1
|
Zheng Y, Xing Y, Li G, Gao J, Li R, Liu Q, Yue T. A comprehensive review of deactivation and modification of selective catalytic reaction catalysts installed in cement kilns. J Environ Sci (China) 2025; 148:451-467. [PMID: 39095179 DOI: 10.1016/j.jes.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/04/2024]
Abstract
After the ultralow emission transformation of coal-fired power plants, cement production became China's leading industrial emission source of nitrogen oxides. Flue gas dust contents at the outlet of cement kiln preheaters were as high as 80-100 g/m3, and the calcium oxide content in the dust exceeded 60%. Commercial V2O5(-WO3)/TiO2 catalysts suitable for coal-fired flue gas suffer from alkaline earth metal Ca poisoning of cement kiln flue gas. Recent studies have also identified the poisoning of cement kiln selective catalytic reaction (SCR) catalysts by the heavy metals lead and thallium. Investigation of the poisoning process is the primary basis for analyzing the catalytic lifetime. This review summarizes and analyzes the SCR catalytic mechanism and chronicles the research progress concerning this poisoning mechanism. Based on the catalytic and toxification mechanisms, it can be inferred that improving the anti-poisoning performance of a catalyst enhances its acidity, surface redox performance-active catalytic sites, and shell layer protection. The data provide support in guiding engineering practice and reducing operating costs of SCR plants. Finally, future research directions for SCR denitrification catalysts in the cement industry are discussed. This study provides critical support for the development and optimization of poisoning-resistant SCR denitrification catalysts.
Collapse
Affiliation(s)
- Yang Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China; State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, China
| | - Guoliang Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Jiajia Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Rui Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Qi Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Tao Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China.
| |
Collapse
|
2
|
Liu H, Gao F, Ko S, Luo N, Tang X, Duan E, Yi H, Zhou Y. Low-temperature NH 3-SCR performance of a novel Chlorella@Mn composite denitrification catalyst. J Environ Sci (China) 2024; 137:271-286. [PMID: 37980014 DOI: 10.1016/j.jes.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 11/20/2023]
Abstract
The synthesis process of conventional Mn-based denitrification catalysts is relatively complex and expensive. In this paper, a resource application of chlorella was proposed, and a Chlorella@Mn composite denitrification catalyst was innovatively synthesized by electrostatic interaction. The Chlorella@Mn composite denitrification catalyst prepared under the optimal conditions (0.54 g/L Mn2+ concentration, 20 million chlorellas/mL concentration, 450°C calcination temperature) exhibited a well-developed pore structure and large specific surface area (122 m2/g). Compared with MnOx alone, the Chlorella@Mn composite catalyst achieved superior performance, with ∼100% NH3 selective catalytic reduction (NH3-SCR) denitrification activity at 100-225°C. The results of NH3 temperature-programmed desorption (NH3-TPD) and H2 temperature-programmed reduction (H2-TPR) showed that the catalyst had strong acid sites and good redox properties. Zeta potential testing showed that the electronegativity of the chlorella cell surface could be used to enrich with Mn2+. X-ray photoelectron spectroscopy (XPS) confirmed that Chlorella@Mn had a high content of Mn3+ and surface chemisorbed oxygen. In-situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS) experimental results showed that both Langmuir-Hinshelwood (L-H) and Eley-Rideal (E-R) mechanisms play a role in the denitrification process on the surface of the Chlorella@Mn catalyst, where the main intermediate nitrate species is monodentate nitrite. The presence of SO2 promoted the generation and strengthening of Brønsted acid sites, but also generated more sulfate species on the surface, thereby reducing the denitrification activity of the Chlorella@Mn catalyst. The Chlorella@Mn composite catalyst had the characteristics of short preparation time, simple process and low cost, making it promising for industrial application.
Collapse
Affiliation(s)
- Hengheng Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengyu Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Songjin Ko
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Department of Chemistry, Pyongyang University of Architecture, Pyongyang, Democratic People's Republic of Korea
| | - Ning Luo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Erhong Duan
- School of Environmental Science and Engineering, University of Science and Technology Hebei, Hebei 050018, China
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yuansong Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| |
Collapse
|
3
|
Yan Q, Xiao J, Gui R, Chen Z, Li Y, Zhu T, Wang Q, Xin Y. Mechanistic Insight into the Promotion of the Low-Temperature NH 3-SCR Activity over NiMnFeO x LDO Catalysts: A Combined Experimental and DFT Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20708-20717. [PMID: 38032314 DOI: 10.1021/acs.est.3c06849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Mn-based catalysts have attracted much attention in the field of the low-temperature NH3 selective catalytic reduction (NH3-SCR) of NO. However, their poor SO2 resistance, low N2 selectivity, and narrow operation window limit the industrial application of Mn-based oxide catalysts. In this work, NiMnFeOx catalysts were prepared by the layered double hydroxide (LDH)-derived oxide method, and the optimized Ni0.5Mn0.5Fe0.5Ox catalyst had the best denitration activity, excellent N2 selectivity, a wider active temperature range (100-250 °C), higher thermal stability, and better H2O and/or SO2 resistance. A transient reaction revealed that Ni0.5Mn0.5Fe0.5Ox inhibited the NH3 + O2 + NOx pathway to generate N2O, which may be the main reason for its improved N2 selectivity. Combining experimental measurements and density functional theory (DFT) calculations, we elucidated at the atomic level that sulfated NiMnFeOx (111) induces the adjustment of the acidity/basicity of up and down spins and the ligand field reconfiguration of the Mn sites, which improves the overall reactivity of NiMnFeOx catalysts. This work provides atomic-level insights into the promotion of NH3-SCR activity by NiMnFeOx composite oxides, which are important for the practical design of future low-temperature SCR technologies.
Collapse
Affiliation(s)
- Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Jiewen Xiao
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Rongrong Gui
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Zhenyu Chen
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Yuran Li
- Research Center for Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingyu Zhu
- Research Center for Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiang Wang
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, P.R. China
| |
Collapse
|
4
|
Li Z, Xiao J, Gao Y, Gui R, Wang Q. Design of Bifunctional Cu-SSZ-13@Mn 2Cu 1Al 1O x Core-Shell Catalyst with Superior Activity for the Simultaneous Removal of VOCs and NO x. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20326-20338. [PMID: 37955373 DOI: 10.1021/acs.est.3c04421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Synchronous control of volatile organic compounds (VOCs) and nitrogen oxides (NOx) is of great importance for ozone and PM2.5 pollution control. Balancing VOC oxidation and the NH3-SCR reaction is the key to achieving the simultaneous removal of these two pollutants. In this work, a vertically oriented Mn2Cu1Al1Ox nanosheet is grown in situ on the surface of Cu-SSZ-13 to synthesize a core-shell bifunctional catalyst (Cu-SSZ-13@Mn2Cu1Al1Ox) with multiple active sites. The optimized Cu-SSZ-13@Mn2Cu1Al1Ox catalyst delivered excellent performance for the simultaneous removal of VOCs and NOx with both 100% conversion at 300 °C in the presence of 5% water vapor. Physicochemical characterization and density functional theory (DFT) calculations revealed that Cu-SSZ-13@Mn2Cu1Al1Ox possesses more surface acidity and oxygen vacancies. The charge transfer between the core and shell is the intrinsic reason for the improved activity for both VOC and NOx removal. The molecular orbital theory is used to explain the different adsorption energies due to the different bonding modes between the core-shell and mixed individual catalysts. This work provides a novel strategy for designing efficient catalysts for the simultaneous removal of VOCs and NOx or other multiple pollutants.
Collapse
Affiliation(s)
- Zhe Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jiewen Xiao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yanshan Gao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Rongrong Gui
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qiang Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Li S, Yu H, Lan T, Shi L, Cheng D, Han L, Zhang D. NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
6
|
Efficient enhancement of the anti-KCl-poisoning performance for V2O5-WO3/TiO2 catalysts by Ce(SO4)2 modification. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Elucidating the Sensitivity of Vanadyl Species to Water over V2O5/TiO2 Catalysts for NOx Abatement via Operando Raman Spectroscopy. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Zhang P, Wang P, Impeng S, Lan T, Liu X, Zhang D. Unique Compensation Effects of Heavy Metals and Phosphorus Copoisoning over NO x Reduction Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12553-12562. [PMID: 35960931 DOI: 10.1021/acs.est.2c02255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Selective catalytic reduction (SCR) of NOx from the flue gas is still a grand challenge due to the easy deactivation of catalysts. The copoisoning mechanisms and multipoisoning-resistant strategies for SCR catalysts in the coexistence of heavy metals and phosphorus are barely explored. Herein, we unexpectedly found unique compensation effects of heavy metals and phosphorus copoisoning over NOx reduction catalysts and the introduction of heavy metals results in a dramatic recovery of NOx reduction activity for the P-poisoned CeO2/TiO2 catalysts. P preferentially combines with Ce as a phosphate species to reduce the redox capacity and inhibit NO adsorption. Heavy metals preferentially reduced the Brønsted acid sites of the catalyst and inhibited NH3 adsorption. It has been demonstrated that heavy metal phosphate species generated over the copoisoned catalyst, which boosted the activation of NH3 and NO, subsequently bringing about more active nitrate species to relieve the severe impact by phosphorus and maintain the NOx reduction over CeO2/TiO2 catalysts. The heavy metals and P copoisoned catalysts also possessed more acidic sites, redox sites, and surface adsorbed oxygen species, which thus contributed to the highly efficient NOx reduction. This work elaborates the unique compensation effects of heavy metals and phosphorus copoisoning over CeO2/TiO2 catalysts for NOx reduction and provides a perspective for further designing multipoisoning-resistant CeO2-based catalysts to efficiently control NOx emissions in stationary sources.
Collapse
Affiliation(s)
- Pan Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Penglu Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Sarawoot Impeng
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Tianwei Lan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
9
|
Liu X, Wang P, Shen Y, Zheng L, Han L, Deng J, Zhang J, Wang A, Ren W, Gao F, Zhang D. Boosting SO 2-Resistant NO x Reduction by Modulating Electronic Interaction of Short-Range Fe-O Coordination over Fe 2O 3/TiO 2 Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11646-11656. [PMID: 35876848 DOI: 10.1021/acs.est.2c01812] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
SO2-resistant selective catalytic reduction (SCR) of NOx remains a grand challenge for eliminating NOx generated from stationary combustion processes. Herein, SO2-resistant NOx reduction has been boosted by modulating electronic interaction of short-range Fe-O coordination over Fe2O3/TiO2 catalysts. We report a remarkable SO2-tolerant Fe2O3/TiO2 catalyst using sulfur-doped TiO2 as the support. Via an array of spectroscopic and microscopic characterizations and DFT theoretical calculations, the active form of the dopant is demonstrated as SO42- residing at subsurface TiO6 locations. Sulfur doping exerts strong electronic perturbation to TiO2, causing a net charge transfer from Fe2O3 to TiO2 via increased short-range Fe-O coordination. This electronic effect simultaneously weakens charge transfer from Fe2O3 to SO2 and enhances that from NO/NH3 to Fe2O3, resulting in a remarkable "killing two birds with one stone" scenario, that is, improving NO/NH3 adsorption that benefits SCR reaction and inhibiting SO2 poisoning that benefits catalyst long-term stability.
Collapse
Affiliation(s)
- Xiangyu Liu
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongjie Shen
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lupeng Han
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiang Deng
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianping Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Aiyong Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Ren
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Feng Gao
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
10
|
Alkali poisoning of Fe-Cu-ZSM-5 catalyst for the selective catalytic reduction of NO with NH3. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Li S, Hu W, Xu Z, Yu H, Lan T, Han L, Zhang D. Revealing the Promotion Effects of Nb on Alkali Resistance of FeVO4/TiO2 Catalysts for NOx Reduction. ChemCatChem 2022. [DOI: 10.1002/cctc.202200476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuangxi Li
- Shanghai University International Joint Laboratory of Catalytic Chemistry CHINA
| | - Weiwei Hu
- Shanghai University International Joint Laboratory of Catalytic Chemistry CHINA
| | - Ziqiang Xu
- Shanghai University International Joint Laboratory of Catalytic Chemistry CHINA
| | - Huijun Yu
- Shanghai University International Joint Laboratory of Catalytic Chemistry CHINA
| | - Tianwei Lan
- Shanghai University International Joint Laboratory of Catalytic Chemistry CHINA
| | - Lupeng Han
- Shanghai University International Joint Laboratory of Catalytic Chemistry CHINA
| | - Dengsong Zhang
- Shanghai University Department of Chemistry P.O.Box 111No. 99 Shangda Road 200444 Shanghai CHINA
| |
Collapse
|
12
|
Daengngern R, Kaewprasong K. Nitric Oxide Decomposition via Selective Catalytic Reduction by Ammonia on a Transition-Metal Cluster of W 2TcO 6. J Phys Chem A 2022; 126:3847-3853. [PMID: 35696328 DOI: 10.1021/acs.jpca.2c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Decomposition of nitric oxide (NO) gas on a reactive transition-metal cluster of W2TcO6 has been examined and investigated via selective catalytic reduction by ammonia (NH3-SCR) using the M06-L density functional method. The transition-metal cluster of W2TcO6 can be employed to transform NO to N2 gas efficiently over an active site of tungsten (W). A reaction mechanism of NO conversion based on the NH3-SCR process has been elucidated by a potential energy surface along the reaction pathways. The reaction pathways of this NH3-SCR process begin with adsorption of NH3, adsorption of NO to the cluster, formation of nitrosamine (NH2NO) and NHNO/NHNOH intermediates, and rearrangement of NHNO/NHNOH to obtain N2 and H2O, respectively. Notably, a significant NH2NO as a key intermediate, namely, "nitrosamine", must be formed before further steps can take place in the generation of N2 from NO, followed by the involvement of the NHNO or NHNOH intermediate. From our calculated results, the NHNO intermediate via TS3a is found in pathway a, while NHNOH is found in pathway b via TS3b. Pathway b has a lower energy barrier of 35.1 kcal/mol than pathway a with an energy barrier of 41.8 kcal/mol, indicating that pathway b should be more energetically favorable. The step for NHNO intermediate rearrangement is a rate-determining step for the reaction occurring through pathway a, which is found to be more difficult in accordance with a difficult N-H bond cleavage to form the NNOH intermediate before N2 formation. The overall reaction is an exothermic process with thermodynamic and kinetic favors. Thus, this bimetallic W2TcO6 cluster could be used as a promising and active catalyst for NO decomposition via the NH3-SCR process to an eco-friendly gas, that is, N2.
Collapse
Affiliation(s)
- Rathawat Daengngern
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.,Integrated Applied Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Kittikorn Kaewprasong
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
13
|
Zhou J, Wang P, Chen A, Qu W, Zhao Y, Zhang D. NO x Reduction over Smart Catalysts with Self-Created Targeted Antipoisoning Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6668-6677. [PMID: 35500206 DOI: 10.1021/acs.est.2c00758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective catalytic reduction of NOx in the presence of alkali (earth) metals and heavy metals is still a challenge due to the easy deactivation of catalysts. Herein, NOx reduction over smart catalysts with self-created targeted antipoisoning sites is originally demonstrated. The smart catalyst consisted of TiO2 pillared montmorillonite with abundant cation exchange sites to anchor poisoning substances and active components to catalyze NOx into N2. It was not deactivated during the NOx reduction process in the presence of alkali (earth) metals and heavy metals. The enhanced surface acidity, reducible active species, and active chemisorbed oxygen species of the smart catalyst accounted for the remarkable NOx reduction efficiency. More importantly, the self-created targeted antipoisoning sites expressed specific anchoring effects on poisoning substances and protected the active components from poisoning. It was demonstrated that the tetrahedrally coordinated aluminum species of the smart catalyst mainly acted as self-created targeted antipoisoning sites to stabilize the poisoning substances into the interlayers of montmorillonite. This work paves a new way for efficient reduction of NOx from the complex flue gas in practical applications.
Collapse
Affiliation(s)
- Jialun Zhou
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Aling Chen
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wenqiang Qu
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yufei Zhao
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
14
|
Shen Z, Liu X, Impeng S, Zhang C, Yan T, Wang P, Zhang D. Alkali and Heavy Metal Copoisoning Resistant Catalytic Reduction of NO x via Liberating Lewis Acid Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5141-5149. [PMID: 35369691 DOI: 10.1021/acs.est.1c08096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The catalyst deactivation caused by the coexistence of alkali and heavy metals remains an obstacle for selective catalytic reduction of NOx with NH3. Moreover, the copoisoning mechanism of alkali and heavy metals is still unclear. Herein, the copoisoning mechanism of K and Cd was revealed from the adsorption and variation of reaction intermediates at a molecular level through time-resolved in situ spectroscopy combined with theoretical calculations. The alkali metal K mainly decreased the adsorption of NH3 on Lewis acid sites and altered the reaction more depending on the formation of the NH4NO3 intermediate, which is highly related to NOx adsorption and activation. However, Cd further inhibited the generation of active nitrate intermediates and thus decreased the NOx abatement about 60% on potassium-poisoned CeTiOx catalysts. Physically mixing with acid additives for CeTiOx catalysts could significantly liberate the active Lewis acid sites from the occupation of alkali metals and relieve the high dependence on NOx adsorption and activation, thus recovering the NOx removal rate to the initial state. This work revealed the copoisoning mechanism of K and Cd on Ce-based de-NOx catalysts and developed a facile anti-poisoning strategy, which paves a way for the development of durable catalysts among alkali and heavy metal copoisoning resistant catalytic reduction of NOx.
Collapse
Affiliation(s)
- Zhi Shen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Sarawoot Impeng
- National Nanotechnology Center, National Science and Technology Development Agency, Klong Luang, Pathum Thani 12120, Thailand
| | - Chengbiao Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
15
|
Hu W, He J, Liu X, Yu H, Jia X, Yan T, Han L, Zhang D. SO 2- and H 2O-Tolerant Catalytic Reduction of NO x at a Low Temperature via Engineering Polymeric VO x Species by CeO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5170-5178. [PMID: 35369692 DOI: 10.1021/acs.est.1c08715] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective catalytic reduction (SCR) of NOx over V2O5-based oxide catalysts has been widely used, but it is still a challenge to efficiently reduce NOx at low temperatures under SO2 and H2O co-existence. Herein, SO2- and H2O-tolerant catalytic reduction of NOx at a low temperature has been originally demonstrated via engineering polymeric VOx species by CeO2. The polymeric VOx species were tactfully engineered on Ce-V2O5 composite active sites via the surface occupation effect of Ce, and the obtained catalysts exhibited remarkable low-temperature activity and strong SO2 and H2O tolerance at 250 °C. The strong interaction between Ce and V species induced the electron transfer from V to Ce and tuned the SCR reaction via the E-R pathway between the NH4+/NH3 species and gaseous NO. In the presence of SO2 and H2O, the polymeric VOx species had not been hardly influenced, while the formation of sulfate species on Ce sites not only promoted the adsorption of NH4+ species and the reaction between gaseous NO and NH4+ but also facilitated the decomposition of ammonium bisulfate through weakening the strong bond between HSO4- and NH4+. This work provided a new strategy for SO2- and H2O-tolerant catalytic reduction of NOx at a low temperature.
Collapse
Affiliation(s)
- Weiwei Hu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Jiebing He
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Xiangyu Liu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Huijun Yu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Xinyu Jia
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Lupeng Han
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, 200444 Shanghai, China
| |
Collapse
|
16
|
Zhao Y, Shi L, Shen Y, Zhou J, Jia Z, Yan T, Wang P, Zhang D. Self-Defense Effects of Ti-Modified Attapulgite for Alkali-Resistant NO x Catalytic Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4386-4395. [PMID: 35262342 DOI: 10.1021/acs.est.1c07996] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nowadays, the serious deactivation of deNOx catalysts caused by alkali metal poisoning was still a huge bottleneck in the practical application of selective catalytic reduction of NOx with NH3. Herein, alkali-resistant NOx catalytic reduction over metal oxide catalysts using Ti-modified attapulgite (ATP) as supports has been originally demonstrated. The self-defense effects of Ti-modified ATP for alkali-resistant NOx catalytic reduction have been clarified. Ti-modified ATP with self-defense ability was obtained by removing alkaline metal cation impurities in the natural ATP materials without destroying its initial layered-chain structure through the ion-exchange procedure, accompanied with an obvious enrichment of Brønsted acid and Lewis acid sites. The self-defense effects embodied that both ion-exchanged Ti octahedral centers and abundant Si-OH sites in the Ti-ion-exchange-modified ATP could effectively anchor alkali metals via coordinate bonding or ion-exchange process, which induced alkali metals to be immobilized by the Ti-ion-exchange-modified ATP carrier rather than impair active species. Under this special protection of self-defense effects, Ti-ion-exchange-modified ATP supported catalysts still retained plentiful acidic sites and superior redox ability even after alkali metal poisoning, giving rise to the maintenance of sufficient NHx and NOx adsorption and the subsequent efficient reaction, which in turn resulted in high NOx catalytic reduction capacity of the catalyst. The strategy provided new inspiration for the development of novel and efficient selective catalytic reduction of NOx with NH3 (NH3-SCR) catalysts with high alkali resistance.
Collapse
Affiliation(s)
- Yufei Zhao
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongjie Shen
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jialun Zhou
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhaozhao Jia
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
17
|
Xiong S, Chen J, Liu H, Chen X, Si W, Gong Z, Peng Y, Li J. Like Cures like: Detoxification Effect between Alkali Metals and Sulfur over the V 2O 5/TiO 2 deNO x Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3739-3747. [PMID: 35212519 DOI: 10.1021/acs.est.2c00113] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The V2O5/TiO2 (VTi) catalyst has been widely employed for the NH3 selective catalytic reduction (NH3-SCR) reaction, and sulfur (S) and alkali metals (K) were usually considered as poisons during this reaction. In this work, the synergistic effect of S and K over the VTi catalyst for the NH3-SCR reaction was analyzed and discussed. It is surprisingly observed that the synergistic effects of S and K exhibited a detoxification effect on the NH3-SCR reaction. That is, although the VTi catalyst exhibited moderate resistance to S poisoning and unsatisfactory resistance to K deactivation, the SCR activity was restored to close to fresh VTi when K and S coexisted. This detoxification effect also could occur between other alkali metals (e.g., Ca and Na) and sulfur. X-ray photoelectron spectroscopy and charge density difference studies both indicate that the introduction of K could significantly affect the electronic structure of V, but this toxic effect was recovered by the further addition of S because of the strong interaction between S and K. Therefore, this detoxification effect can occur in the practical reaction atmosphere, which alleviates the alkali metal poisoning of commercial catalysts.
Collapse
Affiliation(s)
- Shangchao Xiong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, PR China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hao Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiaoping Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, PR China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
18
|
Ko S, Tang X, Gao F, Wang C, Liu H, Liu Y. Selective catalytic reduction of NOx with NH3 on Mn, Co-BTC-derived catalysts: Influence of thermal treatment temperature. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Jia Z, Shen Y, Yan T, Li H, Deng J, Fang J, Zhang D. Efficient NO x Abatement over Alkali-Resistant Catalysts via Constructing Durable Dimeric VO x Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2647-2655. [PMID: 35107976 DOI: 10.1021/acs.est.1c06932] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The presence of alkali metals in flue gas is still an obstacle to the practical application of catalysts for selective catalytic reduction (SCR) of NOx by NH3. Polymeric vanadyl species play an essential role in ensuring the effective NOx abatement for NH3-SCR. However, polymeric vanadyl would be conventionally deactivated by the poison of alkali metals such as potassium, and it still remains a great challenge to construct robust and stable vanadyl species. Here, it was demonstrated that a more durable dimeric VOx active site could be constructed with the assistance of triethylamine, thereby achieving alkali-resistant NOx abatement. Due to the rational construction of polymerization structures, the obtained TiO2-supported cerium vanadate catalyst featured more stable dimeric VOx species and the active sites could survive even after the poisoning of alkali metal. Moreover, the depolymerization of VOx was suppressed endowing the catalysts with more Brønsted and Lewis acid sites after the poisoning of alkali metal, which ensured the efficient NOx reduction. This work unraveled the effects of alkali metal on the polymerization state of active species and opens up a way to develop low-temperature alkali-resistant catalysts for NOx abatement.
Collapse
Affiliation(s)
- Zhaozhao Jia
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongjie Shen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongrui Li
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiang Deng
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianhui Fang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
20
|
Chen L, Wang Y, Wang X, Wang Q, Li B, Li S, Zhang S, Li W. Brønsted acid enhanced hexagonal cerium phosphate for the selective catalytic reduction of NO with NH 3: In situ DRIFTS and DFT investigation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127334. [PMID: 34879553 DOI: 10.1016/j.jhazmat.2021.127334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/12/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The possible effect of optimized acid sites on NH3-SCR performance and the fundamental mechanism are barely illustrated. In this work, we report two model catalysts of hexagonal (h-CPO) and monoclinic (m-CPO) cerium phosphate with disparate acidity that show different NH3-SCR activities under the same reaction conditions. Brønsted acid sites were found to be crucial for NH3-SCR performance at both low and high temperature. The electron localization discrepancy of h-CPO was more pronounced as compared with m-CPO, leading to the enrichment of P-OH (Brønsted acid site) which could strongly absorb NH3 and then generate NH4+ to participate in fast SCR via Langmuir-Hinshelwood mechanism, resulting in good activity at low temperature. The zeolitic water stored in the open channels of h-CPO could be released as supplement for P-OH sites which prevent the depletion and non-selective oxidation of NH3 thus maintaining its high activity at high temperature via the Eley-Rideal mechanism. Meanwhile, as DFT calculation revealed, cerium is the electron deficient center which can easily fix NO and NO2 from the intake, generating active NO2(ad) or nitrites and facilitating fast SCR by reacting with NH4+ species. Hence, the superior protonation ability to form P-OH and low energy barrier to generate active nitrites of h-CPO led its T80 NOx conversion to a broaden temperature of 150-450 oC under high GHSV of 177,000 h-1. Furthermore, experimental and DFT calculation also demonstrated that the enriched Brønsted acid sites over h-CPO have largely suppressed SO2 adsorption, thus significantly reducing the formation of metal sulfates and achieving great SO2 resistance. The ammonium sulfate deposits can be storage of NH3, supplying additional reductant to promote high temperature activity and selectivity.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, PR China
| | - Yaqing Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Xiaoxiang Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Qiaoli Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Beilei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Sujing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
21
|
Si Z, Shen Y, He J, Yan T, Zhang J, Deng J, Zhang D. SO 2-Induced Alkali Resistance of FeVO 4/TiO 2 Catalysts for NO x Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:605-613. [PMID: 34935391 DOI: 10.1021/acs.est.1c05686] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective catalytic reduction of nitrogen oxides with ammonia (NH3-SCR) is an efficient NOx abatement strategy, but deNOx catalysts suffer from serious deactivation due to the coexistence of multiple poisoning substances such as K, SO2, etc. in the flue gas. It is essential to understand the interaction among various poisons and their effects on NOx abatement. Here, we unexpectedly identified the K migration behavior induced by SO2 over K-poisoned FeVO4/TiO2 catalysts, which led to alkali-poisoning buffering and activity recovery. It has been demonstrated that the K would occupy both redox and acidic sites, which severely reduced the reactivity of FeVO4/TiO2 catalysts. After the sulfuration of the K-poisoned catalyst, SO2 preferred to be combined with the surface K2O, lengthened the K-OFe and K-OV, and thus released the active sites poisoned by K2O, thereby preserving an increase in the activity. As a result, for the K-poisoned catalyst, the conversion of NOx increased from 21 to 97% at 270 °C after the sulfuration process. This work contributes to the understanding of the specific interaction between alkali metals and SO2 on deNOx catalysts and provides a novel strategy for the adaptive use of one poisoning substance to counter another for practical NOx reduction.
Collapse
Affiliation(s)
- Zhiping Si
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongjie Shen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiebing He
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianping Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiang Deng
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
22
|
Han Z, Du H, Xu D, Gao Y, Yang S, Song L, Dong J, Pan X. Fe and Mn mixed oxide catalysts supported on Sn-modified TiO 2 for the selective catalytic reduction of NO with NH 3 at low temperature. NEW J CHEM 2022. [DOI: 10.1039/d1nj05290j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FeMn/SnxTiO2 catalysts were synthesized by introducing Sn as an additive to modify TiO2 supports, and the Sn doping could improve the SO2 tolerance and low-temperature SCR activity significantly.
Collapse
Affiliation(s)
- Zhitao Han
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Huan Du
- China Waterborne Transport Research Institute, Beijing 100088, China
| | - Duo Xu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Yu Gao
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Shaolong Yang
- School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liguo Song
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Jingming Dong
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Xinxiang Pan
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
- School of Electronic and Information Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
23
|
Du Y, Lu D, Liu J, Li X, Wu C, Wu X, An X. Insight into the potential application of CuO x/CeO 2 catalysts for NO removal by CO: a perspective from the morphology and crystal-plane of CeO 2. NEW J CHEM 2022. [DOI: 10.1039/d2nj03542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of CuOx/CeO2-X were fabricated and employed as the NO + CO reaction catalysts.
Collapse
Affiliation(s)
- Yali Du
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, P. R. China
| | - Dong Lu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Jiangning Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaodong Li
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, P. R. China
| | - Chaohui Wu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xu Wu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xia An
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| |
Collapse
|
24
|
Feng C, Han L, Wang P, Liu X, Zhou G, Zhang D. Unraveling SO 2-tolerant mechanism over Fe 2(SO 4) 3/TiO 2 catalysts for NO x reduction. J Environ Sci (China) 2022; 111:340-350. [PMID: 34949363 DOI: 10.1016/j.jes.2021.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 06/14/2023]
Abstract
Developing low-temperature SO2-tolerant catalysts for the selective catalytic reduction of NOx is still a challenging task. The sulfation of active metal oxides and deposition of ammonium bisulfate deactivate catalysts, due to the difficult decomposition of the as-formed sulfate species at low temperatures (<300 °C). In recent years, metal sulfate catalysts have attracted increasing attention owing to their good catalytic activity and strong SO2 tolerance at higher temperatures (>300°C); however, the SO2-tolerant mechanism of metal sulfate catalysts is still ambiguous. In this study, Fe2(SO4)3/TiO2 and Ce2(SO4)3/TiO2 catalysts were prepared using the corresponding metal sulfate salt as the precursor. These catalysts were tested for their low-temperature activity and SO2 tolerance activity. Compared to Ce2(SO4)3/TiO2, Fe2(SO4)3/TiO2 showed significantly better low-temperature activity and SO2 tolerance. It was demonstrated that less surface sulfate species formed on Fe2(SO4)3/TiO2 and Ce2(SO4)3/TiO2. However, the presence of NO and O2 could assist the decomposition of NH4HSO4 over Fe2(SO4)3/TiO2 at a lower temperature, endowing Fe2(SO4)3/TiO2 with better low-temperature SO2 tolerance than Ce2(SO4)3/TiO2. This study unraveled the SO2-tolerant mechanism of Fe2(SO4)3/TiO2 at lower temperatures (<300 °C), and a potential strategy is proposed for improving the low-temperature SO2-tolerance of catalysts with Fe2(SO4)3 as the main active component or functional promoter.
Collapse
Affiliation(s)
- Chong Feng
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lupeng Han
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Guangyuan Zhou
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
25
|
Guan Y, Liu Y, Lv Q, Wang B. Fe decorated CeO2 microsphere catalyst with surface oxygen defect for NO reduction by CO. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Xie R, Ma L, Sun K, Zhou G, Qu Z, Yan N. Catalytic performance and mechanistic evaluation of sulfated CeO 2 cubes for selective catalytic reduction of NO x with ammonia. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126545. [PMID: 34274807 DOI: 10.1016/j.jhazmat.2021.126545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/09/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Sulfated CeO2 cubes were prepared by the impregnation of CeO2 cubes by ammonium sulfates, and further evaluated in selective catalytic reduction of NOx with ammonia (NH3-SCR). Catalytic activity tests indicated that NOx reduction conversions and N2 selectivity of sulfated CeO2 cubes could be significantly improved compared to pure CeO2 cubes. The synthesized sulfated CeO2 cubes were further characterized by atom-resolved high angle annular dark-field (HAADF) imaging, Fourier-transform infrared spectroscopy (FTIR) by pyridine adsorption, and temperature-programmed reduction by H2 (H2-TPR). The characterization results showed that sulfates were primarily dispersed through the corners, edges, and surfaces of CeO2 cubes, and did not significantly affect the crystal structures of CeO2 cubes. Sulfation treatment could create and strengthen Brønsted acid sites originated from the protons on surface sulfates, further facilitating ammonia adsorption and activation. The kinetic data indicated that the apparent reaction order of NO, O2, and NH3 was 0.95 to 1.01, -0.01 to 0.00, and -0.18 to -0.15, respectively. It could speculate that gaseous phase NO involving in NO catalytic oxidation was the rate-determining step over sulfated CeO2 cubes for NH3-SCR reaction. The presence of NH3 slightly inhibited the SCR reaction rate due to the competitive adsorption blocking NO oxidation sites.
Collapse
Affiliation(s)
- Renyi Xie
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Kai Sun
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gang Zhou
- School of Science, Hubei University of Technology, Wuhan 430068, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Xie R, Ma L, Li Z, Qu Z, Yan N, Li J. Review of Sulfur Promotion Effects on Metal Oxide Catalysts for NOx Emission Control. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02197] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Renyi Xie
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junhua Li
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Guo A, Xie K, Lei H, Rizzotto V, Chen L, Fu M, Chen P, Peng Y, Ye D, Simon U. Inhibition Effect of Phosphorus Poisoning on the Dynamics and Redox of Cu Active Sites in a Cu-SSZ-13 NH 3-SCR Catalyst for NO x Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12619-12629. [PMID: 34510889 DOI: 10.1021/acs.est.1c03630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) stemming from biodiesel and/or lubricant oil additives is unavoidable in real diesel exhausts and deactivates gradually the Cu-SSZ-13 zeolite catalyst for ammonia-assisted selective catalytic NOx reduction (NH3-SCR). Here, the deactivation mechanism of Cu-SSZ-13 by P-poisoning was investigated by ex situ examination of the structural changes and by in situ probing the dynamics and redox of Cu active sites via a combination of impedance spectroscopy, diffuse reflection infrared Fourier transform spectroscopy, and ultraviolet-visible spectroscopy. We unveiled that strong interactions between Cu and P led to not only a loss of Cu active sites for catalytic turnovers but also a restricted dynamic motion of Cu species during low-temperature NH3-SCR catalysis. Furthermore, the CuII ↔ CuI redox cycling of Cu sites, especially the CuI → CuII reoxidation half-cycle, was significantly inhibited, which can be attributed to the restricted Cu motion by P-poisoning disabling the formation of key dimeric Cu intermediates. As a result, the NH3-SCR activity at low temperatures (200 °C and below) decreased slightly for the mildly poisoned Cu-SSZ-13 and considerably for the severely poisoned Cu-SSZ-13.
Collapse
Affiliation(s)
- Anqi Guo
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Kunpeng Xie
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Huarong Lei
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Valentina Rizzotto
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Limin Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Mingli Fu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yue Peng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| |
Collapse
|
29
|
Zhang P, Wang P, Chen A, Han L, Yan T, Zhang J, Zhang D. Alkali-Resistant Catalytic Reduction of NO x by Using Ce-O-B Alkali-Capture Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11970-11978. [PMID: 34488354 DOI: 10.1021/acs.est.1c02882] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Reducing the poisoning effect arising from alkali metals over catalysts for selective catalytic reduction (SCR) of NOx by NH3 is still an urgent issue to be solved. Herein, alkali-resistant NOx reduction over B-doped CeO2/TiO2 catalysts (Ce-B/TiO2) with Ce-O-B alkali-capture sites was originally demonstrated. It was noted that boron was confirmed to be doped into the lattice of CeO2 to form the Ce-O-B structure. In this way, more active Ce(III) species and oxygen vacancies were generated from B-doped CeO2, thus accelerating the redox cycle and enhancing the adsorption/activation of NO. Gratifyingly, the created Ce-O-B sites as alkali-capture sites could be effectively combined with K and release the poisoned Ce active sites, which maintained efficient NH3 and NO adsorption/activation over K poisoned Ce-B/TiO2. This work paves a way for designing highly efficient and alkali-resistant SCR catalysts in both academic and industrial fields.
Collapse
Affiliation(s)
- Pan Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Penglu Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Aling Chen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Lupeng Han
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Tingting Yan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Jianping Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
30
|
Feng C, Wang P, Liu X, Wang F, Yan T, Zhang J, Zhou G, Zhang D. Alkali-Resistant Catalytic Reduction of NO x via Naturally Coupling Active and Poisoning Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11255-11264. [PMID: 34323076 DOI: 10.1021/acs.est.1c02061] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Releasing the poisoning effect of alkali metals over catalysts is still an intractable issue for selective catalytic reduction (SCR) of NOx with ammonia. The presence of K in fly ash always dramatically suppressed catalytic activity by impairing acidity and redox properties, leading to severe reduction of lifetime for SCR catalysts. Herein, alkali-resistant NOx reduction over TiO2-supported Fe2(SO4)3 catalysts was originally demonstrated via naturally coupling active and poisoning sites. Notably, TiO2-supported Fe2(SO4)3 catalysts expressed admirable NOx conversion and K resistance within a quite broad temperature window of 200-500 °C. The catalysts with more conserved sulfate species revealed that sulfate groups preferred to migrate from the bulk phase to surface, thus effectively binding with K poisons to release the damage on iron active sites. Because of protection effects of migrated sulfates and closely coupling effects with Fe active sites, NH3 and NO adsorption amounts and rates were well maintained. In this way, Fe metal sites and sulfate species closely coupled together on a self-preserved TiO2-supported Fe2(SO4)3 catalyst played essential roles as highly active sites and unique poisoning sites. This work paves a new way to design SCR catalysts with superior alkali resistance that are more reliable in practical deNOx application.
Collapse
Affiliation(s)
- Chong Feng
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Fuli Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianping Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Guangyuan Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
31
|
Li Y, Cai S, Wang P, Yan T, Zhang J, Zhang D. Improved NO x Reduction over Phosphate-Modified Fe 2O 3/TiO 2 Catalysts Via Tailoring Reaction Paths by In Situ Creating Alkali-Poisoning Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9276-9284. [PMID: 34142799 DOI: 10.1021/acs.est.1c01722] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The deactivation issue arising from alkali poisoning over catalysts is still a challenge for the selective catalytic reduction of NOx by NH3. Herein, improved NOx reduction in the presence of alkaline metals over phosphate-modified Fe2O3/TiO2 catalysts has been originally demonstrated via tailoring the reaction paths by in situ creating alkali-poisoning sites. The introduction of phosphate results in the partial formation of iron phosphate species and makes the catalyst to mainly exhibit the characteristics of FePO4, which is responsible for the widened temperature window and enhanced alkali resistance. The tetrahedral [FeO4]/[PO4] structures in iron phosphate act as the Brønsted acid sites to increase the catalyst surface acidity. In addition, the formation of an Fe-O-P structure enhances the redox ability and increases surface adsorbed oxygen. Furthermore, the created phosphate groups (PO43-) serving as alkali-poisoning sites preferentially combine with potassium so that iron species on the active sites are protected. Therefore, the enhanced NH3 species adsorption capacity, improved redox ability, and active nitrate species remaining in the phosphate-modified Fe2O3/TiO2 catalyst ensure the de-NOx activity after being poisoned by alkali metals through the Langmuir-Hinshelwood reaction pathway. Hopefully, this novel strategy could provide an inspiration to design novel catalysts to control NOx emission with extraordinary resistance to alkaline metals.
Collapse
Affiliation(s)
- Yue Li
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Sixiang Cai
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianping Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
32
|
Jeon SW, Song I, Lee H, Kim DH. Enhanced activity of vanadia supported on microporous titania for the selective catalytic reduction of NO with NH 3: Effect of promoters. CHEMOSPHERE 2021; 275:130105. [PMID: 33676281 DOI: 10.1016/j.chemosphere.2021.130105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Vanadium oxide-based catalysts are considered a promising catalyst for selective catalytic reduction (SCR) of NO with NH3, which is an effective NOx removal technology. As environmental issues have garnered more attention, however, improvements to vanadium-based SCR catalysts are strongly required. In a previous study, we found that vanadium oxide on microporous titania as a support (V/MPTiO2) has certain advantages, such as improved thermal stability and more suppressed N2O formation, over the use of conventional nanoparticle titania (DT-51) as a support. In this study, widely used promoters, such as W, Sb, and Mo, were added to V/MPTiO2 to investigate whether they have promoting effects on V/MPTiO2 as well. Among these promoters added catalysts, the W and Mo were found to have significant promoting effects on the enhancement of deNOx activities at low temperatures, while the addition of Sb to V/MPTiO2 tended to have a negative effect on the SCR activity. Based on the characterizations, including laser Raman, H2-temperature programmed reduction (H2-TPR), and in situ diffuse reflectance infrared Fourier transform (in situ DRIFT) analysis, we found that the addition of W and Mo increased the degree of polymerization in V/MPTiO2, which generated more reactive vanadia species. Hence, such changes, resulting from the addition of W and Mo promoters to V/MPTiO2, yielded enhanced catalytic activity at low temperatures.
Collapse
Affiliation(s)
- Se Won Jeon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Inhak Song
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hwangho Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Do Heui Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
33
|
Chen G, Xiong S, Chen X, Chu X, Yin R, Liu C, Chen J, Li J. Penetration of Arsenic and Deactivation of a Honeycomb V 2O 5-WO 3/TiO 2 Catalyst in a Glass Furnace. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11368-11374. [PMID: 34137252 DOI: 10.1021/acs.est.1c01314] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deactivation of honeycomb V2O5-WO3/TiO2 catalysts by arsenic has been studied widely in coal-fired power plants but rarely in glass furnaces. In this paper, deactivated catalysts that had been used for more than 4000 h were analyzed. We maintained the catalysts in their original monolith shape to retain their adhered substance and used appropriate methods to strip the substance layer by layer. With various characterization techniques, it was determined that the adhered substance was composed almost entirely of Na2SO4 and CaSO4. We also quantified the penetration depth of arsenic visually, which was more than 370 μm. A three-stage penetration and deactivation process induced by arsenic was proposed. It was pointed out that molten and volatile As2O3 played a key role in the deactivation process, while substances in the solid state had little impact on the deep bulk of the catalyst. In this study, we proposed an integrated deactivation process consisting of adhesion, penetration, and deactivation in a honeycomb V2O5-WO3/TiO2 catalyst by arsenic in a glass furnace. Finally, we also provided guidance on alleviating the deactivation caused by arsenic. The key is to convert molten and volatile As2O3 to solid-state substances before it contacts the catalyst.
Collapse
Affiliation(s)
- Gongda Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Shangchao Xiong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiaoping Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xuefeng Chu
- Key Laboratory of Architectural Cold Climate Energy Management, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Rongqiang Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Changdong Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
34
|
Facile synthesis of hollow nanotube MnCoOx catalyst with superior resistance to SO2 and alkali metal poisons for NH3-SCR removal of NOx. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118517] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Insight into the Promoting Role of Er Modification on SO2 Resistance for NH3-SCR at Low Temperature over FeMn/TiO2 Catalysts. Catalysts 2021. [DOI: 10.3390/catal11050618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Er-modified FeMn/TiO2 catalysts were prepared through the wet impregnation method, and their NH3-SCR activities were tested. The results showed that Er modification could obviously promote SO2 resistance of FeMn/TiO2 catalysts at a low temperature. The promoting effect and mechanism were explored in detail using various techniques, such as BET, XRD, H2-TPR, XPS, TG, and in-situ DRIFTS. The characterization results indicated that Er modification on FeMn/TiO2 catalysts could increase the Mn4+ concentration and surface chemisorbed labile oxygen ratio, which was favorable for NO oxidation to NO2, further accelerating low-temperature SCR activity through the “fast SCR” reaction. As fast SCR reaction could accelerate the consumption of adsorbed NH3 species, it would benefit to restrain the competitive adsorption of SO2 and limit the reaction between adsorbed SO2 and NH3 species. XPS results indicated that ammonium sulfates and Mn sulfates formed were found on Er-modified FeMn/TiO2 catalyst surface seemed much less than those on FeMn/TiO2 catalyst surface, suggested that Er modification was helpful for reducing the generation or deposition of sulfate salts on the catalyst surface. According to in-situ DRIFTS the results of, the presence of SO2 in feeding gas imposed a stronger impact on the NO adsorption than NH3 adsorption on Lewis acid sites of Er-modified FeMn/TiO2 catalysts, gradually making NH3-SCR reaction to proceed in E–R mechanism rather than L–H mechanism.
Collapse
|
36
|
Jin Q, Lu Y, Ji W, Yang B, Xu M, Xue Z, Dai Y, Xu H. Selective catalytic reduction of NO over W–Zr-O x/TiO 2: performance study of hierarchical pore structure. RSC Adv 2021; 11:33361-33371. [PMID: 35497562 PMCID: PMC9042316 DOI: 10.1039/d1ra05801k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022] Open
Abstract
A series of W–Zr-Ox/TiO2 catalysts with hierarchical pore structure were prepared and used for selective catalytic reduction of NO by NH3.
Collapse
Affiliation(s)
- Qijie Jin
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Yao Lu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Wenyu Ji
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Bo Yang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Mutao Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Zhiwei Xue
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Yi Dai
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Haitao Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
| |
Collapse
|