1
|
Yan C, Liu L, Zhang T, Hu Y, Pan H, Cui C. A comprehensive review on human enteric viruses in water: Detection methods, occurrence, and microbial risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136373. [PMID: 39531817 DOI: 10.1016/j.jhazmat.2024.136373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Human enteric viruses, such as norovirus, adenovirus, rotavirus, and enterovirus, are crucial targets in controlling biological contamination in water systems worldwide. Due to their small size and low concentrations in water, effective virus concentration and detection methods are essential for ensuring microbial safety. This paper reviews the typical and innovative methods for concentrating and detecting human enteric viruses, highlights viral contamination levels across different water bodies, and discusses the removal efficiencies of virus through various treatment technologies. The application and current gaps of quantitative microbial risk assessment (QMRA) for evaluating the risks of human enteric viruses is also explored. Innovative methods such as digital polymerase chain reaction and isothermal amplification show promise in sensitivity and convenience, however, distinguishing between infectious and non-infectious viruses should be a key focus of future detection techniques. The highest concentrations of human enteric viruses were detected in wastewater, ranging from 103 to 106 copies/L, while drinking water showed significantly lower concentrations, often below 102 copies/L. QMRA studies suggest that exposure to human enteric viruses, whether through contaminated drinking water, occupational contact, or accidental wastewater discharge, could result in a life expectancy of 1.96 × 10-4 to 4.53 × 10-1 days/year.
Collapse
Affiliation(s)
- Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lingli Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingyuan Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hongchen Pan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Zhao H, Zheng J, Huang W, He Z, Huang F, Zhang L, Zhong T, Li Y, Xia D, Shu L, He C. "Nano knife" for efficient piezocatalytic inactivation of amoeba spores and their intracellular bacteria: Synergetic effect between physical damage and chemical oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136387. [PMID: 39500191 DOI: 10.1016/j.jhazmat.2024.136387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 12/01/2024]
Abstract
Microbial interactions between infectious agents severely interfere with the disinfection process, and current disinfection methods are unable to effectively inactivate intracellular pathogens, posing a new threat to drinking water safety. In this study, we first reported the high efficiency of piezocatalysis in inactivating amoebae and their intracellular bacteria. Results showed that the inactivation rates of the MoS2/rGO piezocatalytic system for amoebic spores and their intracellular bacteria were 4.18 and 5.02-log, respectively, within 180 min. Based on scavenger studies and ESR tests, the efficient inactivation of pathogens can be attributed to the generation of reactive oxygen species (ROS), and different pathogens exhibit varying tolerances to distinct ROS. Moreover, TEM analysis revealed that the sharp edge of MoS2/rGO was conducive to the physical cutting of amoeba's cell wall and membrane, promoting the attack of ROS and ensuring a more thorough deactivation. Additionally, the intracellular ROS produced by amoebae is not only conducive to the inactivation of amoebae but also the main reason for the inactivation of bacteria in spores. This study provides a new solution for the inactivation of amoeba spores and their intracellular bacteria and emphasizes the high efficiency of the synergistic effect of physical damage and chemical oxidation.
Collapse
Affiliation(s)
- Huinan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianyi Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenzhen He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fan Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Tao Zhong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yadi Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| |
Collapse
|
3
|
Chandran S, Gibson KE. Utilizing Zebrafish Embryos for Replication of Tulane Virus: A Human Norovirus Surrogate. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:470-478. [PMID: 39179704 PMCID: PMC11525437 DOI: 10.1007/s12560-024-09610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The zebrafish larvae/embryo model has been shown to support the replication of seven strains (G1.7[P7], GII.2[P16], GII.3[P16], GII.4[P4], GII.4[P16], GII.6[P7], and GII.17[P13]) of human norovirus (HuNoV). However, due to challenges in consistently obtaining HuNoV-positive stool samples from clinical sources, evaluating HuNoV surrogates in this model is highly valuable. This study assesses the potential of zebrafish embryos and larvae as a model for Tulane virus (TuV) replication. Three infection methods were examined: microinjection, immersion, and feeding. Droplet digital PCR was used to quantify viral RNA across all three infection methods. Microinjection of 3 nL of TuV into zebrafish embryos (< 6-h post-fertilization) resulted in significant replication, with viral RNA levels reaching 6.22 logs at 4-day post-infection. In contrast, the immersion method showed no replication after immersing 4-day post-fertilization (dpf) larvae in TuV suspension for 6 h. Similarly, no replication was observed with the feeding method, where Paramecium caudatum loaded with TuV were fed to 4 dpf larvae. The findings indicate that the zebrafish embryo model supports TuV replication through the microinjection method, suggesting that TuV may serve as a useful surrogate for studying HuNoV pathogenesis. Additionally, TuV can be utilized in place of HuNoV in method optimization studies using the zebrafish embryo model, circumventing the limited availability of HuNoV.
Collapse
Affiliation(s)
- Sahaana Chandran
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR, 72704, USA
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR, 72704, USA.
| |
Collapse
|
4
|
Fan S, Shen Y, Qian L. Social life of free-living amoebae in aquatic environment- comprehensive insights into interactions of free-living amoebae with neighboring microorganisms. Front Microbiol 2024; 15:1382075. [PMID: 38962117 PMCID: PMC11220160 DOI: 10.3389/fmicb.2024.1382075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Free-living amoebae (FLA) are prevalent in nature and man-made environments, and they can survive in harsh conditions by forming cysts. Studies have discovered that some FLA species are able to show pathogenicity to human health, leading to severe infections of central nervous systems, eyes, etc. with an extremely low rate of recovery. Therefore, it is imperative to establish a surveillance framework for FLA in environmental habitats. While many studies investigated the risks of independent FLA, interactions between FLA and surrounding microorganisms determined microbial communities in ecosystems and further largely influenced public health. Here we systematically discussed the interactions between FLA and different types of microorganisms and corresponding influences on behaviors and health risks of FLA in the environment. Specifically, bacteria, viruses, and eukaryotes can interact with FLA and cause either enhanced or inhibited effects on FLA infectivity, along with microorganism community changes. Therefore, considering the co-existence of FLA and other microorganisms in the environment is of great importance for reducing environmental health risks.
Collapse
Affiliation(s)
| | | | - Li Qian
- Department of Civil and Environmental Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, United States
| |
Collapse
|
5
|
Lin C, Li WJ, Li LJ, Neilson R, An XL, Zhu YG. Movement of protistan trophic groups in soil-plant continuums. Environ Microbiol 2023; 25:2641-2652. [PMID: 37547979 DOI: 10.1111/1462-2920.16477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Protists, functionally divided into consumers, phototrophs, and parasites act as integral components and vital regulators of microbiomes in soil-plant continuums. However, the drivers of community structure, assembly mechanisms, co-occurrence patterns, and the associations with human pathogens and different protistan trophic groups remain unknown. Here, we characterized the phyllosphere and soil protistan communities associated with three vegetables under different fertilization treatments (none and organic fertilization) at five growth stages. In this study, consumers were the most diverse soil protist group, had the role of inter-kingdom connector, and were the primary biomarker for rhizosphere soils which were subjected to decreasing deterministic processes during plant growth. In contrast, phototrophs had the greatest niche breadth and formed soil protistan hubs, and were the primary biomarkers for both bulk soils and the phyllosphere. Parasites had minimal input to microbial co-occurrence networks. Organic fertilization increased the relative abundance (RA) of pathogenic protists and the number of pathogen-consumer connections in rhizosphere soils but decreased protistan richness and the number of internal protistan links. This study advances our understanding of the ecological roles and potential links between human pathogens and protistan trophic groups associated with soil-plant continuums, which is fundamental to the regulation of soil-plant microbiomes and maintenance of environmental and human health.
Collapse
Affiliation(s)
- Chenshuo Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Jing Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Juan Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, Scotland, UK
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Lin C, Li LJ, Ren K, Zhou SYD, Isabwe A, Yang LY, Neilson R, Yang XR, Cytryn E, Zhu YG. Phagotrophic protists preserve antibiotic-resistant opportunistic human pathogens in the vegetable phyllosphere. ISME COMMUNICATIONS 2023; 3:94. [PMID: 37660098 PMCID: PMC10475086 DOI: 10.1038/s43705-023-00302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Food safety of leafy greens is an emerging public health issue as they can harbor opportunistic human pathogens (OHPs) and expose OHPs to consumers. Protists are an integral part of phyllosphere microbial ecosystems. However, our understanding of protist-pathogen associations in the phyllosphere and their consequences on public health remains poor. Here, we examined phyllosphere protists, human pathogen marker genes (HPMGs), and protist endosymbionts from four species of leafy greens from major supermarkets in Xiamen, China. Our results showed that Staphylococcus aureus and Klebsiella pneumoniae were the dominant human pathogens in the vegetable phyllosphere. The distribution of HPMGs and protistan communities differed between vegetable species, of which Chinese chive possessed the most diverse protists and highest abundance of HPMGs. HPMGs abundance positively correlated with the diversity and relative abundance of phagotrophic protists. Whole genome sequencing further uncovered that most isolated phyllosphere protists harbored multiple OHPs which carried antibiotic resistance genes, virulence factors, and metal resistance genes and had the potential to HGT. Colpoda were identified as key phagotrophic protists which positively linked to OHPs and carried diverse resistance and virulence potential endosymbiont OHPs including Pseudomonas nitroreducens, Achromobacter xylosoxidans, and Stenotrophomonas maltophilia. We highlight that phyllosphere protists contribute to the transmission of resistant OHPs through internalization and thus pose risks to the food safety of leafy greens and human health. Our study provides insights into the protist-OHP interactions in the phyllosphere, which will help in food safety surveillance and human health.
Collapse
Affiliation(s)
- Chenshuo Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Li-Juan Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Kexin Ren
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Alain Isabwe
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Le-Yang Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agriculture Research Organization, 7528809, Rishon Lezion, Israel
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
| |
Collapse
|
7
|
Wang L, Mai Y, Li S, Shu L, Fang J. Efficient inactivation of amoeba spores and their intraspore bacteria by solar/chlorine: Kinetics and mechanisms. WATER RESEARCH 2023; 242:120288. [PMID: 37419027 DOI: 10.1016/j.watres.2023.120288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Amoebae are widespread in water and serve as environment vectors for pathogens, which may threaten public health. This study evaluated the inactivation of amoeba spores and their intraspore bacteria by solar/chlorine. Dictyostelium discoideum and Burkholderia agricolaris B1qs70 were selected as model amoebae and intraspore bacteria, respectively. Compared to solar irradiation and chlorine, solar/chlorine enhanced the inactivation of amoeba spores and intraspore bacteria, with 5.1 and 5.2-log reduction at 20 min, respectively. The enhancement was similar in real drinking water by solar/chlorine under natural sunlight. However, the spore inactivation decreased to 2.97-log by 20 min solar/chlorine under oxygen-free condition, indicating that ozone played a crucial role in the spore inactivation, as also confirmed by the scavenging test using tert‑butanol to scavenge the ground-state atomic oxygen (O(3P)) as a ozone precursor. Moreover, solar/chlorine induced the shape destruction and structural collapse of amoeba spores by scanning electron microscopy. As for intraspore bacteria, their inactivation was likely ascribed to endogenous reactive oxygen species. As pH increased from 5.0 to 9.0, the inactivation of amoeba spores decreased, whereas that of intraspore bacteria was similar at pH 5.0 and 6.5 during solar/chlorine treatment. This study first reports the efficient inactivation of amoeba spores and their intraspore pathogenic bacteria by solar/chlorine in drinking water.
Collapse
Affiliation(s)
- Liping Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 China
| | - Yingwen Mai
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 China
| | - Shenzhou Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 China
| | - Longfei Shu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 China.
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 China.
| |
Collapse
|
8
|
Olive M, Daraspe J, Genoud C, Kohn T. Uptake without inactivation of human adenovirus type 2 by Tetrahymena pyriformis ciliates. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023. [PMID: 37376996 DOI: 10.1039/d3em00116d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Human adenoviruses are ubiquitous contaminants of surface water. Indigenous protists may interact with adenoviruses and contribute to their removal from the water column, though the associated kinetics and mechanisms differ between protist species. In this work, we investigated the interaction of human adenovirus type 2 (HAdV2) with the ciliate Tetrahymena pyriformis. In co-incubation experiments in a freshwater matrix, T. pyriformis was found to efficiently remove HAdV2 from the aqueous phase, with ≥4 log10 removal over 72 hours. Neither sorption onto the ciliate nor secreted compounds contributed to the observed loss of infectious HAdV2. Instead, internalization was shown to be the dominant removal mechanism, resulting in the presence of viral particles inside food vacuoles of T. pyriformis, as visualized by transmission electron microscopy. The fate of HAdV2 once ingested was scrutinized and no evidence of virus digestion was found over the course of 48 hours. This work shows that T. pyriformis can exert a dual role in microbial water quality: while they remove infectious adenovirus from the water column, they can also accumulate infectious viruses.
Collapse
Affiliation(s)
- Margot Olive
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Jean Daraspe
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Christel Genoud
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
9
|
Ashbolt NJ. Conceptual model to inform Legionella-amoebae control, including the roles of extracellular vesicles in engineered water system infections. Front Cell Infect Microbiol 2023; 13:1200478. [PMID: 37274310 PMCID: PMC10232903 DOI: 10.3389/fcimb.2023.1200478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Extracellular vesicles (EVs or exosomes) are well described for bacterial pathogens associated with our gastrointestinal system, and more recently as a novel mechanism for environmental persistence, dissemination and infection for human enteric viruses. However, the roles played by EVs in the ancient arms race that continues between amoebae and one of their prey, Legionella pneumophila, is poorly understood. At best we know of intracellular vesicles of amoebae containing a mix of bacterial prey species, which also provides an enhanced niche for bacteriophage infection/spread. Free-living amoeba-associated pathogens have recently been recognized to have enhanced resistance to disinfection and environmental stressors, adding to previously understood (but for relatively few species of) bacteria sequestered within amoebal cysts. However, the focus of the current work is to review the likely impacts of large numbers of respiratory-sized EVs containing numerous L. pneumophila cells studied in pure and biofilm systems with mixed prey species. These encapsulated pathogens are orders of magnitude more resistant to disinfection than free cells, and our engineered systems with residual disinfectants could promote evolution of resistance (including AMR), enhanced virulence and EV release. All these are key features for evolution within a dead-end human pathogen post lung infection. Traditional single-hit pathogen infection models used to estimate the probability of infection/disease and critical environmental concentrations via quantitative microbial risk assessments may also need to change. In short, recognizing that EV-packaged cells are highly virulent units for transmission of legionellae, which may also modulate/avoid human host immune responses. Key data gaps are raised and a previous conceptual model expanded upon to clarify where biofilm EVs could play a role promoting risk as well as inform a more wholistic management program to proactively control legionellosis.
Collapse
|
10
|
Cable J, Sun J, Cheon IS, Vaughan AE, Castro IA, Stein SR, López CB, Gostic KM, Openshaw PJM, Ellebedy AH, Wack A, Hutchinson E, Thomas MM, Langlois RA, Lingwood D, Baker SF, Folkins M, Foxman EF, Ward AB, Schwemmle M, Russell AB, Chiu C, Ganti K, Subbarao K, Sheahan TP, Penaloza-MacMaster P, Eddens T. Respiratory viruses: New frontiers-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1522:60-73. [PMID: 36722473 PMCID: PMC10580159 DOI: 10.1111/nyas.14958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS-CoV-2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. Developing effective treatment and prevention strategies often becomes a race against ever-evolving viruses that develop resistance, leaving therapy efficacy either short-lived or relevant for specific viral strains. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Respiratory Viruses: New Frontiers." Researchers presented new insights into viral biology and virus-host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad.
Collapse
Affiliation(s)
| | - Jie Sun
- Division of Pulmonary and Critical Medicine, Department of Medicine; Department of Immunology; and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Carter Immunology Center and Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - In Su Cheon
- Division of Pulmonary and Critical Medicine, Department of Medicine; Department of Immunology; and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Carter Immunology Center and Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Andrew E Vaughan
- University of Pennsylvania School of Veterinary Medicine, Biomedical Sciences, Philadelphia, Pennsylvania, USA
| | - Italo A Castro
- Virology Research Center, Ribeirao Preto Medical School, University of São Paulo - USP, São Paulo, Brazil
| | - Sydney R Stein
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center and Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Katelyn M Gostic
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | | | - Ali H Ellebedy
- Department of Pathology and Immunology; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs; and Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, Missouri, USA
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | | | | | - Ryan A Langlois
- Center for Immunology and Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| | - Steven F Baker
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Melanie Folkins
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Ellen F Foxman
- Department of Laboratory Medicine and Department of Immunology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Martin Schwemmle
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alistair B Russell
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ketaki Ganti
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kanta Subbarao
- Department of Microbiology and Immunology, WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, Chicago, Illinois, USA
| | - Taylor Eddens
- Pediatric Scientist Development Program, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Zhang M, Altan-Bonnet N, Shen Y, Shuai D. Waterborne Human Pathogenic Viruses in Complex Microbial Communities: Environmental Implication on Virus Infectivity, Persistence, and Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5381-5389. [PMID: 35434991 PMCID: PMC9073700 DOI: 10.1021/acs.est.2c00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Waterborne human pathogenic viruses challenge global health and economy. Viruses were long believed to transmit among hosts as individual, free particles. However, recent evidence indicates that viruses also transmit in populations, so-called en bloc transmission, by either interacting with coexisting bacteria, free-living amoebas, and other higher organisms through endosymbiosis and surface binding, or by being clustered inside membrane-bound vesicles or simply self-aggregating with themselves. En bloc transmission of viruses and virus-microbiome interactions could enable viruses to enhance their infectivity, increase environmental persistence, and resist inactivation from disinfection. Overlooking this type of transmission and virus-microbiome interactions may underestimate the environmental and public health risks of the viruses. We herein provide a critical perspective on waterborne human pathogenic viruses in complex microbial communities to elucidate the environmental implication of virus-microbiome interactions on virus infectivity, persistence, and disinfection. This perspective also provides insights on advancing disinfection and sanitation guidelines and regulations to protect the public health.
Collapse
Affiliation(s)
- Mengyang Zhang
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, United States
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Yun Shen
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, United States
| |
Collapse
|
12
|
Olive M, Moerman F, Fernandez-Cassi X, Altermatt F, Kohn T. Removal of Waterborne Viruses by Tetrahymena pyriformis Is Virus-Specific and Coincides with Changes in Protist Swimming Speed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4062-4070. [PMID: 35258957 PMCID: PMC8988290 DOI: 10.1021/acs.est.1c05518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 05/20/2023]
Abstract
Biological treatment of waterborne viruses, specifically grazing of viruses by protists, can enhance microbial water quality while avoiding the production of toxic byproducts and high energy costs. However, tangible applications are limited by the lack of understanding of the underlying mechanisms. Here, we examined the feeding behavior of Tetrahymena pyriformis ciliates on 13 viruses, including bacteriophages, enteric viruses, and respiratory viruses. Significant differences in virus removal by T. pyriformis were observed, ranging from no removal (Qbeta, coxsackievirus B5) to ≥2.7 log10 (JC polyomavirus) after 48 h of co-incubation of the protist with the virus. Removal rates were conserved even when protists were co-incubated with multiple viruses simultaneously. Video analysis revealed that the extent of virus removal was correlated with an increase in the protists' swimming speed, a behavioral trait consistent with the protists' response to the availability of food. Protistan feeding may be driven by a virus' hydrophobicity but was independent of virus size or the presence of a lipid envelope.
Collapse
Affiliation(s)
- Margot Olive
- Laboratory
of Environmental Chemistry, School of Architecture, Civil and Environmental
Engineering (ENAC), Ecole Polytechnique
Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Felix Moerman
- Department
of Aquatic Ecology, EAWAG, Swiss Federal
Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- Department
of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Xavier Fernandez-Cassi
- Laboratory
of Environmental Chemistry, School of Architecture, Civil and Environmental
Engineering (ENAC), Ecole Polytechnique
Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Florian Altermatt
- Department
of Aquatic Ecology, EAWAG, Swiss Federal
Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- Department
of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Tamar Kohn
- Laboratory
of Environmental Chemistry, School of Architecture, Civil and Environmental
Engineering (ENAC), Ecole Polytechnique
Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
He Z, Zheng N, Zhang L, Tian Y, Hu Z, Shu L. Efficient inactivation of intracellular bacteria in dormant amoeba spores by FeP. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127996. [PMID: 34902724 DOI: 10.1016/j.jhazmat.2021.127996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Waterborne pathogens and related diseases are a severe public health threat worldwide. Recent studies suggest that microbial interactions among infectious agents can significantly disrupt the disinfection processes, and current disinfection methods cannot inactivate intracellular pathogens effectively, posing an emerging threat to the safety of drinking water. This study developed a novel strategy, the FeP/persulfate (PS) system, to effectively inactivate intracellular bacteria within the amoeba spore. We found that the sulfate radical (SO4•-) produced by the FeP/PS system can be quickly converted into hydroxyl radicals (•OH), and •OH can penetrate the amoeba spores and inactivate the bacteria hidden inside amoeba spores. Therefore, this study proposes a novel technique to overcome the protective effects of microbial interactions and provides a new direction to inactivate intracellular pathogens efficiently.
Collapse
Affiliation(s)
- Zhenzhen He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ningchao Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuehui Tian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuofeng Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Chaúque BJM, Rott MB. The role of free-living amoebae in the persistence of viruses in the era of severe acute respiratory syndrome 2, should we be concerned? Rev Soc Bras Med Trop 2022; 55:e0045. [PMID: 35674555 PMCID: PMC9176723 DOI: 10.1590/0037-8682-0045-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
|
15
|
He Z, Wang L, Ge Y, Zhang S, Tian Y, Yang X, Shu L. Both viable and inactivated amoeba spores protect their intracellular bacteria from drinking water disinfection. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126006. [PMID: 33984787 DOI: 10.1016/j.jhazmat.2021.126006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 05/21/2023]
Abstract
In drinking water systems, waterborne pathogens constitute a significant threat. While most studies focus on a single infectious agent, such as bacteria, fungi, viruses, and protists, the effect of interactions among these infectious agents on disinfection treatment has largely been ignored. In this study, we find that dormant amoeba spores, a frequently found protist in drinking water systems, can protect their intracellular bacteria from drinking water disinfection. Bacteria-containing amoeba spores were constructed and treated with various disinfection techniques (Cl2, ClO2, and UV254). The three disinfection methods could kill the bacteria alone efficiently (6-log inactivation). However, the inactivation efficiency of bacteria that hid within amoeba spore was significantly inhibited (2-3-log inactivation). We also found that inactivated amoeba spores can still protect their intracellular bacteria. This study provides direct evidence that viable and inactivated amoeba spores can protect their hitchhiking bacteria from disinfection treatment, which is crucial for future decision-making about the dosage for sufficient bacterial disinfection in drinking water systems.
Collapse
Affiliation(s)
- Zhenzhen He
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Luting Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Yuexian Ge
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Siyi Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Yuehui Tian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Longfei Shu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
16
|
Dey R, Folkins MA, Ashbolt NJ. Extracellular amoebal-vesicles: potential transmission vehicles for respiratory viruses. NPJ Biofilms Microbiomes 2021; 7:25. [PMID: 33731696 PMCID: PMC7969602 DOI: 10.1038/s41522-021-00201-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/18/2021] [Indexed: 12/29/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a major cause of acute respiratory tract infections in children and immunocompromised adults worldwide. Here we report that amoebae-release respirable-sized vesicles containing high concentrations of infectious RSV that persisted for the duration of the experiment. Given the ubiquity of amoebae in moist environments, our results suggest that extracellular amoebal-vesicles could contribute to the environmental persistence of respiratory viruses, including potential resistance to disinfection processes and thereby offering novel pathways for viral dissemination and transmission.
Collapse
Affiliation(s)
- Rafik Dey
- School of Public Health, University of Alberta, Edmonton, AB, Canada. .,Dept. Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.
| | - Melanie A Folkins
- Dept. Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Nicholas J Ashbolt
- School of Public Health, University of Alberta, Edmonton, AB, Canada.,Dept. Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
17
|
Petterson S, Li Q, Ashbolt N. Screening Level Risk Assessment (SLRA) of human health risks from faecal pathogens associated with a Natural Swimming Pond (NSP). WATER RESEARCH 2021; 188:116501. [PMID: 33091804 PMCID: PMC7535628 DOI: 10.1016/j.watres.2020.116501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Natural swimming ponds (NSPs) are artificially created bodies of water intended for human recreation, characterised by the substitution of chemical disinfection with natural biological processes for water purification. NSPs are growing in popularity, however little is known regarding the public health risks. A screening level risk assessment was undertaken as an initial step in assessing the first Canadian public NSP located in Edmonton, Alberta. Risk of enteric pathogens originating from pool bathers was assessed under normal conditions and following accidental faecal release events. The performance of the natural treatment train for health protection was quantified with and without the addition of UV disinfection of naturally-treated water, and compared to the US EPA benchmark to provide a reference point to consider acceptability. Estimated levels of pathogen contamination of the pond were dependant upon the discrete number of shedders present, which in turn depended upon the prevalence of infection in the population. Overall performance of the natural disinfection system was dependant upon the filtration rate of the natural treatment system or turnover time. Addition of UV disinfection reduced the uncertainty around the removal efficacy, and mitigated the impact of larger shedding events, however the impact of UV disinfection on the natural treatment biome is unknown. Further information is needed on the performance of natural barriers for pathogen removal, and therefore challenge studies are recommended. Given the identified risks, the pool is posted that there is risk from accidental faecal releases, as in any natural water body with swimmers. Screening level risk assessment was a valuable first step in understanding the processes driving the system and in identifying important data gaps.
Collapse
Affiliation(s)
- Susan Petterson
- Water & Health Pty Ltd, North Sydney, NSW 2060, Australia; School of Medicine, Griffith University, Gold Coast QLD 4222, Australia.
| | - Qiaozhi Li
- School of Public Health, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| | - Nicholas Ashbolt
- School of Public Health, University of Alberta, Edmonton, Alberta T6G 1C9, Canada; Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|