1
|
Li J, Feng C, Chen C, Pan Y, Liu Y. Support electron inductive effect of Pd-Mn/Ni foam catalyst for robust electrocatalytic hydrodechlorination. J Environ Sci (China) 2025; 149:288-300. [PMID: 39181643 DOI: 10.1016/j.jes.2024.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 01/27/2024] [Indexed: 08/27/2024]
Abstract
Structural regulation of Pd-based electrocatalytic hydrodechlorination (EHDC) catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging. Herein, a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam (NF), which can inductive regulation of Pd for improving the EHDC performance. The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound, respectively. The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface, which optimizied the binding of EHDC intermediates. Additionally, the Mn-doped interlayer acted as a promoter for generating H* and accelerating the EHDC reaction. This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.
Collapse
Affiliation(s)
- Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Chao Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chong Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
2
|
Liu J, Yang Y, Fan J, Yu T, Wu D. Electrochemical oxidation of glyphosate coupled with induced crystallization for simultaneous phosphorus recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124611. [PMID: 39970654 DOI: 10.1016/j.jenvman.2025.124611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/09/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
Non-reactive phosphates (NRPs) need to be transformed into orthophosphate (PO43-, P) before they can be precipitated for recovery from water. This study provides a technology for simultaneous degradation and recovery of NRPs through electrochemical advanced oxidation (EAO) coupled with induced crystallization (IC). The EAO-IC process can achieve a degradation rate of 100% of 1 mM glyphosate (Gly), conversion rate of 98.1% of Gly to P, and efficient resource recovery of 79.1% of P to amorphous calcium phosphate (ACP) products with the reaction time of 5h. The use of a carbon felt (CF) wrapped Ti plate cathode provides a localized high pH environment and abundant nucleation sites for efficient recovery of P. Meanwhile, CF-Ti promotes the transfer of the precipitation region of ACP from the liquid phase to the solid phase. Compared with the Ti system, the phosphorus recovery rate and the Ca2+ precipitation rate increased by 5 times and 3.8 times in the CF/Ti system. And 98% of the precipitates was enriched on the CF surface, leading to reduced fouling on the cathode plate. The abundance of C-OH on the surface of CF is considered as the attachment site of ACP. Moreover, the effect of carbon felt on phosphorus recovery increased with the number of applications. This study presents a promising approach for NRP recovery from wastewater and facilitates low-energy resource utilization strategies for simultaneous benefits of 'pollution reduction and carbon reduction' and 'resource recovery' with one investment.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yuwei Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jinhong Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Tao Yu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
3
|
Wang R, Zhao Y, Dang X, Sun Y, Kong D, Wang X, Bai S, Arotiba OA, Ma J. Unveiling the environmental sustainability of Ti 4O 7 electrified membrane for perfluorooctanoic acid removal. WATER RESEARCH 2025; 277:123310. [PMID: 39987582 DOI: 10.1016/j.watres.2025.123310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Emerging electrified membrane (EM) technology offers an efficient approach for decentralized water purification. However, EM currently faces the challenge of unknown environmental sustainability, which presents a critical knowledge gap impeding its scale-up implementation. In this work, we aim to explore the environmental impacts of EM technology via a "cradle-to-grave" life cycle assessment, benchmarked against sequential ultrafiltration-nanofiltration. Our study found that the current EM technology shows higher greenhouse gas (GHG) emissions (19.70 kgCO2e g-1) than ultrafiltration-nanofiltration (8.60 kgCO2e g-1) for micropollutants removal. Electro-filtration operation dominates the total environmental impacts of EM process, driven primarily by the supporting electrolyte and electricity consumption. Notably, transitioning to greener electrolytes at lower concentrations can reduce GHG emissions by up to 66%, while switching to low-carbon-grid electricity through renewable energy sources will achieve a 33% reduction. Overall, this work enhances understanding of the environmental impacts of EM technology, emphasizing electrolyte optimization and carbon-intensity-reduction of electricity as critical factors for its sustainable development.
Collapse
Affiliation(s)
- Runzhi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Xuhui Dang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Ye Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Dezhen Kong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiaoxiong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Shunwen Bai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa; Centre for Nanomaterials and Science Research, University of Johannesburg, Johannesburg, South Africa
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
4
|
Sudheer AC, Anilkumar GM, Kuroki H, Yamaguchi T. Support-Free, Connected Core-Shell Nanoparticle Catalysts Synthesized via a Low-Temperature Process for Advanced Oxygen Reduction Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408614. [PMID: 39726238 PMCID: PMC11831485 DOI: 10.1002/advs.202408614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/06/2024] [Indexed: 12/28/2024]
Abstract
Nanostructured Pt-based catalysts have attracted considerable attention for fuel-cell applications. This study introduces a novel one-pot and low-temperature polyol approach for synthesizing support-free, connected nanoparticles with non-Pt metal cores and Pt shells. Unlike conventional heat treatment methods, the developed support-free and Fe-free connected Pdcore@Ptshell (Pd@Pt) nanoparticle catalyst possesses a stable nanonetwork structure with a high surface area. This approach can precisely control the atomic-level structure of the Pt shell on the Pd core at a low deposition temperature. The optimized Pd@Pt catalyst with a Pt/Pd atomic ratio of 0.8 and a Pt shell thickness of 1.1 nm exhibits a threefold improvement in oxygen reduction reaction (ORR) mass activity compared to that of commercial carbon-supported Pt nanoparticle catalyst (Pt/C). Durability evaluation demonstrated 100% retention of specific activity after 10,000 load cycles, owing to the stable nanonetwork and uniform coverage of the Pt shell. In addition, the support-free, connected core-shell nanoparticle catalyst overcomes the carbon corrosion issues commonly associated with conventional carbon-supported catalysts while simultaneously improving both ORR activity and load cycle durability. These findings highlight the potential of this innovative approach to develop support-free catalysts for polymer electrolyte fuel cells and other energy devices.
Collapse
Affiliation(s)
- Aparna Chitra Sudheer
- Laboratory for Chemistry and Life SciencesTokyo Institute of TechnologyYokohamaKanagawa226–8501Japan
| | - Gopinathan M. Anilkumar
- Laboratory for Chemistry and Life SciencesTokyo Institute of TechnologyYokohamaKanagawa226–8501Japan
- R&D CenterNoritake Co., Ltd300 HigashiyamaMiyoshi‐ChoAichi470‐0293Japan
| | - Hidenori Kuroki
- Laboratory for Chemistry and Life SciencesTokyo Institute of TechnologyYokohamaKanagawa226–8501Japan
| | - Takeo Yamaguchi
- Laboratory for Chemistry and Life SciencesTokyo Institute of TechnologyYokohamaKanagawa226–8501Japan
| |
Collapse
|
5
|
Ren N, Qu C, Zhang A, Yu C, Li X, Meng S, Fang J, Liang D. Multistage Generation Mechanisms of Reactive Oxygen Species and Reactive Chlorine Species in a Synergistic System of Anodic Oxidation Coupled with in Situ Free Chlorine and H 2O 2 Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22829-22839. [PMID: 39661661 DOI: 10.1021/acs.est.4c09855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Electro-oxidation (EO) is an efficient approach to removing refractory organics in wastewater. However, the interference from chlorine ions (Cl-) can generate reactive chlorine species (RCS), potentially leading to the production of undesirable chlorinated byproducts. A novel approach involving the cathodic oxygen reduction reaction (ORR) for in situ H2O2 production has emerged as a promising strategy to counteract this issue. This study systematically investigated the dynamics and transformation of RCS and reactive oxygen species (ROS) in an ORR/chloride-containing EO (EO-Cl) system, elucidating their respective roles in organic removal and chlorinated byproduct minimization. Distinct generation rates and patterns were observed for free chlorine and H2O2 in the ORR/EO-Cl system. The rapid generation of free chlorine at the anode quickly reached a dynamic equilibrium, which contrasted with the moderate, continuous cathodic production of H2O2, resulting in considerable H2O2 accumulation over time. This difference established kinetics-driven ROS and RCS formation and distribution, influencing the subsequent organic degradation process. Three distinct stages were identified in the degradation process. In stage I, free chlorine was the primary species, along with reactive species including Cl2•-, 1O2, ClO•, HO•, and Cl•. In stage II, the gradual accumulation of H2O2 consumed free chlorine, favoring the formation of 1O2 and HO•. In stage III, excessive H2O2 quenched the free radicals. Insights into these multistage mechanisms reveal that the rapid degradation of chlorinated byproducts by 1O2 and HO• occurs in stage II of the ORR/EO-Cl system.
Collapse
Affiliation(s)
- Na Ren
- Department of Materials Chemistry, School of Materials Science and Engineering, Beihang University, Beijing 102206, China
| | - Chao Qu
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ao Zhang
- Department of Materials Chemistry, School of Materials Science and Engineering, Beihang University, Beijing 102206, China
| | - Chen Yu
- Department of Materials Chemistry, School of Materials Science and Engineering, Beihang University, Beijing 102206, China
| | - Xiaohu Li
- Department of Materials Chemistry, School of Materials Science and Engineering, Beihang University, Beijing 102206, China
| | - Shujuan Meng
- Department of Materials Chemistry, School of Materials Science and Engineering, Beihang University, Beijing 102206, China
| | - Jingyun Fang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dawei Liang
- Department of Materials Chemistry, School of Materials Science and Engineering, Beihang University, Beijing 102206, China
| |
Collapse
|
6
|
Xu S, Li R, Liao Y, Bian J, Liu R, Liu H. Biodegradation of organic micropollutants by anoxic denitrification: Roles of extracellular polymeric substance adsorption, enzyme catalysis, and reactive oxygen species oxidation. WATER RESEARCH 2024; 268:122563. [PMID: 39388777 DOI: 10.1016/j.watres.2024.122563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
The control of organic micropollutants (OMPs) in water environments have received significant attention. Denitrification was reported to exhibit good efficiency to remove OMPs, and the mechanisms involved in are too intricate to be well illustrated. In this study, we selected nitrobenzene [NB] and bisphenol A [BPA] as model pollutants and aimed to unravel the mechanisms of Paracoccus Denitrificans in the removal of OMPs, with a specific emphasis on aerobic behavior during denitrification processes. We demonstrated the formation of extracellular superoxide radicals, i.e., extracellular •O2-, using a chemiluminescence probe and found that extracellular polymeric substance adsorption, extracellular •O2-, and microbial assimilation contributed approximately 40 %, 10 %, and 50 % to OMPs removal, respectively. Transcriptome analysis further revealed the high expression and enrichment of several pathways, such as drug metabolism-other enzymes, of which a typical aerobic enzyme of polyphenol oxidase [PPO] participates in the degradation of NB and BPA. Importantly, all the immediate products showed a significant decrease in toxicity during the aerobic activity-related OMPs degradation process based on the proposed degradation pathways. This study demonstrates the formation of extracellular •O2- and the mechanisms of extracellular •O2-- and PPO-mediated OMPs biodegradation, and offers new insights into OMPs control in widely-used denitrification treatment processes.
Collapse
Affiliation(s)
- Siqi Xu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Rui Li
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yang Liao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiyong Bian
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Xin H, Zhang W, Zhang X, Zhang G, Ji Q, Liu H, Qu J. Energy Recovery from Hexavalent Chromium Reduction for In Situ Electrocatalytic Hydrogen Peroxide Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17485-17496. [PMID: 39290141 DOI: 10.1021/acs.est.4c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Recovering chemical energy embedded in pollutants is significant in achieving carbon-neutral industrial wastewater treatment. Considering that industrial wastewater is usually treated in a decentralized manner, in situ utilization of chemical energy to achieve waste-to-treasure should be given priority. Herein, the chemical energy released by the electroreduction of Cr(VI) was used to enhance on-site H2O2 generation in a stacked flow-through electrochemical system. The driving force of water flow efficiently coupled O2 evolution with 2-e O2 reduction to facilitate H2O2 generation by transporting anode-produced O2 to the cathode. Meanwhile, the chemical energy released by Cr(VI) promoted O2 evolution and impeded H2 evolution by regulating the electrode potentials, accounting for the enhanced H2O2 generation. The system could completely reduce 10-100 ppm of Cr(VI), reaching the maximum H2O2 concentration of 2.41 mM. In particular, the H2O2 concentrations in the Cr(VI)-containing electrolyte were 10.6-88.1% higher than those in the Cr(VI) free electrolyte at 1.8-2.5 V. A 24-day continuous experiment demonstrated the high efficiency and stability of the system, achieving a 100% reduction efficiency for 100 ppm of Cr(VI) and producing ∼1.5 mM H2O2 at 1.8 V. This study presents a feasible strategy for Cr(VI) detoxification and synchronous on-site H2O2 generation, providing a new perspective for innovative Cr(VI) wastewater treatment toward resource utilization.
Collapse
Affiliation(s)
- Huaijia Xin
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaofeng Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
8
|
Brillas E, Peralta-Hernandez JM. The recent development of innovative photoelectro-Fenton processes for the effective and cost-effective remediation of organic pollutants in waters. CHEMOSPHERE 2024; 366:143465. [PMID: 39369749 DOI: 10.1016/j.chemosphere.2024.143465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Wastewaters with toxic and recalcitrant organic contaminants are poorly remediated in conventional wastewater treatment plants. So, powerful processes need to be developed to destroy such organic pollutants to preserve the quality of the aquatic environment. This critical and comprehensive review presents the recent innovative development of photoelectro-Fenton (PEF) covering the period 2019-September 2024. This emerging photo-assisted Fenton-based electrochemical advanced oxidation process (EAOP) is an efficient and cost-effective treatment for water remediation. It possesses a great oxidation power because the in-situ generated hydroxyl radical as oxidant is combined with the photolysis of the organic by-products under UV or sunlight irradiation. The review is initiated by a brief description of the characteristics of the PEF process to stand out in the role of generated oxidizing agents. Further, the homogeneous PEF. PEF-like, solar PEF (SPEF), and SPEF-like processes with iron catalysts are discussed, taking examples of their application to the removal and mineralization of solutions of industrial chemicals, herbicides, dyes, pharmaceuticals, and direct real wastewaters. Novel heterogeneous PEF treatments of such pollutants with solid iron catalysts or functionalized cathodes are analyzed. Finally, novel hybrid processes including PEF/photocatalysis and PEF/photoelectrocatalysis, followed by novel and potent sequential processes like electrocoagulation-PEF and persulfate-PEF, are discussed. Throughout the manuscript, special attention was made to the total operating cost of PEF, which is more expensive than conventional electro-Fenton due to the high electric cost of the UV lamp, pointing to consider the much more cost-effective SPEF as a preferable alternative in practice.
Collapse
Affiliation(s)
- Enric Brillas
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí I Franquès 1-11, Barcelona, CP, 08028, Spain.
| | - Juan M Peralta-Hernandez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, 36040, Guanajuato, Mexico.
| |
Collapse
|
9
|
He C, Pan D, Chen K, Chen J, Zhang Q, Zhang H, Zhang Z, Wen Z. Energy-Efficient Co-production of Benzoquinone and H 2 Using Waste Phenol in a Hybrid Alkali/Acid Flow Cell. Angew Chem Int Ed Engl 2024; 63:e202407079. [PMID: 38757230 DOI: 10.1002/anie.202407079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
In both the manufacturing and chemical industries, benzoquinone is a crucial chemical product. A perfect and economical method for making benzoquinone is the electrochemical oxidation of phenol, thanks to the traditional thermal catalytic oxidation of phenol process requires high cost, serious pollution and harsh reaction conditions. Here, a unique heterostructure electrocatalyst on nickel foam (NF) consisting of nickel sulfide and nickel oxide (Ni9S8-Ni15O16/NF) was produced, and this catalyst exhibited a low overpotential (1.35 V vs. RHE) and prominent selectivity (99 %) for electrochemical phenol oxidation reaction (EOP). Ni9S8-Ni15O16/NF is beneficial for lowering the reaction energy barrier and boosting reactivity in the EOP process according to density functional theory (DFT) calculations. Additionally, an alkali/acid hybrid flow cell was successfully established by connecting Ni9S8-Ni15O16/NF and commercial RuIr/Ti in series to catalyze phenol oxidation in an alkaline medium and hydrogen evolution in an acid medium, respectively. A cell voltage of only 0.60 V was applied to produce a current density of 10 mA cm-2. Meanwhile, the system continued to operate at 0.90 V for 12 days, showing remarkable long-term stability. The unique configuration of the acid-base hybrid flow cell electrolyzer provides valuable guidance for the efficient and environmentally friendly electrooxidation of phenol to benzoquinone.
Collapse
Affiliation(s)
- Chengchao He
- Value-Added Utilization of Carbocoal Derivative Liquid-Shaanxi University Engineering Research Center, Yulin University, Yulin, 719000, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Duo Pan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Kai Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Junxiang Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Qinlong Zhang
- Value-Added Utilization of Carbocoal Derivative Liquid-Shaanxi University Engineering Research Center, Yulin University, Yulin, 719000, P. R. China
| | - Hao Zhang
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Zhifang Zhang
- Value-Added Utilization of Carbocoal Derivative Liquid-Shaanxi University Engineering Research Center, Yulin University, Yulin, 719000, P. R. China
- Shaanxi Yuanda Zhengbei Energy Technology Co., Ltd., Research and Development Department, Yulin, 719000, P. R. China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
10
|
Zhao DL, Zhou W, Shen L, Li B, Sun H, Zeng Q, Tang CY, Lin H, Chung TS. New directions on membranes for removal and degradation of emerging pollutants in aqueous systems. WATER RESEARCH 2024; 251:121111. [PMID: 38211412 DOI: 10.1016/j.watres.2024.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Emerging pollutants (EPs) refer to a group of non-regulated chemical or biological substances that have been recently introduced or detected in the environment. These pollutants tend to exhibit resistance to conventional treatment methods and can persist in the environment for prolonged periods, posing potential adverse effects on ecosystems and human health. As we enter a new era of managing these pollutants, membrane-based technologies hold significant promise in mitigating impact of EPs on the environment and safeguarding human health due to their high selectivity, efficiency, cost-effectiveness and capability for simultaneous separation and degradation. Moreover, these technologies continue to evolve rapidly with the development of new membrane materials and functionalities, advanced treatment strategies, and analyses for effectively treating EPs of more recent concerns. The objective of this review is to present the latest directions and advancements in membrane-based technologies for addressing EPs. By highlighting the progress in this field, we aim to share valuable perspectives with researchers and contribute to the development of future directions in sustainable treatments for EPs.
Collapse
Affiliation(s)
- Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wangyi Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bowen Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongyu Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Qianqian Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chuyang Y Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Tai-Shung Chung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 10607, Taiwan; Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
11
|
Zhang Q, Peng Y, Peng Y, Zhang J, Yuan X, Zhang J, Cheng C, Ren W, Duan X, Xiao X, Luo X. Mineralization versus polymerization pathways in heterogeneous Fenton-like reactions. WATER RESEARCH 2024; 249:120931. [PMID: 38101051 DOI: 10.1016/j.watres.2023.120931] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Fenton reaction has been widespread application in water purification due to the excellent oxidation performances. However, the poor cycle efficiency of Fe(III)/Fe(II) is one of the biggest bottlenecks. In this study, graphite (GP) was used as a green carbon catalyst to accelerate Fenton-like (H2O2/Fe3+ and persulfate/Fe3+) reactions by promoting ferric ion reduction and intensifying diverse peroxide activation pathways. Significantly, the carboxyl group on GP anchors iron ions to form GP-COOFe(III) which promote persulfate adsorption to form surface complexes and induce an electron transfer pathway (ETP). While the electron-rich hydroxyl and carbonyl groups will combine to from GP-COFe(II), a reductive intermediate to activate peroxide to generate free radicals (from H2O2 and PDS) or high-value iron [Fe(IV)] (from PMS). Consequently, different pathways lead to distinct degree of oxidation: i) radicals in H2O2/Fe3+/GP prefer to mineralize bisphenol A (BPA) with no selectivity; ii) Fe(IV) in PMS/Fe3+/GP partially oxidizes BPA but cannot open the aromatic ring; iii) ETP in PMS/ or PDS/Fe3+/GP drives coupling reactions to form polymeric products covered on catalyst surface. Thus, rational engineering surface functionality of graphite and selecting proper peroxides can realize on-demand selectivity and oxidation capacity in Fenton-like systems.
Collapse
Affiliation(s)
- Qiming Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yanhua Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Yu Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jianzhi Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xinkai Yuan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jie Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Cheng Cheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia; Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, PR China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China.
| |
Collapse
|
12
|
Duan X, Lu Z, Sun B, Wu S, Qian Z. Efficient utilization of free radicals in advanced oxidation processes under high-gravity environment for disposing pollutants in effluents and gases: A critical review. CHEMOSPHERE 2023:139057. [PMID: 37268234 DOI: 10.1016/j.chemosphere.2023.139057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Advanced oxidation processes (AOPs) using strongly oxidizing radicals are promising for wastewater treatment and gas purification. Nevertheless, the short half-life of radicals and the limited mass transfer in traditional reactors cause under-utilization of radicals and low pollutant removal efficiency. High-gravity technology (HiGee)-enhanced AOPs (HiGee-AOPs) have been demonstrated a promising way to enhance radical utilization in a rotating packed bed reactor (RPB). Here, we review the potential mechanisms of intensified radical utilization in HiGee-AOPs, structures and performance of RPB, and applications of HiGee in AOPs. The intensification mechanisms are described from three aspects: enhanced generation of radicals by efficient mass transfer, in-situ radical utilization under frequent liquid film renewal, and selective effect on radical utilization due to micromixing in RPB. Based on these mechanisms, we propose a novel High-gravity flow reaction with the essence of efficiency, in-situ, and selectivity in order to better explain the strengthening mechanisms in HiGee-AOPs. HiGee-AOPs possess great potential for treating effluent and gaseous pollutants due to characteristics of High-gravity flow reaction. We discuss the pros and cons of different RPBs and their applications to specific HiGee-AOPs. HiGee improve the following AOPs: (1) facilitate interfacial mass transfer in homogeneous AOPs, (2) enhance mass transfer to expose more catalytically active sites and mass-produce nanocatalysts for heterogeneous AOPs, (3) inhibit bubble accumulation on the electrode surface of electrochemical AOPs, (4) increase the mass transfer between liquid and catalysts in UV-assisted AOPs, (5) improve the micromixing efficiency of ultrasound-based AOPs. Strategies outlined in this paper should inspire further development of HiGee-AOPs.
Collapse
Affiliation(s)
- Xiaoxi Duan
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong, 256606, China
| | - ZhiCheng Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong, 256606, China
| | - Baochang Sun
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Shao Wu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong, 256606, China
| | - Zhi Qian
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong, 256606, China.
| |
Collapse
|
13
|
Deng F, Yang S, Jing B, Qiu S. Activated carbon filled in a microporous titanium-foam air diffusion electrode for boosting H 2O 2 accumulation. CHEMOSPHERE 2023; 321:138147. [PMID: 36796525 DOI: 10.1016/j.chemosphere.2023.138147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/05/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
In the electro-Fenton process, there still suffers concern of low H2O2 generation caused by inadequate mass transfer of oxygen and low selectivity of oxygen reduction reaction (ORR). To solve it, in this study, various particle sizes (850 μm, 150 μm, and 75 μm) of granular activated carbon filled in a microporous titanium-foam substate was used to develop a gas diffusion electrode (AC@Ti-F GDE). This facile-prepared cathode has seen a 176.15% improvement in H2O2 formation compared to the conventional one. Aside from a much higher oxygen mass transfer by creating gas-liquid-solid three-phase interfaces coupled with much high dissolved oxygen, the filled AC played a significant role in H2O2 accumulation. Among these particle sizes of AC, the one in 850 μm has observed the highest H2O2 accumulation, reaching 1487 μM in 2 h electrolysis. Because there is a balance between chemical nature for H2O2 formation and micropore-dominant porous structure for H2O2 decomposition, resulting in an electron transfer of 2.12 and H2O2 selectivity of 96.79% during ORR. In a word, the facial AC@Ti-F GDE configuration is promising for H2O2 accumulation.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Shilin Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Baojian Jing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
14
|
Deng F, Olvera-Vargas H, Zhou M, Qiu S, Sirés I, Brillas E. Critical Review on the Mechanisms of Fe 2+ Regeneration in the Electro-Fenton Process: Fundamentals and Boosting Strategies. Chem Rev 2023; 123:4635-4662. [PMID: 36917618 DOI: 10.1021/acs.chemrev.2c00684] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic reduction within the context of the electro-Fenton (EF) process. Different strategies developed to improve the reduction rate are discussed, dividing them into two categories that regard the mechanistic feature that is promoted: electron transfer control and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer control includes: (i) the formation of a series of active sites in both carbon- and metal-based materials and (ii) the use of other emerging strategies such as single-atom catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by mass transport control, the main routes involve the application of magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Finally, challenges are singled out, and future prospects are described. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, eventually providing essential ideas for smart design of highly effective systems for wastewater treatment and valorization at an industrial scale.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.,Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos CP 62580, México
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
15
|
Thor SH, Ho LN, Ong SA, Abidin CZA, Heah CY, Yap KL. Disclosing the mutual influence of photocatalytic fuel cell and photoelectro-Fenton process in the fabrication of a sustainable hybrid system for efficient Amaranth dye removal and simultaneous electricity production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34363-34377. [PMID: 36512276 DOI: 10.1007/s11356-022-24647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Photocatalytic fuel cell (PFC) was employed to provide renewable power sources to photoelectro-Fenton (PEF) process to fabricate a double-chambered hybrid system for the treatment of azo dye, Amaranth. The PFC-PEF hybrid system was interconnected by a circuit attached to the electrodes in PFC and PEF. Circuit connection is the principal channel for the electron transfer and mobility between PFC and PEF. Thus, different circuit connections were evaluated in the hybrid system for their influences on the Amaranth dye degradation. The PFC-PEF system under the complete circuit connection condition attained the highest decolourization efficiency of Amaranth (PFC: 98.85%; PEF: 95.69%), which indicated that the complete circuit connection was crucial for in-situ formation of reactive species in dye degradation. Besides, the pivotal role of ultraviolet (UV) light irradiation in the PFC-PEF system for both dye degradation and electricity generation was revealed through various UV light-illuminating conditions applied for PFC and PEF. A remarkable influence of UV light irradiation on the production of hydrogen peroxide and generation and regeneration of Fe2+ in PEF was demonstrated. This study provided a comprehensive mechanistic insight into the dye degradation and electricity generation by the PFC-PEF system.
Collapse
Affiliation(s)
- Shen-Hui Thor
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Li-Ngee Ho
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
| | - Soon-An Ong
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Che Zulzikrami Azner Abidin
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Cheng-Yong Heah
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Kea-Lee Yap
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| |
Collapse
|
16
|
Zavahir S, Elmakki T, Ismail N, Gulied M, Park H, Han DS. Degradation of Organic Methyl Orange (MO) Dye Using a Photocatalyzed Non-Ferrous Fenton Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:639. [PMID: 36839007 PMCID: PMC9965019 DOI: 10.3390/nano13040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Removal of recalcitrant organic pollutants by degradation or mineralization from industrial waste streams is continuously being explored to find viable options to apply on the commercial scale. Herein, we propose a titanium nanotube array (based on a non-ferrous Fenton system) for the successful degradation of a model contaminant azo dye, methyl orange, under simulated solar illumination. Titanium nanotube arrays were synthesized by anodizing a titanium film in an electrolyte medium containing water and ethylene glycol. Characterization by SEM, XRD, and profilometry confirmed uniformly distributed tubular arrays with 100 nm width and 400 nm length. The non-ferrous Fenton performance of the titanium nanotube array in a minimal concentration of H2O2 showed remarkable degradation kinetics, with a 99.7% reduction in methyl orange dye concentration after a 60 min reaction time when illuminated with simulated solar light (100 mW cm-2, AM 1.5G). The pseudo-first-order rate constant was 0.407 µmol-1 min-1, adhering to the Langmuir-Hinshelwood model. Reaction product analyses by TOC and LC/MS/MS confirmed that the methyl orange was partially fragmented, while the rest was mineralized. The facile withdrawal and regeneration observed in the film-based titanium nanotube array photocatalyst highlight its potential to treat real industrial wastewater streams with a <5% performance drop over 20 reaction cycles.
Collapse
Affiliation(s)
- Sifani Zavahir
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Tasneem Elmakki
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Nourhan Ismail
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Mona Gulied
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Hyunwoong Park
- School of Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Suk Han
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
17
|
Ma Y, Zhao E, Xia G, Zhan J, Yu G, Wang Y. Effects of water constituents on the stability of gas diffusion electrode during electrochemical hydrogen peroxide production for water and wastewater treatment. WATER RESEARCH 2023; 229:119503. [PMID: 36549188 DOI: 10.1016/j.watres.2022.119503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Electrochemically producing hydrogen peroxide (H2O2) from oxygen reduction reaction (ORR) with natural air diffusion electrode (NADE) is an attractive way to supply H2O2 for decentralized water treatment. In this study, the stability of NADE during H2O2 electroproduction in varying water matrices were evaluated, including synthetic electrolyte solutions (0.05 M Na2SO4) with or without calcium ions (Ca2+, 200 mg/L) and/or humic acid (HA, 40 mg/L), as well as a selected municipal wastewater (92.7 mg/L Ca2+, 3.6 mg/L Mg2+, and 23.9 mg/L total organic carbon). The results show that NADEs maintained a good stability during H2O2 electroproduction in Na2SO4 solutions regardless of the presence of HA. However, Ca2+ (and Mg2+) could form significant amounts of mineral precipitates on the surface and in the internal pores of NADEs during H2O2 electroproduction. These mineral precipitates can negatively influence H2O2 production by impeding the oxygen, electron, and proton transfer processes involved in ORR to H2O2. Moreover, the mineral precipitates shifted the NADEs from hydrophobic to hydrophilic, which may promote H2O2 reduction to H2O at the NADEs. Consequently, the apparent current efficiencies of H2O2 production decreased substantially from initially ∼90% to 50%-70% as the NADEs were continuously used for 60 h in the Ca-containing solutions and selected wastewater. These results indicate that water constituents that are commonly present in real water matrices, especially Ca2+, can cause serious deterioration of NADE stability during H2O2 electroproduction. Therefore, proper strategies are needed to mitigate electrode fouling during H2O2 electroproduction with NADEs in practical water and wastewater treatment.
Collapse
Affiliation(s)
- Yongshuang Ma
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Erzhuo Zhao
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Guangsen Xia
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Juhong Zhan
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Deng F, Jiang J, Sirés I. State-of-the-art review and bibliometric analysis on electro-Fenton process. CARBON LETTERS 2023; 33. [PMCID: PMC9594000 DOI: 10.1007/s42823-022-00420-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/04/2023]
Abstract
The electro-Fenton (EF) process was first proposed in 1996 and, since then, considerable development has been achieved for its application in wastewater treatment, especially at lab and pilot scale. After more than 25 years, the high efficiency, versatility and environmental compatibility of EF process has been demonstrated. In this review, bibliometrics has been adopted as a tool that allows quantifying the development of EF as well as introducing some useful correlations. As a result, information is summarized in a more visual manner that can be easily analyzed and interpreted as compared to conventional reviewing. During the recent decades under review, 83 countries have contributed to the dramatic growth of EF publications, with China, Spain and France leading the publication output. The top 12 most cited articles, along with the top 32 most productive authors in the EF field, have been screened. Four stages have been identified as main descriptors of the development of EF throughout these years, being each stage characterized by relevant breakthroughs. To conclude, a general cognitive model for the EF process is proposed, including atomic, microscopic and macroscopic views, and future perspectives are discussed.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090 People’s Republic of China
- Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205 People’s Republic of China
| | - Ignasi Sirés
- Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Yu C, Zhao Z, Zong Y, Xu L, Zhang B, Wu D. Electric field-enhanced coupled with metal-free peroxymonosulfate activactor: The selective oxidation of nonradical species-dominated system. WATER RESEARCH 2022; 227:119323. [PMID: 36395565 DOI: 10.1016/j.watres.2022.119323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Nowadays metal-free persulfate-based advanced oxidation processes (AOPs) have been intensively investigated, however, the catalysts are often too complex to fully consider their application potential. Conventional AOPs usually suffer from severe interference in real water matrix, thus, selective oxidation is practically and scientifically challenging as it could avoid unnecessary inputs of energy and possible secondary pollutants. In this study, a remarkably synergistic effect was achieved when conventional amorphous boron/peroxymonosulfate (Boron/PMS, 0.67 × 10-2 min-1) system was combined with electrolysis (E-Boron/PMS, 1.54 × 10-2 min-1) to degrade sulfamethoxazole (SMX). Evidenced by selectively quenching tests with kinetic evaluation, electron paramagnetic resonance (EPR), solvent-exchange experiment and electrochemical analysis, the dominated reactive oxygen species in E-Boron/PMS system tended to be 1O2, instead of the •OH and SO4•-. Mechanistic study unveiled that 1O2 was generated via accelerated PMS self-decomposition, triggered by interface alkalization and hydroxyl radicals transfer at the cathode interface. 1O2 is considered to be selective to the electron-rich organic compounds, thus E-Boron/PMS system was superior to conventional radical-dominated system (Boron/PMS) for SMX removal in the co-presence of common inorganic anions, showing the great merits of selective oxidation in nonradical system. These findings provided new insights into effective and selective oxidation of SMX via E-Boron/PMS system, which shed new light on the development of nonradical system.
Collapse
Affiliation(s)
- Chao Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhenyu Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Bing Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
20
|
Ye S, Geng J, Zhang H, Hu J, Zou X, Li J. Boosting oxygen diffusion by micro-nano bubbles for highly-efficient H2O2 generation on air-calcining graphite felt. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Su Y, Zhang Q, Song G, Fu W, Zhou M, Zhang Y. Removal of sulfamethazine by a flow-Fenton reactor with H2O2 supplied with a two-compartment electrochemical generator. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Wang S, Ye D, Liu H, Zhu X, Lan Q, Yang Y, Chen R, Liao Q. Engineering a concordant microenvironment with air-liquid-solid interface to promote electrochemical H2O2 generation and wastewater purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Zhang Q, Fu Z, Chen S. Solar-driven purification of highly polluted saline wastewater into clean water by carbonized lotus seedpod. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Qu C, Li YG, Meng SJ, Li XH, Zhang SJ, Liang DW. Enhanced refractory organics removal by •OH and 1O 2 generated in an electro-oxidation system with cathodic Fenton-like reaction. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128923. [PMID: 35447532 DOI: 10.1016/j.jhazmat.2022.128923] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Recently, carbon nanotubes coated carbon black and polytetrafluoroethylene (CNTs-C/PTFE) gas diffusion electrode was used as an air-cathode in an electro-oxidation (EO) system for effectively generating hydrogen peroxide (H2O2) through a 2-electron oxygen reduction reaction (ORR). This ORR-EO system not only lowered applied voltage and conserved energy, but the synergistic peroxone (O3/H2O2) reaction could increase hydroxyl radicals (•OH) generation for organics elimination. However, a significant proportion of H2O2 was left in the effluent of ORR-EO, which was a loss of resources and energy. In this study, a Fenton-like reaction for in-situ H2O2 decomposition to generate active oxidation species was inserted by introducing MnO2 into the cathodic catalyst layer, and the sole MnO2/CNTs-C/PTFE air-cathode could accomplish 90% of phenol degradation. When MnO2/CNTs-C/PTFE air-cathode combined with Ti/NATO anode in an ORR-EO system, all anodic oxidation, Fenton-like reaction, and peroxone took place to successfully generate •OH and singlet oxygen (1O2). Over 95% of TOC in phenol and landfill leachate bio-effluent was effectively eliminated, with 20% energy savings compared to the ORR-EO with CNTs-C/PTFE air cathode.
Collapse
Affiliation(s)
- Chao Qu
- School of Space & Environment, Beihang University, Shahe Campus, Beijing 102206, China
| | - Yan-Gang Li
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100044, China
| | - Shu-Juan Meng
- School of Space & Environment, Beihang University, Shahe Campus, Beijing 102206, China
| | - Xiao-Hu Li
- School of Space & Environment, Beihang University, Shahe Campus, Beijing 102206, China
| | - Shu-Jun Zhang
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100044, China
| | - Da-Wei Liang
- School of Space & Environment, Beihang University, Shahe Campus, Beijing 102206, China.
| |
Collapse
|
25
|
An J, Feng Y, Zhao Q, Wang X, Liu J, Li N. Electrosynthesis of H 2O 2 through a two-electron oxygen reduction reaction by carbon based catalysts: From mechanism, catalyst design to electrode fabrication. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 11:100170. [PMID: 36158761 PMCID: PMC9488048 DOI: 10.1016/j.ese.2022.100170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide (H2O2) is an efficient oxidant with multiple uses ranging from chemical synthesis to wastewater treatment. The in-situ H2O2 production via a two-electron oxygen reduction reaction (ORR) will bring H2O2 beyond its current applications. The development of carbon materials offers the hope for obtaining inexpensive and high-performance alternatives to substitute noble-metal catalysts in order to provide a full and comprehensive picture of the current state of the art treatments and inspire new research in this area. Herein, the most up-to-date findings in theoretical predictions, synthetic methodologies, and experimental investigations of carbon-based catalysts are systematically summarized. Various electrode fabrication and modification methods were also introduced and compared, along with our original research on the air-breathing cathode and three-phase interface theory inside a porous electrode. In addition, our current understanding of the challenges, future directions, and suggestions on the carbon-based catalyst designs and electrode fabrication are highlighted.
Collapse
Affiliation(s)
- Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
26
|
Abstract
METHs are drugs that enter wastewater through the feces and urine of users. Conventional wastewater treatment plants are not capable of removing this type of emerging contaminant, but, in recent years, techniques have been developed to abate drugs of abuse. The present investigation focused on obtaining the technique that keeps the best balance between the comparison criteria considered: efficiency; costs; development stage; and waste generation. That is why a bibliographic review was carried out in the scientific databases of the last eight years, concluding that the six most popular techniques are: SBR, Fenton reaction, mixed-flow bioreactor, ozonation, photocatalysis, and UV disinfection. Subsequently, the Saaty and Modified Saaty methods were applied, obtaining a polynomial equation containing the four comparison criteria for the evaluation of the techniques. It is concluded that the UV disinfection method is the one with the best relationship between the analyzed criteria, reaching a score of 0.8591/1, followed by the Fenton method with a score of 0.6925/1. This research work constitutes a practical and easy-to-use tool for decision-makers, since it allows finding an optimal treatment for the abatement of METHs.
Collapse
|
27
|
Yang X, Zeng Y, Alnoush W, Hou Y, Higgins D, Wu G. Tuning Two-Electron Oxygen-Reduction Pathways for H 2 O 2 Electrosynthesis via Engineering Atomically Dispersed Single Metal Site Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107954. [PMID: 35133688 DOI: 10.1002/adma.202107954] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The hydrogen peroxide (H2 O2 ) generation via the electrochemical oxygen reduction reaction (ORR) under ambient conditions is emerging as an alternative and green strategy to the traditional energy-intensive anthraquinone process and unsafe direct synthesis using H2 and O2 . It enables on-site and decentralized H2 O2 production using air and renewable electricity for various applications. Currently, atomically dispersed single metal site catalysts have emerged as the most promising platinum group metal (PGM)-free electrocatalysts for the ORR. Further tuning their central metal sites, coordination environments, and local structures can be highly active and selective for H2 O2 production via the 2e- ORR. Herein, recent methodologies and achievements on developing single metal site catalysts for selective O2 to H2 O2 reduction are summarized. Combined with theoretical computation and advanced characterization, a structure-property correlation to guide rational catalyst design with a favorable 2e- ORR process is aimed to provide. Due to the oxidative nature of H2 O2 and the derived free radicals, catalyst stability and effective solutions to improve catalyst tolerance to H2 O2 are emphasized. Transferring intrinsic catalyst properties to electrode performance for viable applications always remains a grand challenge. The key performance metrics and knowledge during the electrolyzer development are, therefore, highlighted.
Collapse
Affiliation(s)
- Xiaoxuan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Wajdi Alnoush
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, Zhejiang, 324000, China
| | - Drew Higgins
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
28
|
Dong Z, Zhang Y, Yao J. Enhancement of H 2O 2 yield and TOC removal in electro-peroxone process by electrochemically modified graphite felt: Performance, mechanism and stability. CHEMOSPHERE 2022; 295:133896. [PMID: 35134398 DOI: 10.1016/j.chemosphere.2022.133896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/31/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Electro-peroxone (EP) is an emerging advanced oxidation process which combines electro-generation H2O2 and ozone for removing organic contaminants. In this paper, a platinum plate as anode, a method of electrochemical oxidation is adopted to modify graphite felt (GF) cathode to promote H2O2 yield and TOC removal from oxalic acid solution in EP process, its performance, mechanism and stability were discussed. Compared with original GF cathode, 2.6 times H2O2 yield can be achieved by the 5 min electrochemically modified GF (GF-5). The high electrochemical activity of the modified GF can be ascribed to introducing numerous surface oxygen-containing functional groups (OGs), which not only decreased the impedance, but also increased the amount of active site of O2 reduction. The production of H2O2 with GF-5 cathode improved with the increased initial pH, cathodic potential and O2 flow rate, while this promoting effect was not observed in GF cathode. Compared with GF cathode, TOC removal rate was improved by 21.5% with GF-5 cathode due to higher H2O2 yield in EP process. The primary pathway of TOC removal is electrochemically-driven peroxone process, and hydroxyl radical (·OH) is the dominant reactive species. Furthermore, GF-5 cathode had a good stability due to the protection of H2O2 and free electrons injected. The results indicate that the electrochemically modified GF severed as the cathode of EP processes has significant efficiency and stability in the removal of ozone-refractory organic contaminants.
Collapse
Affiliation(s)
- Zekun Dong
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Yan Zhang
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China.
| | - Jie Yao
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| |
Collapse
|
29
|
Wang S, Liu H, Ye D, Lan Q, Zhu X, Yang Y, Chen R, Liao Q. Oxygen self-doping formicary-like electrocatalyst with ultrahigh specific surface area derived from waste pitaya peels for high-yield H2O2 electrosynthesis and efficient electro-Fenton degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Li D, Yu J, Jia J, He H, Shi W, Zheng T, Ma J. Coupling electrode aeration and hydroxylamine for the enhanced Electro-Fenton degradation of organic contaminant: Improving H 2O 2 generation, Fe 3+/Fe 2+ cycle and N 2 selectivity. WATER RESEARCH 2022; 214:118167. [PMID: 35196618 DOI: 10.1016/j.watres.2022.118167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
To improve H2O2 generation and Fe3+/Fe2+ cycle simultaneously for enhancing Electro-Fenton performance, the electrode aeration (EA) and hydroxylamine sulfate (HA) were coupled. With dimethyl phthalate (DMP) as main target contaminant, combination of HA and EA greatly accelerated the degradation of DMP and exhibited a synergy in the pH of 2.0-6.9 through promoting the key reactions, including electrochemical two-electron reduction of O2 into H2O2 and redox cycles of Fe3+/Fe2+, which then improved the generation of hydroxyl radicals (·OH). The coupling EA and HA reduced the use of HA and converted most of HA into environment-friendly N2 (60.1-62.1% of HA products), while HA/solution aeration(SA) system consumed HA rapidly and the generated N2 only accounted for 5.8-6.7% of HA products. Furthermore, compared with HA/SA and EA Electro-Fenton systems, enhancement degree of DMP degradation in HA/EA Electro-Fenton process was higher in actual waterbody than in ultrapure water. The coupling EA and HA in the Electro-Fenton process could solve the low Fe3+/Fe2+ cycle efficiency and low H2O2 production simultaneously, and improve the N2 selectivity of HA transformation, which advanced its application in practical environmental remediation.
Collapse
Affiliation(s)
- Dong Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jialin Jia
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haiyang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; China Everbright Water Limited, China
| | - Tong Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
31
|
An J, Feng Y, Wang N, Zhao Q, Wang X, Li N. Amplifying anti-flooding electrode to fabricate modular electro-fenton system for degradation of antiviral drug lamivudine in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128185. [PMID: 35032957 DOI: 10.1016/j.jhazmat.2021.128185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The advanced oxidation based on in-situ hydrogen peroxide production using carbon air cathode is very potential for wastewater treatment. However, catalyst flooding and complex assembly patterns are the bottleneck limiting the air cathode to the long-term and large-scale application. In this work, a novel anti-flooding air-breathing cathode (ABC) was prepared by a simple rolling-spraying method with relatively low price commercial materials. The novel method changed the morphology of gas diffusion layer as well as adjusted the hydrophobicity of air side of the catalyst layer. As a result, water-air distribution management was achieved and TPI disequilibrium was prevented. Compare with traditional ABC, the H2O2 yield and current efficiency (CE) of optimized anti-flooding ABC (ABC0.9) increased by 13.5% (941 ± 10 mg·L-1·h-1 with CE of 84% at 30 mA·cm-2), the material cost and fabrication time decreased by 10.1% (2.32 ¥·dm-2, ~0.36 $·dm-2) and 40%. Amplified ABC coupled with Ti/IrO2 anodes were integrated into a modular electrode used for H2O2generation. When the current density (j) increased from 10 to 30 mA·cm-2, the energy cost increased from 0.19 to 0.43 ¥·mol-1 H2O2 (from 0.03 to 0.07 $·mol-1 H2O2). The modular electrode was utilized in a 2 L pre-pilot scale reactor for antiviral drug lamivudine degradation by electro-Fenton (EF) process. 100% of lamivudine and 78.1% of total organic carbon (TOC) were removed within 60 min at 20 mA·cm-2. The susceptible sites on the lamivudine toward hydroxyl radicals were investigated and transformation products (TP) as well as degradation pathway were studied.
Collapse
Affiliation(s)
- Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Naiyu Wang
- School of Environmental Science and Engineering, Academy of Environment and ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
32
|
Chu L, Cang L, Fang G, Sun Z, Wang X, Zhou D, Gao J. A novel electrokinetic remediation with in-situ generation of H 2O 2 for soil PAHs removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128273. [PMID: 35051774 DOI: 10.1016/j.jhazmat.2022.128273] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Electrokinetic-Fenton (EK-Fenton) technology requires a high dose of H2O2 to produce •OH radicals, which adds a high cost to the remediation process and raises safety concerns during transportation and storage of H2O2. Moreover, the remediation efficiency of the conventional EK-Fenton process is low due to the meaningless consumption of H2O2 on the electrodes and the alkaline environment near the cathode. In this work, a modified CMK3-gas diffusion electrode (CMK3-GDE) is fabricated. This cathode can continuously generate H2O2, and the cumulative H2O2 concentration can reach 0.23 M during 10 days of the test. The utilization of cation exchange membranes (CEMs) efficiently restricts the decomposition of H2O2 on the electrodes and prevents the alkalization of the soil near the cathode, resulting in a 13.7-43.2% increase of the removal efficiency of polycyclic aromatic hydrocarbons (PAHs). In this new treatment process, PAHs are mainly oxidized into quinones, ketones, alcohols, and small molecule acids, and all these products have lower toxicities than PAHs. The EK-Fenton/CMK3-GDE-CEM system exhibits excellent remediation efficiency for treating PAHs polluted soil, which could be a sustainable, eco-friendly, and low-cost strategy for soil remediation.
Collapse
Affiliation(s)
- Longgang Chu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Cang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhaoyue Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinghao Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
33
|
Gu Z, Zhang Z, Ni N, Hu C, Qu J. Simultaneous Phenol Removal and Resource Recovery from Phenolic Wastewater by Electrocatalytic Hydrogenation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4356-4366. [PMID: 35194996 DOI: 10.1021/acs.est.1c07457] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efficient pollutants removal and simultaneous resource recovery from wastewater are of great significance for sustainable development. In this study, an electrocatalytic hydrogenation (ECH) approach was developed to selectively and rapidly transform phenol to cyclohexanol, which possesses high economic value and low toxicity and can be easily recovered from the aqueous solution. A three-dimensional Ru/TiO2 electrode with abundant active sites and massive microflow channels was prepared for efficient phenol transformation. A pseudo-first-order rate constant of 0.135 min-1 was observed for ECH of phenol (1 mM), which was 34-fold higher than that of traditional electrochemical oxidation (EO). Both direct electron transfer and indirect reduction by atomic hydrogen (H*) played pivotal roles in the hydrogenation of phenol ring. The ECH technique also showed excellent performance in a wide pH range of 3-11 and with a high concentration of phenol (10 mM). Moreover, the functional groups (e.g., chloro- and methyl-) on phenol showed little influence on the superiority of the ECH system. This work provides a novel and practical solution for remediation of phenolic wastewater as well as recovery of valuable organic compounds.
Collapse
Affiliation(s)
- Zhenao Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Zhiyang Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nan Ni
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Li W, Feng Y, An J, Yunfei L, Zhao Q, Liao C, Wang X, Liu J, Li N. Thermal reduced graphene oxide enhanced in-situ H 2O 2 generation and electrochemical advanced oxidation performance of air-breathing cathode. ENVIRONMENTAL RESEARCH 2022; 204:112327. [PMID: 34748779 DOI: 10.1016/j.envres.2021.112327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Developing highly efficient catalysts with high ORR activity and H2O2 selectivity is an important challenge for producing H2O2 through 2e- oxygen reduction reaction (ORR). In this work, we tuned the reduction degree of graphene oxide by controlling reducing temperature and prepared graphite-TRGO hybrid air breathing cathodes (ABCs). The H2O2 production rate of TRGO-1100 (with highest reduction degree) modified ABC exhibits highest H2O2 generation rate of 20.4 ± 0.8 mg/cm2/h and current efficiency of 94 ± 2%. The charge transfer resistance of TRGO-1100 decreases by 2.5-fold compared with pure graphite cathode. Unreduced GO shows high H2O2 selectivity and low ORR activity, while TRGO shows lower H2O2 selectivity but higher ORR activity. Though the 2e- ORR selectivity of TRGO decreased TRGO with all reduction degrees, the H2O2 production increased in all forming electrodes. Superior performance of TRGO modified ABCs is attributed to high oxygen adsorption and low charge transfer resistance. TRGO possesses super-hydrophobicity and large surface area for oxygen adsorption. Besides, TRGO provides abundant electrochemically active sites to facilitate the electron transfer and formed more mesopores for H2O2 release. Electro-Fenton using TRGO-1100-ABC exhibited great performance for Persistent Organic Pollutants (POPs) degradation, which removed 66% of tetracycline in 5 min.
Collapse
Affiliation(s)
- Wen Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Li Yunfei
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
35
|
Wang K, Zhao K, Qin X, Chen S, Yu H, Quan X. Treatment of organic wastewater by a synergic electrocatalysis process with Ti 3+ self-doped TiO 2 nanotube arrays electrode as both cathode and anode. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127747. [PMID: 34823953 DOI: 10.1016/j.jhazmat.2021.127747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical anodic oxidation (AO) is a promising technology for wastewater treatment due to its strong oxidation property and environmental compatibility. However, it suffers from high energy consumption for pollutants removal due to the side-reactions of hydrogen evolution reaction on cathode and oxygen evolution reaction on anode. Combining electro-Fenton (EF) with AO not only generated •OH for pollutants degradation but also increased current efficiency. This work investigated a synergic electrocatalysis process between EF and AO with Ti3+ self-doped TiO2 nanotube arrays (Ti3+/TNTAs) electrode as both cathode and anode for wastewater treatment. The pseudo-first-order kinetic rate constant of phenol degradation by EF+AO (0.107 min-1) was 9.7 or 6.3 times as much as that of only EF (0.011 min-1) or AO (0.017 min-1) process, respectively. Enhanced pollutants removal of EF+AO could be attributed to the coexistence of •OH oxidation and direct oxidation on Ti3+/TNTAs surface. The COD of secondary effluent of coking wastewater decreased from 159.3 mg L-1 to 47.0 mg L-1 by EF+AO within 120 min with low specific energy consumption (9.5 kWh kg-1 COD-1). This work provided a new insight into design of the energy-efficient synergic electrocatalysis process for refractory pollutants degradation.
Collapse
Affiliation(s)
- Kaixuan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Kun Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xin Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
36
|
Kim DJ, Zhu Q, Rigby K, Wu X, Kim JH, Kim JH. A Protocol for Electrocatalyst Stability Evaluation: H 2O 2 Electrosynthesis for Industrial Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1365-1375. [PMID: 34958567 DOI: 10.1021/acs.est.1c06850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalysis has been proposed as a versatile technology for wastewater treatment and reuse. While enormous attention has been centered on material synthesis and design, the practicality of such catalyst materials remains clouded by a lack of both stability assessment protocols and understanding of deactivation mechanisms. In this study, we develop a protocol to identify the wastewater constituents most detrimental to electrocatalyst performance in a timely manner and elucidate the underlying phenomena behind these losses. Synthesized catalysts are electrochemically investigated in various electrolytes based on real industrial effluent characteristics and methodically subjected to a sequence of chronopotentiometric stability tests, in which each stage presents harsher operating conditions. To showcase, oxidized carbon black is chosen as a model catalyst for the electrosynthesis of H2O2, a precursor for advanced oxidation processes. Results illustrate severe losses in catalyst activity and/or selectivity upon the introduction of metal pollutants, namely magnesium and zinc. The insights garnered from this protocol serve to translate lab-scale electrocatalyst developments into practical technologies for industrial water treatment purposes.
Collapse
Affiliation(s)
- David J Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Qianhong Zhu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Kali Rigby
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Xuanhao Wu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Jin Hyun Kim
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
37
|
Enhancement of the electro-Fenton degradation of organic contaminant by accelerating Fe3+/Fe2+ cycle using hydroxylamine. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Yu H, Liu D, Wang H, Yu H, Yan Q, Ji J, Zhang J, Xing M. Singlet oxygen synergistic surface-adsorbed hydroxyl radicals for phenol degradation in CoP catalytic photo-Fenton. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Li T, Wang Z, Zhang Z, Feng K, Liang J, Wang D, Zhou L. Organic carbon modified Fe3O4/schwertmannite for heterogeneous Fenton reaction featuring synergistic in-situ H2O2 generation and activation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Li X, Yang B, Xiao K, Duan H, Wan J, Zhao H. Targeted degradation of refractory organic compounds in wastewaters based on molecular imprinting catalysts. WATER RESEARCH 2021; 203:117541. [PMID: 34416650 DOI: 10.1016/j.watres.2021.117541] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Efficient removal of low-concentration refractory pollutants is a crucial problem to ensuring water safety. The use of heterogeneous catalysis of molecular imprinting technology combined with traditional catalysts is a promising method to improve removal efficiency. Presently, the research into molecular imprinting targeting catalysts focuses mainly on material preparation and performance optimization. However, more researchers are investigating other applications of imprinting materials. This review provides recent progress in photocatalyst preparation, electrocatalyst, and Fenton-like catalysts synthesized by molecular imprinting. The principle and control points of target catalysts prepared by precipitation polymerization (PP) and surface molecular imprinting (S-MIP) are introduced. Also, the application of imprinted catalysts in targeted degradation of drugs, pesticides, environmental hormones, and other refractory pollutants is summarized. In addition, the reusability and stability of imprinted catalyst in water treatment are discussed, and the possible ecotoxicity risk is analyzed. Finally, we appraised the prospects, challenges, and opportunities of imprinted catalysts in the advanced oxidation process. This paper provides a reference for the targeted degradation of refractory pollutants and the preparation of targeted catalysts.
Collapse
Affiliation(s)
- Xitong Li
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Huabo Duan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
41
|
Li Y, Dong H, Li L, Tang L, Tian R, Li R, Chen J, Xie Q, Jin Z, Xiao J, Xiao S, Zeng G. Recent advances in waste water treatment through transition metal sulfides-based advanced oxidation processes. WATER RESEARCH 2021; 192:116850. [PMID: 33513467 DOI: 10.1016/j.watres.2021.116850] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
With the ever-growing water pollution issues, advanced oxidation processes (AOPs) have received growing attention due to their high efficiency in the removal of refractory organic pollutants. Transition metal sulfides (TMSs), with excellent optical, electrical, and catalytical performance, are of great interest as heterogeneous catalysts. These TMSs-based heterogeneous catalysts have been demonstrated to becapable and adaptable in water purification through advanced oxidation processes. The aim of this review is to conduct an exhaustive analysis and summary of recent progress in the application of TMSs-based AOPs for water decontamination. Firstly, the commonly used tuning strategies for TMSs-based catalysts are concisely introduced, including artificial size and shape control, composition control, doping, and heterostructure manufacturing. Then, a comprehensive overview of the current state-of-the-art progress on TMSs-based AOPs (i.e., Fenton-like oxidation, photocatalytic oxidation, and electro chemical oxidation processes) for wastewater treatment is discussed in detail, with an emphasis on their catalytic performance and involved mechanism. In addition, influencing factors of water chemistry, namely, pH, temperature, dissolved oxygen, inorganic species, and natural organic matter on the catalytic performance of established AOPs are analyzed. Furthermore, the reusability and stability of TMSs-based catalysts in these AOPs are also outlined. Finally, current challenges and future perspectives related to TMSs-based catalysts and their applications for AOPs wastewater treatment are proposed. It is expected that this review would shed some light on the future development of TMSs-based AOPs towards water purification.
Collapse
Affiliation(s)
- Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ran Tian
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Rui Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qianqian Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Zilan Jin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuangjie Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|