1
|
Wang WL, Jing ZB, Zhang YL, Wu QY, Drewes JE, Lee MY, Hübner U. Assessing the Chemical-Free Oxidation of Trace Organic Chemicals by VUV/UV as an Alternative to Conventional UV/H 2O 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7113-7123. [PMID: 38547102 DOI: 10.1021/acs.est.3c08414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
Low-pressure mercury lamps with high-purity quartz can emit both vacuum-UV (VUV, 185 nm) and UV (254 nm) and are commercially available and promising for eliminating recalcitrant organic pollutants. The feasibility of VUV/UV as a chemical-free oxidation process was verified and quantitatively assessed by the concept of H2O2 equivalence (EQH2O2), at which UV/H2O2 showed the same performance as VUV/UV for the degradation of trace organic contaminants (TOrCs). Although VUV showed superior H2O activation and oxidation performance, its performance highly varied as a function of light path length (Lp) in water, while that of UV/H2O2 proportionally decreased with decreasing H2O2 dose regardless of Lp. On increasing Lp from 1.0 to 3.0 cm, the EQH2O2 of VUV/UV decreased from 0.81 to 0.22 mM H2O2. Chloride and nitrate hardly influenced UV/H2O2, but they dramatically inhibited VUV/UV. The competitive absorbance of VUV by chloride and nitrate was verified as the main reason. The inhibitory effect was partially compensated by •OH formation from the propagation reactions of chloride or nitrate VUV photolysis, which was verified by kinetic modeling in Kintecus. In water with an Lp of 2.0 cm, the EQH2O2 of VUV/UV decreased from 0.43 to 0.17 mM (60.8% decrease) on increasing the chloride concentration from 0 to 15 mM and to 0.20 mM (53.5% decrease) at 4 mM nitrate. The results of this study provide a comprehensive understanding of VUV/UV oxidation in comparison to UV/H2O2, which underscores the suitability and efficiency of chemical-free oxidation with VUV/UV.
Collapse
Affiliation(s)
- Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zi-Bo Jing
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yi-Lin Zhang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany
| | - Min-Yong Lee
- Division of Chemical Research, National Institute of Environmental Research, Seogu, Incheon 22689, Republic of Korea
| | - Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany
| |
Collapse
|
2
|
Du J, Wang C, Sun M, Chen G, Liu C, Deng X, Chen R, Zhao Z. Novel vacuum UV/ozone/peroxymonosulfate process for efficient degradation of levofloxacin: Performance evaluation and mechanism insight. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132916. [PMID: 37951169 DOI: 10.1016/j.jhazmat.2023.132916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/08/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Vacuum UV (VUV) irradiation has advantage in coupling oxidants for organics removal because VUV can dissociate water to produce reactive oxygen species (ROS) in situ and decompose oxidants rapidly. In this study, the synergistic activation of peroxymonosulfate (PMS) by VUV and ozone (O3) was explored via developing a novel integrated VUV/O3/PMS process, and the performance and mechanisms of VUV/O3/PMS for levofloxacin (LEV) degradation were investigated systematically. Results indicated that VUV/O3/PMS could effectively degrade LEV, and the degradation rate was 1.67-18.79 times of its sub-processes. Effects of PMS dosage, O3 dosage, solution pH, anions, and natural organic matter on LEV removal by VUV/O3/PMS were also studied. Besides, hydroxyl radical and sulfate radical were main ROS with contributions of 49.7% and 17.4%, respectively. Moreover, the degradation pathways of LEV in VUV/O3/PMS process were speculated based on density functional theory calculation and by-products detection. Furthermore, synergistic reaction mechanisms in VUV/O3/PMS process were proposed. The energy consumption of VUV/O3/PMS decreased by 22.6%- 88.1% compared to its sub-processes. Finally, the integrated VUV/O3/PMS process showed satisfactory results in removing LEV in actual waters, manifesting VUV/O3/PMS had great application potential and feasibility in removing organics in wastewater reuse.
Collapse
Affiliation(s)
- Jinying Du
- School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China; Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Chuang Wang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China; Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China.
| | - Meilin Sun
- School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Guoliang Chen
- School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China; Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Chenglin Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xiaoyong Deng
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Rui Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Zhiwei Zhao
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
3
|
Liang J, Wu J, Gan P, Liu Y, Zhen P, Li Y, Zhao Z, Liu W, Tong M. The synergistic effect of radical and non-radical processes on the dephosphorization of dimethoate by vacuum ultraviolet: The overlooked roles of singlet oxygen atom and high-energy excited state. WATER RESEARCH 2023; 247:120775. [PMID: 39491999 DOI: 10.1016/j.watres.2023.120775] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Organophosphorus pesticides are extensively utilized worldwide, but their incomplete dephosphorization poses significant environmental risks. This study investigates the dephosphorization of dimethoate (DMT), a representative organophosphorus pesticide, using a vacuum ultraviolet system. Surprisingly, in addition to hydroxyl radicals (•OH), non-radical processes such as photoexcitation and singlet oxygen atoms (O(1D)) exert more significant effects on DMT dephosphorization. The degradation kinetics of DMT demonstrate a perfect linear correlation with the radical yield in both UV-based and VUV-based advanced oxidation processes (AOPs), with greater efficacy of radical attack observed in the VUV system. This heightened efficiency is attributed to the excitation of DMT to a high-energy excited state induced by UV185 radiation. Additionally, •OH alone is inadequate for achieving complete dephosphorization of DMT. The Fukui index and singly occupied orbital (SOMO) analysis reveal that the O(1D) generated by UV185-induced photolysis of O2 exhibits exceptional selectivity towards P=S bonds, thereby playing an indispensable role in the dephosphorization process of DMT. This study highlights the significant contribution of non-radical pathways in DMT dephosphorization by VUV, which holds great implications for the advancement of photochemical-based AOPs.
Collapse
Affiliation(s)
- Jialiang Liang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jingke Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Pengfei Gan
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yudan Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Peng Zhen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yunyi Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Zhiwei Zhao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
4
|
Liu D, Xiong Y, Zeng H, Xu J, Tang B, Li Y, Zhang M. Deep UV-LED induced nitrate-to-nitrite conversion for total dissolved nitrogen determination in water samples through persulfate digestion and capillary electrophoresis. Anal Chim Acta 2023; 1278:341743. [PMID: 37709434 DOI: 10.1016/j.aca.2023.341743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C4D) is widely used for water quality monitoring. However, there is currently no reported CE method for detecting total dissolved nitrogen (TDN), a crucial parameter for assessing water eutrophication. One challenge is the high sulfate concentration (100 mM) introduced during persulfate digestion, leading to overlap of nitrate (from TDN) and poor electrical stacking of nitrate in CE-C4D analysis. RESULTS We introduced an in-capillary UV-LED induced photoreaction to convert nitrate to nitrite, which can be baseline-separated from sulfate via the CE method, enabling accurate quantification of nitrate concentration derived from nitrite. A 2 nL post-persulfate digested sample solution within a fused silica capillary was exposed to UV-LED irradiation at the capillary tip. Subsequently, photoreduction-produced nitrite was electrophoretically separated from sulfate in an acidic buffer (pH = 3.7) within the same capillary, followed by contactless conductivity detection. The nitrate-to-nitrite conversion efficiency was influenced by irradiation wavelength, power, and duration, reaching a maximum efficiency of 77.4% when employing two 230 nm LEDs for 5 min. For more general applications, two 255 nm LEDs were used, providing a conversion efficiency of (66.4 ± 3.3)% (n = 11) for 5 min of irradiation. The proposed CE-C4D method exhibits a detection limit of 13 μM (0.18 mg N/L) and has been successfully employed for TDN determination in lake water samples. SIGNIFICANCE This innovative approach not only enhances the attractiveness of the CE-C4D method for the determination of water quality indicators but also highlights the potential for integrating deep-UV LEDs into environmental analysis.
Collapse
Affiliation(s)
- Dongmei Liu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Yu Xiong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Hui Zeng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China.
| | - Jin Xu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Biyu Tang
- China Nonferrous Metals (Guilin) Geology and Mining Co., Ltd., Guilin, Guangxi, 541004, China
| | - Yan Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Min Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China.
| |
Collapse
|
5
|
Chen X, Wu Y, Zhang W, Bu L, Zhu S, Sheng D, Zhou S, Crittenden JC. Insight into the mechanisms of trichloronitromethane formation by vacuum ultraviolet: QSAR model and FTICR-MS analysis. J Environ Sci (China) 2023; 125:215-222. [PMID: 36375907 DOI: 10.1016/j.jes.2021.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 06/16/2023]
Abstract
Vacuum ultraviolet (VUV) photolysis is recognized as an environmental-friendly treatment process. Nitrate (NO3-) and natural organic matter (NOM) are widely present in water source. We investigated trichloronitromethane (TCNM) formation during chlorination after VUV photolysis, because TCNM is an unregulated highly toxic disinfection byproduct. In this study: (1) we found reactive nitrogen species that is generated under VUV photolysis of NO3- react with organic matter to form nitrogen-containing compounds and subsequently form TCNM during chlorination; (2) we found the mere presence of 0.1 mmol/L NO3- can result in the formation of up to 63.96 µg/L TCNM; (3) we found the changes in pH (6.0-8.0), chloride (1-4 mmol/L), and bicarbonate (1-4 mmol/L) cannot effectively diminish TCNM formation; and, (4) we established the quantitative structure-activity relationship (QSAR) model, which indicated a linear relationship between TCNM formation and the Hammett constant (σ) of model compounds; and, (5) we characterized TCNM precursors in water matrix after VUV photolysis and found 1161 much more nitrogen-containing compounds with higher aromaticity were generated. Overall, this study indicates more attention should be paid to reducing the formation risk of TCNM when applying VUV photolysis process at scale.
Collapse
Affiliation(s)
- Xiaojun Chen
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Weiqiu Zhang
- School of Civil and Environmental Engineering and the Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Georgia 30332, USA
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Shumin Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Da Sheng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - John C Crittenden
- School of Civil and Environmental Engineering and the Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Georgia 30332, USA
| |
Collapse
|
6
|
Ji WX, Tian YC, Cai MH, Jiang BC, Cheng S, Li Y, Zhou Q, Li BQ, Chen BY, Zheng X, Li WT, Li AM. Simultaneous determination of dissolved organic nitrogen, nitrite, nitrate and ammonia using size exclusion chromatography coupled with nitrogen detector. J Environ Sci (China) 2023; 125:309-318. [PMID: 36375916 DOI: 10.1016/j.jes.2021.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 06/16/2023]
Abstract
Accurate quantification of dissolved organic nitrogen (DON) has been a challenge due to the cumulative analytical errors in the conventional method via subtracting dissolved inorganic nitrogen species (DIN) from total dissolved nitrogen (TDN). Size exclusion chromatography coupled with an organic nitrogen detector (SEC-OND) has been developed as a direct method for quantification and characterization of DON. However, the applications of SEC-OND method still subject to poor separations between DON and DIN species and unsatisfied N recoveries of macromolecules. In this study, we packed a series of SEC columns with different lengths and resin materials for separation of different N species and designed an independent vacuum ultraviolet (VUV) oxidation device for complete oxidation converting N species to nitrate. To guarantee sufficient N recoveries, the operation conditions were optimized as oxidation time ≥ 30 min, injection mass (sample concentration × injection volume) < 1000 µL × mg-N/L for macromolecular proteins, and neutral pH mobile eluent. The dissolved O2 concentration in SEC mobile phase determined the upper limit of VUV oxidation at a specific oxidation time. Compared to conventional HW50S column (20 × 250 mm), HW40S column (20 × 350 mm) with mobile phase comprising of 1.5 g/L Na2HPO4·2H2O + 2.5 g/L KH2PO4 (pH = 6.85) could achieve a better separation of DON, nitrite, nitrate, and ammonia. When applied to river water, lake water, wastewater effluent, groundwater, and landfill leachate, the SEC-OND method could quantify DON as well as DIN species accurately and conveniently even the DIN/TDN ratio reached 0.98.
Collapse
Affiliation(s)
- Wen-Xiang Ji
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ye-Chao Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Min-Hui Cai
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bi-Cun Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shi Cheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bo-Qiang Li
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bai-Yang Chen
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362008, China
| |
Collapse
|
7
|
Wang C, Du J, Liang Z, Liang J, Zhao Z, Cui F, Shi W. High-efficiency oxidation of fluoroquinolones by the synergistic activation of peroxymonosulfate via vacuum ultraviolet and ferrous iron. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126884. [PMID: 34416693 DOI: 10.1016/j.jhazmat.2021.126884] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Fluoroquinolones in aquatic environments have caused worldwide concern due to the negative effects on human health and ecological environment. So far, the performance and mechanism for fluoroquinolones removal by the synergistic activation of peroxymonosulfate (PMS) via vacuum UV (VUV) irradiation and Fe2+ are still blank. Herein, compared with its sub-processes, VUV/Fe2+/PMS process significantly improved the degradation and mineralization efficiencies of three fluoroquinolones. Effect mechanisms of typical parameters (Fe2+ and PMS doses, initial pH) on norfloxacin (NOR) removal by VUV/Fe2+/PMS were elaborated and VUV/Fe2+/PMS showed excellent performance at wide initial pH (3-10). The results of fluorescence molecular probe and radical trapping experiments proved that hydroxyl radical, singlet oxygen, and sulfate radical were primary reactive oxygen species in VUV/Fe2+/PMS. The degradation pathways of NOR in VUV/Fe2+/PMS were mainly defluorination, piperazine ring transformation and quinolone group transformation, and its main inorganic by-products were F-, NO3-, and NH4+. Besides, the synergistic reaction pathways in integrated VUV/Fe2+/PMS process were elaborated. Furthermore, inorganic anions (such as Cl-, NO3-, SO42-, CO32-) hardly affected NOR removal by VUV/Fe2+/PMS, while dissolved organic matter showed slight inhibition. Finally, well-pleasing results of fluoroquinolones removal by VUV/Fe2+/PMS in actual waters highlighted its superiority in the advanced treatment of secondary effluent.
Collapse
Affiliation(s)
- Chuang Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China
| | - Jinying Du
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Zhijie Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jialiang Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Zhiwei Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China.
| | - Fuyi Cui
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Wenxin Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
8
|
Yu X, Tan L, Yu Y, Xia Y, Guan Z, Gu J, Wang J, Chen H, Jiang F. Insights into the hydrated electron generation from UV/aniline: Mechanism and quantum efficiency. CHEMOSPHERE 2022; 287:132292. [PMID: 34562711 DOI: 10.1016/j.chemosphere.2021.132292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The insight into the neglected reduction process accompanied by UV-based oxidation process may provide new ideas for the development of advanced oxidation and reduction technologies. In this study, aniline was comprehensively investigated as an unexpected indicator of hydrated electron (eaq-) under UV irradiation. Monochloroacetic acid (MCAA) was selected as the probe of eaq- and the balance of chloride ions indicated the reduction of MCAA. Further, laser flash photolysis experiments demonstrated the generation of eaq- in the UV/aniline process and the half-life period of formed eaq- was demonstrated to be 0.13 μs. The photolysis of aniline along with the decay of the excited state of aniline was responsible for the eaq- generation. Besides, the hydrogen atom (H) generated from the photolysis can subsequently reacted with OH- to generate eaq-. The photolysis pathways of aniline were proposed by the results of GC-MS. Aniline was abstracted of H in solution to the formation of aniline radical (PhNH) or form aminophenol in three different isomers (orto-, meta- and para-aminophenol). Moreover, UV/aniline showed a higher reducing capacity of MCAA compared with other organic electron donors and sustained a highly reducing ability in a wide pH. And the calculation results of quantum efficiency (Φ) showed that excessive aniline was not conducive to the elevation of Φ. This study introduced a novel pathway of eaq- generation during the photolysis of aniline and provided a new perspective for eaq--based advanced reduction processes.
Collapse
Affiliation(s)
- Xiaoping Yu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ling Tan
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yalin Yu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yun Xia
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhen Guan
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jia Gu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jing Wang
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450002, China
| | - Huan Chen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Fang Jiang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
9
|
Shang X, Kang H, Chen Y, Abdumutallip M, Li L, Li X, Fu H, Wang X, Wang L, Wang X, Ouyang H, Tang X, Xiao H, George C, Chen J. PM 1.0-Nitrite Heterogeneous Formation Demonstrated via a Modified Versatile Aerosol Concentration Enrichment System Coupled with Ion Chromatography. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9794-9804. [PMID: 34235924 DOI: 10.1021/acs.est.1c02373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Particulate nitrite is a critical source of hydroxyl radicals; however, it lacks high-resolution methods due to its low abundance and stability to explore its formation mechanism. In this study, a modified versatile aerosol concentration enrichment system (VACES) coupled with ion chromatography (IC) was used to measure particulate NO2- hourly online and achieve a lowered detection limit of 10-3 μg m-3. VACES-IC was used to observe a high- and low-concentration events of PM1.0-NO2- in Shanghai, corresponding to the ambient-level concentrations of 0.34 and 0.05 μg m-3, respectively. The morning peak concentrations of NO2- even exceeded 3σ (standard deviation) in the high-concentration event due to the reduction of NO2 by aerosol SO32- based on kinetics and regression analysis. This implies that controlling SO2 emissions would be an effective strategy to decrease morning NO2- concentrations, correspondingly reducing the kinetic formation of SO42- by 20.8-34.8%. However, after sunrise, NO2- formation was primarily attributed to NO2 hydrolysis at pH 4.97-6.14. In the low-concentration event, NO2 hydrolysis also accounted for an overwhelming proportion (∼90%) of NO2- formation. This work estimates the contribution of different paths to particulate NO2- formation based on newly established high-resolution measurements.
Collapse
Affiliation(s)
- Xiaona Shang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Huihui Kang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Yunqian Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Munira Abdumutallip
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Ling Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Xiang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Xiaofei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Xinke Wang
- University Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Huiling Ouyang
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Xu Tang
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Christian George
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
- University Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
10
|
Chen B, Jiang J, Yang X, Zhang X, Westerhoff P. Roles and Knowledge Gaps of Point-of-Use Technologies for Mitigating Health Risks from Disinfection Byproducts in Tap Water: A Critical Review. WATER RESEARCH 2021; 200:117265. [PMID: 34091221 PMCID: PMC8634687 DOI: 10.1016/j.watres.2021.117265] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 05/19/2023]
Abstract
Due to rising concerns about water pollution and affordability, there is a rapidly-growing public acceptance and global market for a variety of point-of-use (POU) devices for domestic uses. However, the efficiencies and mechanisms of POU technologies for removing regulated and emerging disinfection byproducts (DBPs) are still not systematically known. To facilitate the development of this field, we summarized performance trends of four common technologies (i.e., boiling, adsorption, membrane filtration, and advanced oxidation) on mitigating preformed DBPs and identified knowledge gaps. The following highest priority knowledge gaps include: 1) data on DBP levels at the tap or cup in domestic applications; 2) certainty regarding the controls of DBPs by heating processes as DBPs may form and transform simultaneously; 3) standards to evaluate the performance of carbon-based materials on varying types of DBPs; 4) long-term information on the membrane performance in removing DBPs; 5) knowledge of DBPs' susceptibility toward advanced redox processes; 6) tools to monitor/predict the toxicity and diversity of DBPs formed in waters with varying precursors and when implementing different treatment technologies; and 7) social acceptance and regulatory frameworks of incorporating POU as a potential supplement to current centralized-treatment focused DBP control strategies. We conclude by identifying research needs necessary to assure POU systems protect the public against regulated and emerging DBPs.
Collapse
Affiliation(s)
- Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), 518055, China.
| | - Jingyi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Paul Westerhoff
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287-3005, United States.
| |
Collapse
|