1
|
Wang X, Yang X, Lu C, Zhang J, Li B, Du Z, Wang J, Wang J, Juhasz A, Yang Y, Zhu L. Are HFPO-TA and HFPO-DA safe substitutes for PFOA? A comprehensive toxicity study using zebrafish (Danio rerio) embryos and adults. JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136718. [PMID: 39637815 DOI: 10.1016/j.jhazmat.2024.136718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Due to the multiple biotoxicity caused by perfluorooctanoic acid (PFOA), the application and production of PFOA is regulated globally. PFOA substitutes including hexafluoropropylene oxide trimer acid (HFPO-TA) and hexafluoropropylene oxide dimer acid (HFPO-DA) have been applied to industrial processes and subsequently detected in surface and groundwater, yet there is a lack of comprehensive assessment of their toxicity to aquatic organisms. Therefore, under the same time and same experimental conditions, the toxic effects and differences of PFOA, HFPO-TA, and HFPO-DA on zebrafish adults and embryos were assessed from oxidative damage, apoptosis, immune function impairment, and protein interactions. The HFPO-TA and HFPO-DA caused more severe oxidative damage than PFOA. While PFOA only disrupted immune function in adults, HFPO-TA and HFPO-DA affected immune homeostasis in both adults and embryos. Integrated biomarker response results showed that superoxide dismutase (SOD) activity and reactive oxygen species content could be used as early warning indicators of toxicity in adults and embryos, respectively. Molecular docking simulations identified HFPO-TA as having the lowest binding energy with SOD proteins, thereby exerting the greatest effect on SOD activity. Compared to PFOA, HFPO-TA and HFPO-DA exhibited a greater toxicological response and, therefore, may not be suitable substitutes for PFOA.
Collapse
Affiliation(s)
- Xiaole Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Xiao Yang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Chengbo Lu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Yue Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| |
Collapse
|
2
|
Wu Y, Liu F, Glenn I, Fonseca-Valencia K, Paris L, Xiong Y, Jerome SV, Brooks CL, Shoichet BK. Identifying Artifacts from Large Library Docking. J Med Chem 2024; 67:16796-16806. [PMID: 39255340 DOI: 10.1021/acs.jmedchem.4c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
While large library docking has discovered potent ligands for multiple targets, as the libraries have grown the hit lists can become dominated by rare artifacts that cheat our scoring functions. Here, we investigate rescoring top-ranked docked molecules with orthogonal methods to identify these artifacts, exploring implicit solvent models and absolute binding free energy perturbation as cross-filters. In retrospective studies, this approach deprioritized high-ranking nonbinders for nine targets while leaving true ligands relatively unaffected. We tested the method prospectively against hits from docking against AmpC β-lactamase. We prioritized 128 high-ranking molecules for synthesis and testing, a mixture of 39 molecules flagged as likely cheaters and 89 that were plausible inhibitors. None of the predicted cheating compounds inhibited AmpC detectably, while 57% of the 89 plausible compounds did so. As our libraries continue to grow, deprioritizing docking artifacts by rescoring with orthogonal methods may find wide use.
Collapse
Affiliation(s)
- Yujin Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Fangyu Liu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Isabella Glenn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Karla Fonseca-Valencia
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Lu Paris
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Yuyue Xiong
- Schrödinger, Inc., 9868 Scranton Road, San Diego, California 92121, United States
| | - Steven V Jerome
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Charles L Brooks
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| |
Collapse
|
3
|
Bali SK, Martin R, Almeida NMS, Saunders C, Wilson AK. Per- and Polyfluoroalkyl (PFAS) Disruption of Thyroid Hormone Synthesis. ACS OMEGA 2024; 9:39554-39563. [PMID: 39346893 PMCID: PMC11425649 DOI: 10.1021/acsomega.4c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of environmental pollutants that have been linked to a variety of health problems in humans, including the disruption of thyroid functions. Herein, for the first time, the impact of PFAS on thyroid hormone synthesis is shown. Mid- to long-chain PFAS impact thyroid hormone synthesis by changing the local hydrogen bond network as well as the required orientation of hormonogenic residues, stopping the production of thyroxine (T4). Furthermore, the toxic effects of sulfonic PFAS are more prominent than those of carboxylic PFAS, highlighting that the exposure to these specific compounds can pose greater problems for thyroid homeostasis.
Collapse
Affiliation(s)
- Semiha Kevser Bali
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Rebecca Martin
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Nuno M S Almeida
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Catherine Saunders
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Angela K Wilson
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| |
Collapse
|
4
|
Bali S, Hall K, Massoud RI, Almeida NMS, Wilson AK. Interaction of Per- and Polyfluoroalkyl Substances with Estrogen Receptors in Rainbow Trout ( Oncorhynchus mykiss): An In Silico Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15960-15970. [PMID: 39207093 PMCID: PMC11394024 DOI: 10.1021/acs.est.4c03648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Fresh water sources, including lakes, such as the Great Lakes, are some of the most important ecosystems in the world. Despite the importance of these lakes, there is increasing concern about the presence of per- and polyfluoroalkyl substances (PFAS)─among the most prevalent contaminants of our time─due to the ability of PFAS to bioaccumulate and persist in the environment, as well as to its linkages to detrimental human and animal health effects. In this study, PFAS exposure on rainbow trout (Oncorhynchus mykiss) is examined at the molecular level, focusing on the impact of PFAS binding on the alpha (α) and beta (β) estrogen receptors (ERs) using molecular dynamics simulations, binding free energy calculations, and structural analysis. ERs are involved in fundamental physiological processes, including reproductive system development, muscle regeneration, and immunity. This study shows that PFAS binds to both the estrogen α and estrogen β receptors, albeit via different binding modes, due to a modification of an amino acid in the binding site as a result of a reorientation of residues in the binding pocket. As ER overactivation can occur through environmental toxins and pollutants, this study provides insights into the influence of different types of PFAS on protein function.
Collapse
Affiliation(s)
- Semiha
Kevser Bali
- Department of Chemistry, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Kyleen Hall
- Department of Chemistry, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Rana I. Massoud
- Department of Chemistry, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Nuno M. S. Almeida
- Department of Chemistry, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Angela K. Wilson
- Department of Chemistry, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Feng Y, You Y, Li M, Guan X, Fu M, Wang C, Xiao Y, He M, Guo H. Mitochondrial DNA copy number mediated the associations between perfluoroalkyl substances and breast cancer incidence: A prospective case-cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173767. [PMID: 38844220 DOI: 10.1016/j.scitotenv.2024.173767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Epidemiologic studies have reported the relationships between perfluoroalkyl substances (PFASs) and breast cancer incidence, yet the underlying mechanisms are not well understood. This study aimed to elucidate the mediation role of mitochondrial DNA copy number (mtDNAcn) in the relationships between PFASs exposure and breast cancer risk. We conducted a case-cohort study within the Dongfeng-Tongji cohort, involving 226 incident breast cancer cases and a random sub-cohort (n = 990). Their plasma concentrations of six PFASs [including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroheptanoic acid (PFHpA), perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS)], and peripheral blood levels of mtDNAcn, were detected at baseline by using ultraperformance liquid chromatography-tandem mass spectrometry and quantitative real-time PCR, respectively. Linear regression and Barlow-weighted Cox models were employed separately to assess the relationships of mtDNAcn with PFASs and breast cancer risk. Mediation analysis was further conducted to quantify the mediating effects of mtDNAcn on PFAS-breast cancer relationships. We observed increased blood mtDNAcn levels among participants with the highest PFNA and PFHpA exposure [Q4 vs. Q1, β(95%CI) = 0.092(0.022, 0.162) and 0.091(0.022, 0.160), respectively], while no significant associations were observed of PFOA, PFDA, PFOS, or PFHxS with mtDNAcn. Compared to participants within the lowest quartile subgroup of mtDNAcn, those with the highest mtDNAcn levels exhibited a significantly increased risk of breast cancer and postmenopausal breast cancer [Q4 vs. Q1, HR(95%CI) = 3.34(1.80, 6.20) and 3.71(1.89, 7.31)]. Furthermore, mtDNAcn could mediate 14.6 % of the PFHpA-breast cancer relationship [Indirect effect, HR(95%CI) = 1.02(1.00, 1.05)]. Our study unveiled the relationships of PFNA and the short-chain PFHpA with mtDNAcn and the mediation role of mtDNAcn in the PFHpA-breast cancer association. These findings provided insights into the potential biological mechanisms linking PFASs to breast cancer risk.
Collapse
Affiliation(s)
- Yue Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Mengying Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China.
| |
Collapse
|
6
|
Roy S, Moran J, Danasekaran K, O’Brien K, Dakshanamurthy S. Large-Scale Screening of Per- and Polyfluoroalkyl Substance Binding Interactions and Their Mixtures with Nuclear Receptors. Int J Mol Sci 2024; 25:8241. [PMID: 39125814 PMCID: PMC11312074 DOI: 10.3390/ijms25158241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Despite their significant impact, comprehensive screenings and detailed analyses of per- and polyfluoroalkyl substance (PFAS) binding strengths at the orthosteric and allosteric sites of NRs are currently lacking. This study addresses this gap by focusing on the binding interaction analysis of both common and uncommon PFAS with the nuclear receptors (NRs) vitamin D receptor (VDR), peroxisome proliferator-activated receptor gamma (PPARγ), pregnane X receptor (PXR), and estrogen receptor alpha (ERα). Advanced docking simulations were used to screen 9507 PFAS chemicals at the orthosteric and allosteric sites of PPARγ, PXR, VDR, and ERα. All receptors exhibited strong binding interactions at the orthosteric and allosteric site with a significant number of PFAS. We verified the accuracy of the docking protocol through multiple docking controls and validations. A mixture modeling analysis indicates that PFAS can bind in various combinations with themselves and endogenous ligands simultaneously, to disrupt the endocrine system and cause carcinogenic responses. These findings reveal that PFAS can interfere with nuclear receptor activity by displacing endogenous or native ligands by binding to the orthosteric and allosteric sites. The purpose of this study is to explore the mechanisms through which PFAS exert their endocrine-disrupting effects, potentially leading to more targeted therapeutic strategies. Importantly, this study is the first to explore the binding of PFAS at allosteric sites and to model PFAS mixtures at nuclear receptors. Given the high concentration and persistence of PFAS in humans, this study further emphasizes the urgent need for further research into the carcinogenic mechanisms of PFAS and the development of therapeutic strategies that target nuclear receptors.
Collapse
Affiliation(s)
- Saptarshi Roy
- College of Humanities and Sciences, Virginia Commonwealth University, 907 Floyd Ave, Richmond, VA 23284, USA
| | - James Moran
- College of Arts & Sciences, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Keerthana Danasekaran
- College of Arts and Sciences, University of Rochester, 500 Joseph C. Wilson Blvd, Rochester, NY 14627, USA
| | - Kate O’Brien
- Davidson College, 405 N Main St, Davidson, NC 28035, USA
| | - Sivanesan Dakshanamurthy
- Lombardi Comprehensive Cancer Center, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| |
Collapse
|
7
|
Wu Y, Liu F, Glenn I, Fonseca-Valencia K, Paris L, Xiong Y, Jerome SV, Brooks CL, Shoichet BK. Identifying Artifacts from Large Library Docking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603966. [PMID: 39071262 PMCID: PMC11275789 DOI: 10.1101/2024.07.17.603966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
While large library docking has discovered potent ligands for multiple targets, as the libraries have grown, the very top of the hit-lists can become populated with artifacts that cheat our scoring functions. Though these cheating molecules are rare, they become ever-more dominant with library growth. Here, we investigate rescoring top-ranked molecules from docking screens with orthogonal methods to identify these artifacts, exploring implicit solvent models and absolute binding free energy perturbation (AB-FEP) as cross-filters. In retrospective studies, this approach deprioritized high-ranking non-binders for nine targets while leaving true ligands relatively unaffected. We tested the method prospectively against results from large library docking AmpC β-lactamase. From the very top of the docking hit lists, we prioritized 128 molecules for synthesis and experimental testing, a mixture of 39 molecules that rescoring flagged as likely cheaters and another 89 that were plausible true actives. None of the 39 predicted cheating compounds inhibited AmpC up to 200 μ M in enzyme assays, while 57% of the 89 plausible true actives did do so, with 19 of them inhibiting the enzyme with apparentK i values better than 50 μ M . As our libraries continue to grow, a strategy of catching docking artifacts by rescoring with orthogonal methods may find wide use in the field.
Collapse
Affiliation(s)
- Yujin Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 94158, United States
| | - Fangyu Liu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 94158, United States
| | - Isabella Glenn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 94158, United States
| | - Karla Fonseca-Valencia
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 94158, United States
| | - Lu Paris
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 94158, United States
| | - Yuyue Xiong
- Schrödinger, Inc., 9868 Scranton Road, San Diego, California 92121, United States
| | - Steven V. Jerome
- Schrödinger, Inc., 1540 Broadway, New York, New York, 10036, United States
| | - Charles L. Brooks
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 94158, United States
| |
Collapse
|
8
|
de Souza BB, Meegoda J. Insights into PFAS environmental fate through computational chemistry: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171738. [PMID: 38494023 DOI: 10.1016/j.scitotenv.2024.171738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used chemicals that exhibit exceptional chemical and thermal stability. However, their resistance to degradation has led to their widespread environmental contamination. PFAS also negatively affect the environment and other organisms, highlighting the need for effective remediation methods to mitigate their presence and prevent further contamination. Computational chemistry methods, such as Density Functional Theory (DFT) and Molecular Dynamics (MD) offer valuable tools for studying PFAS and simulating their interactions with other molecules. This review explores how computational chemistry methods contribute to understanding and tackling PFAS in the environment. PFAS have been extensively studied using DFT and MD, each method offering unique advantages and computational limitations. MD simulates large macromolecules systems however it lacks the ability model chemical reactions, while DFT provides molecular insights however at a high computational cost. The integration of DFT with MD shows promise in predicting PFAS behavior in different environments. This work summarizes reported studies on PFAS compounds, focusing on adsorption, destruction, and bioaccumulation, highlighting contributions of computational methods while discussing the need for continued research. The findings emphasize the importance of computational chemistry in addressing PFAS contamination, guiding risk assessments, and informing future research and innovations in this field.
Collapse
Affiliation(s)
- Bruno Bezerra de Souza
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Jay Meegoda
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
9
|
Feng S, Lu X, Ouyang K, Su G, Li Q, Shi B, Meng J. Environmental occurrence, bioaccumulation and human risks of emerging fluoroalkylether substances: Insight into security of alternatives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171151. [PMID: 38395160 DOI: 10.1016/j.scitotenv.2024.171151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are widely used due to their unique structure and excellent performance, while also posing threats on ecosystem, especially long-chain perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). As the control of conventional PFASs, fluoroalkylether substances (ether-PFASs) as alternatives are constantly emerging. Subsequently, the three representative ether-PFASs, chlorinated polyfluoroalkyl ether sulfonic acid (F-53B), hexafluoropropylene oxide-dimer acid (HFPO-DA), and 4,8-Dioxa-3H-perfluorononanoicacid (ADONA) are discovered and have received more attention in the environment and ecosystem. But their security is now also being challenged. This review systematically assesses their security from six dimensions including environmental occurrence in water, soil and atmosphere, as well as bioaccumulation and risk in plants, animals and humans. High substitution level is observed for F-53B, whether in environment or living things. Like PFOS or even more extreme, F-53B exhibits high biomagnification ability, transmission efficiency from maternal to infant, and various biological toxicity effects. HFPO-DA still has a relatively low substitution level for PFOA, but its use has emerged in Europe. Although it is less detected in human bodies and has a higher metabolic rate than PFOA, the strong migration ability of HFPO-DA in plants may pose dietary safety concerns for humans. Research on ADONA is limited, and currently, it is detected in Germany frequently while remaining at trace levels globally. Evidently, F-53B has shown increasing risk both in occurrence and toxicity compared to PFOS, and HFPO-DA is relatively safe based on available data. There are still knowledge gaps on security of alternatives that need to be addressed.
Collapse
Affiliation(s)
- Siting Feng
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China; Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaofei Lu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Kaige Ouyang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China; Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Xing W, Liang M, Gu W, Wang Z, Fan D, Zhang B, Sun S, Wang L, Shi L. Exposure to Perfluoroalkyl Substances and Hyperlipidemia Among Adults: Data From NHANES 2017-2018. J Occup Environ Med 2024; 66:105-110. [PMID: 37853679 DOI: 10.1097/jom.0000000000003000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
BACKGROUND The present study aims to explore the relationship between perfluoroalkyl substances (PFAS) exposure and hyperlipidemia using data from the National Health and Nutrition Examination Survey. METHODS A total of 1600 subjects were included in the analysis, and nine kinds of PFAS were measured. Multivariate logistic regression analysis was performed to explore the association between serum PFAS and hyperlipidemia. RESULTS Compared with the lowest quartile of perfluoromethylheptane sulfonic acid isomers (Sm-PFOS), the percentage change for hyperlipidemia was 57% and 41% in the third and highest quartile of PFOS. The positive association between Sm-PFOS and hyperlipidemia remained significant in population younger than 60 years, and the odds ratio for hyperlipidemia in fourth quartile of Sm-PFOS was 1.81. CONCLUSIONS These findings indicated that serum Sm-PFOS was independently associated with a higher risk for hyperlipidemia. The epidemiological study warrants further study to elucidate the causal relationship between them.
Collapse
Affiliation(s)
- Weilong Xing
- From the Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cui J, Shi J, Gao X, He L, Huang H, Zhao G, Wu G, Yu T, An Q, Mai L, Chen G. Associations of exposure to per- and polyfluoroalkyl substances mixture with the numbers of lymph nodes in colorectal cancer patients. ENVIRONMENTAL RESEARCH 2024; 240:117529. [PMID: 37898223 DOI: 10.1016/j.envres.2023.117529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
Colorectal cancer (CRC) is widely known with a high incidence rate worldwide, but the correlation between exposure to per- and polyfluoroalkyl substances (PFAS) and the number of lymph nodes in CRC patients remains unclear. In the present study, we enrolled 305 CRC patients (122 females and 183 males) at Beijing Hospital in China. A total of 17 PFAS were detected in serum samples of these patients, and 5 PFAS with detection rates >75% were selected in this study. The CRC patients' number of metastatic lymph nodes (MLNs) and total lymph nodes (TLNs) were chosen as outcomes. Poisson regression models were used to analyze the associations between single PFAS and number of MLNs and TLNs. Quantile g-Computation models were performed to examine the joint effect of PFAS mixtures on number of MLNs and TLNs. A positive correlation between serum PFAS levels and number of MLNs was identified. For instance, the numbers of MLNs in patients with serum PFOA, PFNA, 6:2 Cl-PFESA concentrations at the 95th percentile were 27% (95% CI: 1%, 60%), 35% (95% CI: 1%, 82%), 87% (95% CI: 4%, 238%) higher compared with the threshold level. The results of Quantile g-Computation models also showed that every quantile increase in PFAS mixtures was associated with a 4.67%, (95% CI: 0.07%, 9.48%) increase in the numbers of MLNs, and PFOS dominated the effects of the mixtures. Moreover, a negative correlation between PFAS mixtures and number of TLNs in patients with no MLNs was also observed. The present study suggested that exposure to PFAS may worsen the prognosis of CRC patients. These findings could help guide future research and public health policies aimed at reducing exposure to PFAS and mitigating their potential impacts on human health.
Collapse
Affiliation(s)
- Jian Cui
- Department of General Surgery, Department of Gastrointestinal Surgery, Beijing Hospital, National Center of Gerontology, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jinxin Shi
- Department of General Surgery, Department of Gastrointestinal Surgery, Beijing Hospital, National Center of Gerontology, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xinwang Gao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lei He
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China; Department of Pathology, Beijing Hospital, National Center of Gerontology, China
| | - Haoyu Huang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Gang Zhao
- Department of General Surgery, Department of Gastrointestinal Surgery, Beijing Hospital, National Center of Gerontology, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Guoju Wu
- Department of General Surgery, Department of Gastrointestinal Surgery, Beijing Hospital, National Center of Gerontology, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Tao Yu
- Department of General Surgery, Department of Gastrointestinal Surgery, Beijing Hospital, National Center of Gerontology, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qi An
- Department of General Surgery, Department of Gastrointestinal Surgery, Beijing Hospital, National Center of Gerontology, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Lei Mai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Subingtian Center for Speed Research and Training / Guangdong Key Laboratory of Speed-Capability Research, School of Physical Education, Jinan University, Guangzhou, 510632, China.
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne VIC3004, Australia
| |
Collapse
|
12
|
Rice PA, Kabadi SV, Doerge DR, Vanlandingham MM, Churchwell MI, Tryndyak VP, Fisher JW, Aungst J, Beland FA. Evaluating the toxicokinetics of some metabolites of a C6 polyfluorinated compound, 6:2 fluorotelomer alcohol in pregnant and nonpregnant rats after oral exposure to the parent compound. Food Chem Toxicol 2024; 183:114333. [PMID: 38061571 DOI: 10.1016/j.fct.2023.114333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
The 6:2 fluorotelomer alcohol (6:2 FTOH) is a common impurity in per- and polyfluoroalkyl substances (PFASs) used in many applications. Our previous toxicokinetic (TK) evaluation of 6:2 FTOH calculated times to steady state (tss) of one of its metabolites, 5:3 fluorotelomer carboxylic acid (5:3A), in the plasma and tissues of up to a year after oral exposure to rats. Our current work further elucidated the TK of 5:3A and other metabolites of 6:2 FTOH in pregnant and nonpregnant rats after repeated oral exposure and examined the role of renal transporters in the biopersistence of 5:3A. The tss values for 5:3A in serum and tissues of adult nonpregnant animals ranged from 150 days to over a year. 4:3 fluorotelomer carboxylic acid (4:3A) was an additional potentially-biopersistent metabolite. 5:3A was the major metabolite of 6:2 FTOH in serum of pregnant dams and fetuses at each time interval. 5:3A was not a substrate for renal transporters in a human kidney cell line in vitro, indicating that renal reuptake of 5:3A is unlikely contribute to its biopersistence. Further research is needed to identify the underlying processes and evaluate the impact of these 6:2 FTOH metabolites on human health.
Collapse
Affiliation(s)
- Penelope A Rice
- FDA/CFSAN/OFAS/DFCN, 5001 Campus Drive, HFS 275, College Park, MD, 20740, USA.
| | - Shruti V Kabadi
- FDA/CFSAN/OFAS/DFCN, 5001 Campus Drive, HFS 275, College Park, MD, 20740, USA
| | | | | | | | | | | | - Jason Aungst
- FDA/CFSAN/OFAS/DFCN, 5001 Campus Drive, HFS 275, College Park, MD, 20740, USA
| | | |
Collapse
|
13
|
Wang R, Zhang C, Li X, Sha W, Xue Z, Zhou Z, Ma Y, Zhu S, Guo Z, Zhao B, Zhang W. Toxicological evaluation of TBBPA by common carp (Cyprinus carpio) about the in vivo/vitro disturbance of the AHR pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166622. [PMID: 37647967 DOI: 10.1016/j.scitotenv.2023.166622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a widely used plastic additive with high bioaccumulation potential and toxicity on both humans and wildlife. Currently, research on its ecotoxicity and the underlying mechanism is limited. Using common carp (Cyprinus carpio), we evaluated the toxicity of TBBPA, especially focusing on its alteration of a key metabolism-related pathway aryl hydrocarbon receptor (AHR), using in vivo/vitro assays and in silico simulation. The 96 h LC50 of TBBPA of common carp was 4.2 mg/L and belonged to the acute toxic level II. The bioaccumulation potential of TBBPA follows the role of liver > gill > brain and varies between 3- and 14-day exposure. On the AHR pathway respect, as expected, the metabolism-related cyp1a1 and cyp1b1 were upregulated in the liver and brain. Ahr2, the receptor, was also upregulated in the brain under TBBPA exposure. The alteration of gene expression was tissue-specific while the difference between 3- or 14-day exposure was minor. AHR inhibition assay indicated the 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD)-induced AHR transactivation can be inhibited by TBBPA suggesting it is not a potent agonist but a competitive antagonist. In silico analysis indicated TBBPA can be successfully docked into the binding cavity with similar poses but still have AHR-form-specific interactions. Molecular dynamics simulation proved TBBPA can be more flexible than the coplanar ligand TCDD, especially in ccaAHR1b with greater root-mean-square deviation (RMSD), of which TCDD-induced transactivation seemed not to be blocked by TBBPA. This research increased the understanding of TBBPA toxicity and alteration of the AHR pathway, and pointed out the need to perform additional toxicology evaluation of emerging contaminants, especially on non-model species.
Collapse
Affiliation(s)
- Renjun Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Chen Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xingyang Li
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Weilai Sha
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Zhenhong Xue
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Zhiguang Zhou
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Yongchao Ma
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shuyun Zhu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Zitong Guo
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wanglong Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China.
| |
Collapse
|
14
|
Almeida NMS, Bali SK, James D, Wang C, Wilson AK. Binding of Per- and Polyfluoroalkyl Substances (PFAS) to the PPARγ/RXRα-DNA Complex. J Chem Inf Model 2023; 63:7423-7443. [PMID: 37990410 DOI: 10.1021/acs.jcim.3c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Nuclear receptors are the fundamental building blocks of gene expression regulation and the focus of many drug targets. While binding to DNA, nuclear receptors act as transcription factors, governing a multitude of functions in the human body. Peroxisome proliferator-activator receptor γ (PPARγ) and the retinoid X receptor α (RXRα) form heterodimers with unique properties and have a primordial role in insulin sensitization. This PPARγ/RXRα heterodimer has been shown to be impacted by per- and polyfluoroalkyl substances (PFAS) and linked to a variety of significant health conditions in humans. Herein, a selection of the most common PFAS (legacy and emerging) was studied utilizing molecular dynamics simulations for PPARγ/RXRα. The local and global structural effects of PFAS binding on the known ligand binding pockets of PPARγ and RXRα as well as the DNA binding domain (DBD) of RXRα were inspected. The binding free energies were predicted computationally and were compared between the different binding pockets. In addition, two electronic structure approaches were utilized to model the interaction of PFAS within the DNA binding domain, density functional theory (DFT) and domain-based pair natural orbital coupled cluster with perturbative triples (DLPNO-CCSD(T)) approaches, with implicit solvation. Residue decomposition and hydrogen-bonding analysis were also performed, detailing the role of prominent residues in molecular recognition. The role of l-carnitine is explored as a potential in vivo remediation strategy for PFAS interaction with the PPARγ/RXRα heterodimer. In this work, it was found that PFAS can bind and act as agonists for all of the investigated pockets. For the first time in the literature, PFAS are postulated to bind to the DNA binding domain in a nonspecific manner. In addition, for the PPARγ ligand binding domain, l-carnitine shows promise in replacing smaller PFAS from the pocket.
Collapse
Affiliation(s)
- Nuno M S Almeida
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Semiha Kevser Bali
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Deepak James
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Cong Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| |
Collapse
|
15
|
Ho TC, Wan HT, Lee WK, Lam TKY, Lin X, Chan TF, Lai KP, Wong CKC. Effects of In Utero PFOS Exposure on Epigenetics and Metabolism in Mouse Fetal Livers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14892-14903. [PMID: 37759171 PMCID: PMC10569047 DOI: 10.1021/acs.est.3c05207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Prenatal exposure to perfluorooctanesulfonate (PFOS) increases fetus' metabolic risk; however, the investigation of the underlying mechanism is limited. In this study, pregnant mice in the gestational days (GD, 4.5-17.5) were exposed to PFOS (0.3 and 3 μg/g of body weight). At GD 17.5, PFOS perturbed maternal lipid metabolism and upregulated metabolism-regulating hepatokines (Angptl4, Angptl8, and Selenop). Mass-spectrometry imaging and whole-genome bisulfite sequencing revealed, respectively, selective PFOS localization and deregulation of gene methylation in fetal livers, involved in inflammation, glucose, and fatty acid metabolism. PCR and Western blot analysis of lipid-laden fetal livers showed activation of AMPK signaling, accompanied by significant increases in the expression of glucose transporters (Glut2/4), hexose-phosphate sensors (Retsat and ChREBP), and the key glycolytic enzyme, pyruvate kinase (Pk) for glucose catabolism. Additionally, PFOS modulated the expression levels of PPARα and PPARγ downstream target genes, which simultaneously stimulated fatty acid oxidation (Cyp4a14, Acot, and Acox) and lipogenesis (Srebp1c, Acaca, and Fasn). Using human normal hepatocyte (MIHA) cells, the underlying mechanism of PFOS-elicited nuclear translocation of ChREBP, associated with a fatty acid synthesizing pathway, was revealed. Our finding implies that in utero PFOS exposure altered the epigenetic landscape associated with dysregulation of fetal liver metabolism, predisposing postnatal susceptibility to metabolic challenges.
Collapse
Affiliation(s)
- Tsz Chun Ho
- Croucher
Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
- State
Key Laboratory in Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
| | - Hin Ting Wan
- Croucher
Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
| | - Wang Ka Lee
- Croucher
Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
| | - Thomas Ka Yam Lam
- State
Key Laboratory in Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
| | - Xiao Lin
- Department
of Psychiatry, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
| | - Ting Fung Chan
- School
of Life Sciences, State Key Laboratory of Agrobiotechnology, Bioinformatics
Centre, The Chinese University of Hong Kong, New Territories 999077, Hong Kong SAR, China
| | - Keng Po Lai
- Key
Laboratory of Environmental Pollution and Integrative Omics, Education
Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541100, China
| | - Chris Kong Chu Wong
- Croucher
Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
- State
Key Laboratory in Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
16
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
17
|
Hall AM, Braun JM. Per- and Polyfluoroalkyl Substances and Outcomes Related to Metabolic Syndrome: A Review of the Literature and Current Recommendations for Clinicians. Am J Lifestyle Med 2023. [DOI: 10.1177/15598276231162802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of toxic, ubiquitous, anthropogenic chemicals known to bioaccumulate in humans. Substantial concern exists regarding the human health effects of PFAS, particularly metabolic syndrome (MetS), a precursor to cardiovascular disease, the leading cause of mortality worldwide. This narrative review provides an overview of the PFAS literature on 4 specific components of MetS: insulin resistance/glucose dysregulation, central adiposity, dyslipidemia, and blood pressure. We focus on prospective cohort studies as these provide the best body of evidence compared to other study designs. Available evidence suggests potential associations between some PFAS and type-2 diabetes in adults, dyslipidemia in children and adults, and blood pressure in adults. Additionally, some studies found that sex and physical activity may modify these relationships. Future studies should consider modification by sex and lifestyle factors (e.g., diet and physical activity), as well quantifying the impact of PFAS mixtures on MetS features and related clinical disease. Finally, clinicians can follow recently developed clinical guidance to screen for PFAS exposure in patients, measure PFAS levels, conduct additional clinical care based on PFAS levels, and advise on PFAS exposure reduction.
Collapse
Affiliation(s)
- Amber M. Hall
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|
18
|
Melin TRL, Harell P, Ali B, Loganathan N, Wilson AK. Thermochemistry of per- and polyfluoroalkyl substances. J Comput Chem 2023; 44:570-580. [PMID: 36334029 PMCID: PMC10098614 DOI: 10.1002/jcc.27023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
The determination of gas phase thermochemical properties of per- and polyfluoroalkyl substances (PFAS) is central to understanding the long-range transport behavior of PFAS in the atmosphere. Prior gas-phase studies have reported the properties of perfluorinated sulfonic acid (PFOS) and perfluorinated octanoic acid (PFOA). Here, this study reports the gas phase enthalpies of formation of short- and long-chain PFAS and their precursor molecules determined using density functional theory (DFT) and ab initio approaches. Two density functionals, two ab initio methods and an empirical method were used to compute enthalpies of formation with the total atomization approach and an isogyric reaction. The performance of the computational methods employed in this work were validated against the experimental enthalpies of linear alkanoic acids and perfluoroalkanes. The gas-phase determinations will be useful for future studies of PFAS in the atmosphere, and the methodological choices will be helpful in the study of other PFAS.
Collapse
Affiliation(s)
- Timothé R L Melin
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Preston Harell
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Betoul Ali
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | | | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
19
|
Cao M, Wei J, Pan Y, Wang L, Li Z, Hu Y, Liang Y, Cao H. Antagonistic mechanisms of bisphenol analogues on the estrogen receptor α in zebrafish embryos: Experimental and computational studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159259. [PMID: 36220475 DOI: 10.1016/j.scitotenv.2022.159259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) can disturb the estrogen receptor α (ERα)-mediated signaling pathway, which results in endocrine-disrupting effects and reproductive toxicity. Most BPA analogues as alternatives were evidenced to generate estrogenic activity as agonists or partial agonists of ERα. Recent studies indicated that certain BPA analogues, such as bisphenol M (BPM), bisphenol P (BPP), and bisphenol FL (BPFL), exhibited strong anti-estrogenic effects comparable with the typical antagonist 4-hydroxytamoxifen. However, conflicting findings were also observed for the compounds in different in vitro assays, and whether these BPA analogues can elicit an in vivo effect on ERα at environmentally relevant concentrations remains unknown. The underlying structural basis of estrogenic/anti-estrogenic activity should be further elucidated at the atomic level. To address these issues, we combined zebrafish-based in vivo and in silico methods to assess the effects of the compounds on ERα. The results show that the expressions of ERα-mediated downstream related genes in zebrafish embryos decreased after exposed to the compounds. Further molecular dynamics simulations were used to probe the antagonistic mechanisms of the compounds on ERα. The key H-bonding interactions were identified as important ligand recognition by ERα in the analysis of binding modes and binding free energy calculations. In summary, the current study provides preliminary in vivo evidence of fish species for the anti-estrogenic activity of certain BPA analogues.
Collapse
Affiliation(s)
- Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jinbo Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yu Pan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zhunjie Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yeli Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
20
|
Lai TT, Kuntz D, Wilson AK. Molecular Screening and Toxicity Estimation of 260,000 Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) through Machine Learning. J Chem Inf Model 2022; 62:4569-4578. [PMID: 36154169 DOI: 10.1021/acs.jcim.2c00374] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class of chemicals widely used in industrial applications due to their exceptional properties and stability. However, they do not readily degrade in the environment and are linked to contamination and adverse health effects in humans and wildlife. To find alternatives for the most commonly used PFAS molecules that maintain their desirable chemical properties but are not adverse to biological lifeforms, a novel approach based upon machine learning is utilized. The machine learning model is trained on an existing set of PFAS molecules to generate over 260,000 novel PFAS molecules, which we dub PFAS-AI-Gen. Using molecular descriptors with known relationships to toxicity and industrial suitability followed by molecular docking and molecular dynamics simulations, this set of molecules is screened. In this manner, increasingly complex calculations are performed only for candidate molecules that are most likely to yield the desired properties of low binding affinity toward two selected protein receptors, the human pregnane x receptor (hPXR) and peroxisome proliferator-activated receptor γ (PPAR-γ), and high industrial suitability, defined by critical micelle concentration (CMC). The selection criteria of low binding affinity and high industrial suitability are relative to the popular PFAS alternative GenX. hPXR and PPAR-γ are selected as they are PFAS targets and facilitate a variety of functions, such as drug metabolism and glucose regulation, respectively. Through this approach, 22 promising new PFAS substitutes that may warrant experimental investigation are identified. This integrated approach of molecular screening and toxicity estimation may be applicable to other chemical classes.
Collapse
Affiliation(s)
- Thanh T Lai
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| | - David Kuntz
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| |
Collapse
|
21
|
Chitosan-coated fluoro-functionalized covalent organic framework as adsorbent for efficient removal of per- and polyfluoroalkyl substances from water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Loganathan N, Wilson AK. Adsorption, Structure, and Dynamics of Short- and Long-Chain PFAS Molecules in Kaolinite: Molecular-Level Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8043-8052. [PMID: 35543620 DOI: 10.1021/acs.est.2c01054] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ubiquitous presence of poly- and perfluoroalkyl substances (PFAS) in different natural settings poses a serious threat to environmental and human health. Soils and sediments represent one of the important exposure pathways of PFAS for humans and animals. With increasing bioaccumulation and mobility, it is extremely important to understand the interactions of PFAS molecules with the dominant constituents of soils such as clay minerals. This study reports for the first time the fundamental molecular-level insights into the adsorption, interfacial structure, and dynamics of short- and long-chain PFAS molecules at the water-saturated mesopores of kaolinite clay using classical molecular dynamics (MD) simulations. At environmental conditions, all the PFAS molecules are exclusively adsorbed near the hydroxyl surface of the kaolinite, irrespective of the terminal functional groups and metal cations. The interfacial adsorption structures and coordination environments of PFAS are strongly dependent on the nature of the functional groups and their hydrophobic chain length. The formation of large, aggregated clusters of long-chain PFAS at the hydroxyl surface of kaolinite is responsible for their restricted dynamics in comparison to short-chain PFAS molecules. Such comprehensive knowledge of PFAS at the clay mineral interface is critical to developing novel site-specific degradation and mitigation strategies.
Collapse
Affiliation(s)
- Narasimhan Loganathan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
23
|
Marques E, Pfohl M, Wei W, Tarantola G, Ford L, Amaeze O, Alesio J, Ryu S, Jia X, Zhu H, Bothun GD, Slitt A. Replacement per- and polyfluoroalkyl substances (PFAS) are potent modulators of lipogenic and drug metabolizing gene expression signatures in primary human hepatocytes. Toxicol Appl Pharmacol 2022; 442:115991. [PMID: 35337807 PMCID: PMC9036616 DOI: 10.1016/j.taap.2022.115991] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 01/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of environmental toxicants, and some, such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), have been associated with hepatic steatosis in rodents and monkeys. It was hypothesized that perfluorosulfonic acids (C4, 6, 8), perfluorocarboxylic acids (C4-14), perfluoro(2-methyl-3-oxahexanoic) acid (HFPO-DA), 1H, 1H, 2H, 2H-perfluorooctanesulfonic acid (6:2 FTS) along with 3 PFOS precursors could induce expression of lipid metabolism genes and lipid deposition in human hepatocytes. Five-donor pooled cryopreserved human hepatocytes were cultured and treated with 0.1% DMSO vehicle or various PFAS (0.25 to 25 μM) in media. After a 48-h treatment, mRNA transcripts related to lipid transport, metabolism, and synthesis were measured using a Quantigene Plex assay. After 72-h treatments, hepatocytes were stained with Nile Red dye to quantify intracellular lipids. Overall, PFAS were transcriptionally active at 25 μM. In this model, lipid accumulation was not observed with C8-C12 treatments. Shorter chain PFAS (C4-C5), 6:2 FTS, and PFOS precursor, metFOSA, induced significant liver lipid accumulation, and gene activation at lower concentrations than legacy PFAS. In summary short chain PFAS and other alternative PFAS were more potent gene inducers, and potential health effects of replacement PFAS should be critically evaluated in humans.
Collapse
Affiliation(s)
- Emily Marques
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Marisa Pfohl
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Wei Wei
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Giuseppe Tarantola
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Lucie Ford
- Department of Biology and Biomedical Sciences, Salve Regina University, Newport, RI 02840, USA
| | - Ogochukwu Amaeze
- Department of Clinical Pharmacy & Biopharmacy, Faculty of Pharmacy, University of Lagos, Nigeria
| | - Jessica Alesio
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Sangwoo Ryu
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Xuelian Jia
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ, USA
| | - Hao Zhu
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ, USA; Department of Chemistry, Rutgers University, Camden, NJ, USA
| | - Geoffrey D Bothun
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Angela Slitt
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
24
|
Yan J, Yan X, Hu S, Zhu H, Yan B. Comprehensive Interrogation on Acetylcholinesterase Inhibition by Ionic Liquids Using Machine Learning and Molecular Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14720-14731. [PMID: 34636548 DOI: 10.1021/acs.est.1c02960] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Quantitative structure-activity relationship (QSAR) modeling can be used to predict the toxicity of ionic liquids (ILs), but most QSAR models have been constructed by arbitrarily selecting one machine learning method and ignored the overall interactions between ILs and biological systems, such as proteins. In order to obtain more reliable and interpretable QSAR models and reveal the related molecular mechanism, we performed a systematic analysis of acetylcholinesterase (AChE) inhibition by 153 ILs using machine learning and molecular modeling. Our results showed that more reliable and stable QSAR models (R2 > 0.85 for both cross-validation and external validation) were obtained by combining the results from multiple machine learning approaches. In addition, molecular docking results revealed that the cations and organic anions of ILs bound to specific amino acid residues of AChE through noncovalent interactions such as π interactions and hydrogen bonds. The calculation results of binding free energy showed that an electrostatic interaction (ΔEele < -285 kJ/mol) was the main driving force for the binding of ILs to AChE. The overall findings from this investigation demonstrate that a systematic approach is much more convincing. Future research in this direction will help design the next generation of biosafe ILs.
Collapse
Affiliation(s)
- Jiachen Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Song Hu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Hao Zhu
- The Rutgers Center for Computational and Integrative Biology, Camden, New Jersey 08102, United States
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People's Republic of China
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
25
|
Almeida NM, Eken Y, Wilson AK. Binding of Per- and Polyfluoro-alkyl Substances to Peroxisome Proliferator-Activated Receptor Gamma. ACS OMEGA 2021; 6:15103-15114. [PMID: 34151090 PMCID: PMC8210440 DOI: 10.1021/acsomega.1c01304] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 05/14/2023]
Abstract
Peroxisome proliferator receptor gamma (PPARγ), a type II nuclear receptor, fundamental in the regulation of genes, glucose metabolism, and insulin sensitization has been shown to be impacted by per- and poly-fluoroalkyl substances (PFASs). To consider the influence of PFASs upon PPARγ, the molecular interactions of 27 PFASs have been investigated. Two binding sites have been identified on the PPARγ homodimer structure: the dimer pocket and the ligand binding pocket, the former has never been studied prior. Molecular dynamics calculations were performed to gain insights about PFASs-PPARγ binding and the role of acidic and basic residues. The electrostatic interactions for acidic and basic residues far from the binding site were probed, together with their effect on PPARγ recognition. Short-range electrostatic and van der Waals interactions with nearby residues and their influence on binding energies were investigated. As the negative effects of perfluorooctane sulfonate acid were previously shown to be alleviated by one of its natural ligands, l-carnitine, here, the utility of l-carnitine as a possible inhibitor for other PFASs has been considered. A comparison of the binding patterns of l-carnitine and PFASs provides insights toward mitigation strategies for PFASs.
Collapse
|
26
|
Panieri E, Buha-Đorđevic A, Saso L. Endocrine disruption by PFAS: A major concern associated with legacy and replacement substances. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Perand poly-fluorinated alkyl substances (PFAS) have been used for decades in a great variety of processes and products by virtue of their exceptional properties, versatility and chemical stability. Nevertheless, it is increasingly recognized that these substances can represent a serious hazard to human health and living organisms due to their persistence, long-range transport potential and tendency to accumulate in biota. For this reason, some efforts have been made across the EU to identify alternative molecules, with a shorter carbon chain and theoretically safer profile, that might replace the previous generation of legacy PFAS. Unfortunately, this strategy has not been entirely successful and serious concerns are still posed by PFAS in different human populations. Among others, an emerging aspect is represented by the adverse effects that both legacy and alternative PFAS can exert on the human endocrine system, with respect to vulnerable target subpopulations. In this review we will briefly summarize PFAS properties, uses and environmental fate, focusing on their effects on human reproductive capacity and fertility, body weight control and obesity as well as thyroid function.
Collapse
|