) detection. The mixture of PSD and SSD caused the synergy of inorganic metals and organic matters through pyrolysis processes, resulting in larger specific surface area (SSA) (110.71 m2/g), more abundant electron-donating groups (e.g., C = O, -OH) and massive defects (ID/IG = 1.519) of PS-SDBC than P-SDBC and S-SDBC, which eventually promoted PFRs formation. A fascinating phenomenon was observed in PS-SDBC/PAA system that the active sites of PFRs could be regenerated by RO• attacking onto PS-SDBC, which contributed to the wide pH applicability and continuous stability of PS-SDBC/PAA system in practical wastewater treatment. This study not only significantly deepened the understanding of the reaction mechanism between PAA and biochar, but also provided a potential PAA-based AOPs for micropollutants removal in wastewater.
Collapse
Affiliation(s)
- Liying Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhuoyu Li
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Pingtong Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuecheng She
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
41
|
Chen D, Du X, Chen K, Liu G, Jin X, Song C, He F, Huang Q. Efficient removal of aqueous Cr(VI) with ferrous sulfide/N-doped biochar composites: Facile, in-situ preparation and Cr(VI) uptake performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155791. [PMID: 35561923 DOI: 10.1016/j.scitotenv.2022.155791] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
FeS nanoparticles loaded on nitrogen-doped biochar (FeS/BNC) were fabricated by pyrolyzing coffee husks pretreated with Mohr's salt. The nitrogen doping and FeS loading of biochar are simultaneously achieved in one-pot pyrolysis. The elemental analysis, SEM, TEM, XRD, XPS, Raman, FTIR and N2 adsorption-desorption technologies were used to characterize the composition and structure of FeS/NBC. The appraisement for removing aqueous Cr(VI) testified that FeS/NBC offered a synergistic scavenging effect of Cr(VI) by FeS and NBC. The effect of crucial experimental conditions (FeS/NBC dosage, foreign ions, initial pH and concentration of Cr(VI) solution) were investigated. The Cr(VI) removal capacity was as high as 211.3 ± 26 mg g-1 under the optimized condition. The practicability of FeS/NBC was examined by using simulated actual samples from tap water and lake water. The mechanism examination showed that surface adsorption/reduction and solution reduction were implicated in the removal of Cr(VI). The current work introduces a novel FeS/NBC composite prepared by an in situ pyrolysis method with excellent potential for chromium pollution remediation.
Collapse
Affiliation(s)
- Dong Chen
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Xiaohu Du
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Kunyuan Chen
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Guangrong Liu
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Xin Jin
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Chuanfu Song
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Feidei He
- School of Agriculture, Yunnan University, Kunming 650091, PR China.
| | - Qiang Huang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
42
|
Geng J, Liang Q, Yu W, Chen W, Lu G, Luo H. Enhanced removal of Cr(VI) from aqueous solutions by polymer-mediated nitrogen-rich reduced graphene oxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129184. [PMID: 35739715 DOI: 10.1016/j.jhazmat.2022.129184] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The efficient removal of heavy metal by rationally designed carbon-based adsorbents is a key challenge in the field of water purification. Herein, we report a nitrogen-enriched lignosulfonate exfoliated graphene oxide (N-LEGO) for hexavalent chromium (Cr(VI)) removal from aqueous solution. The nitrogen content of N-LEGO reached 13.28%, and the ratio of N-bonding configurations (pyri-N:amine-N:pyrro-N:grap-N) was 2.3:1.6:1:2.3. For Cr(VI) with initial concentration of 70 mg L-1 under pH= 2, the residuary concentration after treated by N-LEGO was close to 0.004 mg L-1, which meets the industrial wastewater discharge standard. The Cr(VI) adsorption behavior on N-LEGO can be fitted with the pseudo-second-order kinetics and Freundlich isotherm model well. The adsorption mechanism of Cr(VI) on N-LEGO includes anions electrostatic attraction, reduction and surface chelation. Density functional theory (DFT) simulations showed that N atoms doping was feasible and thermodynamically stable, meanwhile the N-doped system was easier to adsorb Cr2O72- than HCrO4-. The findings of this work can provide a new idea for the development of N-doped carbon-based adsorbents for the removal of highly toxic Cr(VI) from aqueous solutions.
Collapse
Affiliation(s)
- Junjie Geng
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Qianwei Liang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China.
| | - Wenyi Yu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Wei Chen
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou, Guangdong 510006, China
| | - Hanjin Luo
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
43
|
Zhu S, Mo Y, Luo W, Xiao Z, Jin C, Qiu R. Aqueous aggregation and deposition kinetics of fresh and carboxyl-modified nanoplastics in the presence of divalent heavy metals. WATER RESEARCH 2022; 222:118877. [PMID: 35872518 DOI: 10.1016/j.watres.2022.118877] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The presence of heavy metals alters the colloidal stability and deposition of nanoplastics (NPs) in urban waters. Such processes are important to assess the mobility and fate of NPs and their associated heavy metals. Up to date, few studies have reported the impact of heavy metals on the colloidal behaviors of NPs and the involved mechanisms. In the study, time-resolved dynamic light scattering (DLS) and quartz crystal microbalance with dissipation (QCM-D) methods were used to assess the aggregation and deposition kinetics of polystyrene nanospheres with divalent heavy metals. For comparison, carboxyl-modified polystyrene nanospheres were used. Results reveal that heavy metals destabilized NPs more significantly than calcium ions. Spectroscopy and transmission electron microscopy analysis propose that heavy metals destabilized NPs via inner-sphere coordination with carboxyl groups and cation-π interactions, further leading to the formation of different dimensional aggregates. QCM-D results suggest that the deposition rate, irreversibility, and film compactness of NPs on silica surfaces first increased but further decreased as heavy metal concentration increased. Such deposition behaviors depended on the bridging effects between NPs and silica and aggregation-induced diffusion limitation. In that case, the destabilization and retention ability of heavy metals for NPs were related to their electronegativity and hydration shell thickness. In urban waters, the presence of natural organic matter (NOM) decreased the destabilization and retention ability of heavy metals, whereas heavy metals with environmentally relevant concentrations still enhanced the aggregation and deposition of NPs compared with other environmental cations. This study highlights the impact of heavy metal property on the colloidal behaviors of NPs, thus deepening our understanding of the mobility and fate of NPs associated with heavy metals in urban waters.
Collapse
Affiliation(s)
- Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yijun Mo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wendan Luo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zihan Xiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
44
|
Shao B, Liu Z, Tang L, Liu Y, Liang Q, Wu T, Pan Y, Zhang X, Tan X, Yu J. The effects of biochar on antibiotic resistance genes (ARGs) removal during different environmental governance processes: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129067. [PMID: 35650729 DOI: 10.1016/j.jhazmat.2022.129067] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 05/01/2022] [Indexed: 05/24/2023]
Abstract
Antibiotic resistance genes (ARGs) pollution has been considered as one of the most significant emerging environmental and health challenges in the 21st century, many efforts have been paid to control the proliferation and dissemination of ARGs in the environment. Among them, the biochar performs a positive effect in reducing the abundance of ARGs during different environmental governance processes and has shown great application prospects in controlling the ARGs. Although there are increasing studies on employing biochar to control ARGs, there is still a lack of review paper on this hotspot. In this review, firstly, the applications of biochar to control ARGs in different environmental governance processes were summarized. Secondly, the processes and mechanisms of ARGs removal promoted by biochar were proposed and discussed. Then, the effects of biochar properties on ARGs removal were highlighted. Finally, the future prospects and challenges of using biochar to control ARGs were proposed. It is hoped that this review could provide some new guidance for the further research of this field.
Collapse
Affiliation(s)
- Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiansheng Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
45
|
Zhang M, Bradford SA, Klumpp E, Šimůnek J, Wang S, Wan Q, Jin C, Qiu R. Significance of Non-DLVO Interactions on the Co-Transport of Functionalized Multiwalled Carbon Nanotubes and Soil Nanoparticles in Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10668-10680. [PMID: 35731699 DOI: 10.1021/acs.est.2c00681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Derjaguin-Landau-Verwey-Overbeek (DLVO) theory is typically used to quantify surface interactions between engineered nanoparticles (ENPs), soil nanoparticles (SNPs), and/or porous media, which are used to assess environmental risk and fate of ENPs. This study investigates the co-transport behavior of functionalized multiwalled carbon nanotubes (MWCNTs) with positively (goethite nanoparticles, GNPs) and negatively (bentonite nanoparticles, BNPs) charged SNPs in quartz sand (QS). The presence of BNPs increased the transport of MWCNTs, but GNPs inhibited the transport of MWCNTs. In addition, we, for the first time, observed that the transport of negatively (BNPs) and positively (GNPs) charged SNPs was facilitated by the presence of MWCNTs. Traditional mechanisms associated with competitive blocking, heteroaggregation, and classic DLVO calculations cannot explain such phenomena. Direct examination using batch experiments and Fourier transform infrared (FTIR) spectroscopy, asymmetric flow field flow fractionation (AF4) coupled to UV and inductively coupled plasma mass spectrometry (AF4-UV-ICP-MS), and molecular dynamics (MD) simulations demonstrated that MWCNTs-BNPs or MWCNT-GNPs complexes or aggregates can be formed during co-transport. Non-DLVO interactions (e.g., H-bonding and Lewis acid-base interaction) helped to explain observed MWCNT deposition, associations between MWCNTs and both SNPs (positively or negatively), and co-transport. This research sheds novel insight into the transport of MWCNTs and SNPs in porous media and suggests that (i) mutual effects between colloids (e.g., heteroaggregation, co-transport, and competitive blocking) need to be considered in natural soil; and (ii) non-DLVO interactions should be comprehensively considered when evaluating the environmental risk and fate of ENPs.
Collapse
Affiliation(s)
- Miaoyue Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Waihuan East Road, No. 132, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Scott A Bradford
- Sustainable Agricultural Water Systems (SAWS) Unit, USDA, ARS, UC Davis, 239 Hopkins Road, Davis, California 95616, United States
| | - Erwin Klumpp
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Jiri Šimůnek
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Waihuan East Road, No. 132, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Quan Wan
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-sen University, Waihuan East Road, No. 132, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Waihuan East Road, No. 132, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, P. R. China
| |
Collapse
|
46
|
Qu J, Zhang W, Bi F, Yan S, Miao X, Zhang B, Wang Y, Ge C, Zhang Y. Two-step ball milling-assisted synthesis of N-doped biochar loaded with ferrous sulfide for enhanced adsorptive removal of Cr(Ⅵ) and tetracycline from water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119398. [PMID: 35525521 DOI: 10.1016/j.envpol.2022.119398] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/24/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen-doped biochar loaded with FeS (FeS@NBCBM) was synthesized by two-step ball milling processes. Characterization results revealed that N-doping process successfully introduced pyridinic, pyrrolic, and graphitic N structures, and FeS was subsequently embedded in N-doped biochar (NBCBM). The resultant FeS@NBCBM presented predominant adsorption capacity for Cr(VI) (194.69 mg/g) and tetracycline (TC, 371.29 mg/g) compared with BC (27.28 and 37.89 mg/g) and NBCBM (71.26 and 81.26 mg/g). In addition, the Cr(VI)/TC elimination process by FeS@NBCBM was basically stable with multiple co-existing ions with slight decrease on adsorption performance after three desorption-regeneration cycles. Most importantly, FeS@NBCBM was found to achieve Cr(VI) elimination not only by electrostatic attraction, ion exchange and complexation, but also by electrons-triggered reduction provided by different species of N, Fe2+ as well as S(Ⅱ). Meantime, pore filling, hydrogen bonding, and π-π stacking interactions were demonstrated to contribute to TC adsorption. These results suggested the co-modification of N-doping and FeS loading by ball milling as an innovative decorating method for biochar to adsorptive purification of Cr(VI) and TC-contaminated water.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Weihang Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Shaojuan Yan
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150030, China
| | - Xuemei Miao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China.
| |
Collapse
|
47
|
Liu M, Zhao Z, Lu Q, Yu W. Release of dissolved organic carbon from biochar and formation of humic-like component during photoreaction: Effects of Ca 2+ and pH. WATER RESEARCH 2022; 219:118616. [PMID: 35597217 DOI: 10.1016/j.watres.2022.118616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The photochemical reactivity of dissolved organic carbon from biochar (DBC) was higher than dissolved organic matter (DOM), but the photo-transformation of DBC in the presence of DOM under various conditions are poorly understood. Here, we studied the effects of Ca2+ and pH on the photo-induced changes in the optical and structural properties of DOM in source water with biochar. During DBC photobleaching, the DBC released from bulk DBC while the humic-like component formed. The release of DBC and the formation of humic-like component were inhibited by the presence of Ca2+ attributed to the inhibition of triplet excited state of DOM (3DOM*) and singlet oxygen (1O2) generation. Moreover, the 3DOM* yield increased while the 1O2 generation decreased as pH decreased from neutral, resulting in the increased formation of humic-like component and decreased release of DBC. The characterizations of ultrafiltration-isolated colloidal DOM after irradiation showed that hydrophilicity and the colloidal size of released DBC decreased in the presence of Ca2+. Additionally, the colloidal size of released DBC decreased while the hydrophilicity of DBC enhanced with increasing pH from neutral. This study not only gives insight into the DBC photo-transformation in the presence of DOM under various conditions but also reveals the influence of DBC on the variation of DOM properties during irradiation.
Collapse
Affiliation(s)
- Minmin Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiying Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of forestry, Northeast Forestry University, Harbin 150040, China
| | - Qingxuan Lu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
48
|
Gao B, Zhu S, Gu J, Liu Y, Yi X, Zhou H. Superoxide radical mediated Mn(III) formation is the key process in the activation of peroxymonosulfate (PMS) by Mn-incorporated bacterial-derived biochar. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128549. [PMID: 35220118 DOI: 10.1016/j.jhazmat.2022.128549] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Biochar was used as a heterogeneous activator for peroxymonosulfate (PMS), and the activation performance strongly depended on the structure, functional groups, and modification of the biochar. In this study, a new type of modified biochar was synthesized by utilizing the Mn(II) adsorption capacity of bacteria. After one-step pyrolysis of Mn(II)-adsorbed bacterial cells at 800 °C, a Mn-incorporated bacterial-derived biochar (Mn-BBC) was successfully produced. It exhibited structural heterogeneity, with MnO located at the surface of the BBC matrix, as shown on the result of SEM and XRD. Compared to BBC, Mn-BBC showed a 10-fold increase (0.0727 min-1 versus 0.0069 min-1) of pollutant removal rate. In addition, it also showed anti-interference capacity against common water matrix (except 10 mM CO32-) and great stability/reusability. Chemical quenching, electron spin resonance, and pyrophosphate trapping indicated an indirect but important role of the superoxide, formed during the self-decomposition of PMS. The MnO on Mn-BBC can be oxidized by superoxide to produce surface Mn(III), which then binds to PMS and forms a surface complex. This complex promotes electron transfer from the pollutant to the Mn-BBC, facilitating the oxidation of the contaminants. Overall, this study confirmed the PMS activation capacity and mechanism of Mn-BBC, which expands the application of BBC-based materials derived from metal-adsorbed microbes.
Collapse
Affiliation(s)
- Bixia Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Simeng Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Jialiang Gu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China.
| |
Collapse
|
49
|
Wan Z, Xu Z, Sun Y, Zhang Q, Hou D, Gao B, Khan E, Graham NJD, Tsang DCW. Stoichiometric carbocatalysis via epoxide-like C-S-O configuration on sulfur-doped biochar for environmental remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128223. [PMID: 35063837 DOI: 10.1016/j.jhazmat.2022.128223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Heteroatom doping is a promising technique to enhance biochar for effective environmental remediation. However, development of electroactive heteroatom-doped biochars, e.g., sulfur-doped biochar, has been hindered due to complex nature of non-stoichiometric biomass-derived carbon and changeable electrochemical state of dopants. Herein, we produced a series of wood waste-derived biochars with customized levels of minerals and redox-active moieties, aiming to unravel the crucial factors for sulfur doping. Calcium (Ca) in biochar was found to preferentially coordinate with sulfur to form inactive inorganic sulfur minerals (i.e., CaSO4 and CaS) with inferior catalytic reactivity. After diminishing the inherent Ca minerals beforehand, we could introduce surface phenoxyl-type radicals (C-O•) and vacancy defects on the biochar to develop an electrophilic C-S-O bonding configuration, which guaranteed a high affinity towards peroxymonosulfate (PMS, 2.08 mM g-1, 30 min) and efficient removal of bisphenol A (BPA, 91.1%, 30 min). Scavenging experiments and in-situ Raman analyses indicated that the epoxide-like C-S-O structure induced nucleophilic addition of PMS to generate surface-bound singlet oxygen (1O2, major) and hydroxyl radicals (•OH, minor) through a preservative and stoichiometric interfacial reaction. Overall, the proposed approach overcomes the major hurdles in science-informed fabrication of sulfur-doped biochar and advances its development for environmental remediation.
Collapse
Affiliation(s)
- Zhonghao Wan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qiaozhi Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154, USA
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
50
|
Jiang L, Chen Y, Wang Y, Lv J, Dai P, Zhang J, Huang Y, Lv W. Contributions of Various Cd(II) Adsorption Mechanisms by Phragmites australis-Activated Carbon Modified with Mannitol. ACS OMEGA 2022; 7:10502-10515. [PMID: 35382289 PMCID: PMC8973121 DOI: 10.1021/acsomega.2c00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/07/2022] [Indexed: 05/16/2023]
Abstract
Due to its high toxicity, persistence, and bioaccumulation in the food chain, controlling cadmium (Cd) pollution in wastewater is urgent. Activated carbon is a popular material for removing Cd. To improve the Cd(II) adsorption efficiency by increasing the number of oxygen-containing functional groups, Phragmites australis-activated carbon (PAAC) was modified with mannitol at a low temperature (150 °C). The textural and chemical characteristics of PAAC and modified PAAC (M-PAAC) were analyzed by surface area analysis, elemental analysis, Boehm's titration, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Batch adsorption experiments were conducted to investigate the influence of Cd(II) concentration, contact time, ionic strength, and pH on Cd(II) adsorption. The main adsorption mechanisms of Cd(II) on activated carbon were quantitatively calculated. The results showed that mannitol modification slightly decreased the S BET (5.30% of PAAC) and increased the content of carboxyl, lactone, and phenolic groups (total increase of 43.96% with PAAC), which enhanced the adsorption capacity of PAAC by 58.59%. The adsorption isotherms of PAAC and M-PAAC were described well using the Temkin model, while the intraparticle diffusion model fitted the Cd(II) adsorption kinetics best. Precipitation with minerals was a crucial factor for Cd(II) adsorption on activated carbon (50.40% for PAAC and 40.41% for M-PAAC). Meanwhile, the Cd(II) adsorption by M-PAAC was also dominated by complexation with oxygen-containing functional groups (33.60%). This research provides a method for recovering wetland plant biomass to prepare activated carbon and efficiently treat Cd-containing wastewater.
Collapse
Affiliation(s)
- Li Jiang
- School
of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Yating Chen
- School
of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Yifei Wang
- School
of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Jiayang Lv
- School
of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Peng Dai
- Department
of Civil & Environmental Engineering, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Jian Zhang
- College
of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Ying Huang
- School
of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Wenzhou Lv
- School
of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|