1
|
Li Y, Sidikjan N, Huang L, Chen Y, Zhang Y, Li Y, Yang J, Shen G, Liu M, Huang Y. Multi-media environmental fate of polychlorinated dibenzo-p-dioxins and dibenzofurans in China: A systematic review of emissions, presence, transport modeling and health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124970. [PMID: 39284404 DOI: 10.1016/j.envpol.2024.124970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are notorious persistent organic pollutants (POPs) with proven toxicity to human and ecosystems. This review critically evaluates existing research, emphasizing knowledge gaps regarding PCDD/F emissions, environmental behavior, human exposure, and associated risks in China. The current emission inventory of PCDD/Fs in China remains highly uncertain, both in terms of total emissions and emission trends. Moreover, existing monitoring data primarily focus on areas near pollution sources, limiting comprehensive understanding of the overall spatiotemporal characteristics of PCDD/F pollution. To address this, we propose a novel approach that integrates the Multi-media Urban Mode (MUM) model with an atmospheric chemical transport model that includes a dual adsorption model to capture gas-particle partitioning of PCDD/Fs in the atmosphere. This coupled model can simulate the transport and fate of PCDD/Fs in multi-media environments with high spatiotemporal resolution, facilitating a nuanced understanding of the impacts of emissions, climate, urbanization and other factors on PCDD/F pollution. Additionally, dietary ingestion, particularly from animal-derived foods, is identified as the predominant source (up to 98%) of human exposure to PCDD/Fs. While the changes in dietary structure, population distribution, and age structure can influence human exposure to PCDD/Fs, their impacts have not yet been quantified. The proposed model lays the foundation for a systematic assessment of health risks from PCDD/F exposure through various pathways by further incorporating a food chain model. Overall, this review offers a comprehensive strategy for assessing PCDD/F pollution, encompassing the entire continuum from emissions to environmental impacts.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China
| | - Nazupar Sidikjan
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China
| | - Lin Huang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China
| | - Yangmin Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China
| | - Yunshan Zhang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China
| | - Ye Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China
| | - Jing Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China
| | - Guofeng Shen
- Laboratory of Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing, 100871, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China
| | - Ye Huang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China.
| |
Collapse
|
2
|
Zheng L, Wu D, Chen X, Li Y, Cheng A, Yi J, Li Q. Chemical Profiles of Particulate Matter Emitted from Anthropogenic Sources in Selected Regions of China. Sci Data 2024; 11:1206. [PMID: 39516470 PMCID: PMC11549090 DOI: 10.1038/s41597-024-04058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Particulate matter (PM) emissions from anthropogenic sources contribute substantially to air pollution. The unequal adverse health effects caused by source-emitted PM emphasize the need to consider the discrepancy of PM-bound chemicals rather than solely focusing on the mass concentration of PM when making air pollution control strategies. Here, we present a dataset about chemical compositions of real-world PM emissions from typical anthropogenic sources in China, including industrial (power, industrial boiler, iron & steel, cement, and other industrial process), residential (coal/biomass burning, and cooking), and transportation sectors (on-road vehicle, ship, and non-exhaust emission). The data was obtained under the same strict quality control condition on field measurements and chemical analysis, minimizing the uncertainty caused by different study approaches. The concentrations of PM-bound chemical components, including toxic elements and PAHs, exhibit substantial discrepancies among different emission sectors. This dataset provides experimental data with informative inputs to emission inventories, air quality simulation models, and health risk estimation. The obtained results can gain insight into understanding on source-specific PMs and tailoring effective control strategies.
Collapse
Affiliation(s)
- Lixin Zheng
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai, 200433, China
| | - Di Wu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai, 200433, China.
| | - Xiu Chen
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai, 200433, China
| | - Yang Li
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai, 200433, China
| | - Anyuan Cheng
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai, 200433, China
| | - Jinrun Yi
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai, 200433, China
| | - Qing Li
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai, 200433, China.
- Shanghai Institute of Eco-Chongming (SIEC), 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China.
| |
Collapse
|
3
|
Ying Y, Ma Y, Wang X, Wu J, Lin X, Li X, Yan J. Incineration-source fingerprints and emission spectrums of dioxins with diagnostic application. ENVIRONMENT INTERNATIONAL 2024; 188:108746. [PMID: 38776653 DOI: 10.1016/j.envint.2024.108746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Despite increasing waste-to-energy (WtE) capacities, there remain deficiencies in comprehension of 136 kinds of tetra- through octa-chlorinated dibenzo-p-dioxin and dibenzofurans (136 PCDD/Fs) originating from incineration sources. Samples from twenty typical WtE plants, encompassing coal-fired power plants (CPP), grate incinerators (GI), fluidized bed incinerators (FBI), and rotary kilns (RK), yielded extensive PCDD/F datasets. Research was conducted on fingerprint mapping, formation pathways, emission profiles, and diagnostic analysis of PCDD/Fs in WtE plants. Fingerprints revealed a prevalence of TCDF, followed by PeCDF, while CPP and RK respectively generated more PCDD and HxCDD. De novo synthesis was the predominant formation pathway except one plant, where CP-route dominated. DD/DF chlorination also facilitated PCDD/F formation, showing general trends of FBI > GI > CPP > RK. The PCDD/F emission intensities emitted in air pollution control system inlet (APCSI) and outlet (APCSO) followed the statistical sequence of RK > FBI > GI > CPP, with the average I-TEQ concentrations in APCSO reaching 0.18, 0.08, 0.11, and 0.04 ng I-TEQ·Nm-3. Emission spectrum were accordingly formed. Four clusters were segmented for diagnosis analysis, where PCDD/Fs in GI and FBI were similar, grouped as a single cluster. PCDD/Fs in CPP and RK demonstrated distinctive features in TCDD, HxCDD, and HxCDF. The WtE plants exceeding the limit value tended to generate and retain fewer TCDD and TCDF yet had higher fractions of HxCDD and HxCDF. The failure of APCS coupled with the intrinsic source strength of PCDD/Fs directly led to exceedance, highlighting safe operational practices. This study motivated source tracing and precise evaluation of 136 PCDD/Fs based on the revealed fingerprint profiles for WtE processes.
Collapse
Affiliation(s)
- Yuxuan Ying
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou 310027, China
| | - Yunfeng Ma
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Xiaoxiao Wang
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou 310027, China
| | - Jiayao Wu
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou 310027, China
| | - Xiaoqing Lin
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou 310027, China.
| | - Xiaodong Li
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou 310027, China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Amani Room S, Huang KT, Pan SY, Chen PJ, Hsu YC, Chi KH. Health assessment of emerging persistent organic pollutants (POPs) in PM 2.5 in northern and central Taiwan. CHEMOSPHERE 2024; 353:141573. [PMID: 38428532 DOI: 10.1016/j.chemosphere.2024.141573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Over the last two decades, Taiwan has effectively diminished atmospheric concentrations of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) through the adept utilization of advanced technologies and the implementation of air pollution control devices. Despite this success, there exists a dearth of data regarding the levels of other PM2.5-bound organic pollutants and their associated health risks. To address this gap, our study comprehensively investigates the spatial and seasonal variations, potential sources, and health risks of PCDD/Fs, Polychlorinated biphenyls (PCBs), and Polychlorinated naphthalene (PCNs) in Northern and Central Taiwan. Sampling collections were conducted at three specific locations, including six municipal waste incinerators in Northern Taiwan, as well as a traffic and an industrial site in Central Taiwan. As a result, the highest mean values of PM2.5 (20.3-39.6 μg/m3) were observed at traffic sites, followed by industrial sites (14.4-39.3 μg/m3), and the vicinity of the municipal waste incinerator (12.4-29.4 μg/m3). Additionally, PCDD/Fs and PCBs exhibited discernible seasonal fluctuations, displaying higher concentrations in winter (7.53-11.9 and 0.09-0.12 fg I-TEQWHO/m3) and spring (7.02-13.7 and 0.11-0.16 fg I-TEQWHO/m3) compared to summer and autumn. Conversely, PCNs displayed no significant seasonal variations, with peak values observed in winter (0.05-0.10 fg I-TEQWHO/m3) and spring (0.03-0.08 fg I-TEQWHO/m3). Utilizing a Positive Matrix Factorization (PMF) model, sintering plants emerged as the predominant contributors to PCDD/Fs, constituting 77.9% of emissions. Woodchip boilers (68.3%) and municipal waste incinerators (21.0%) were identified as primary contributors to PCBs, while municipal waste incinerators (64.6%) along with a secondary copper and a copper sludge smelter (22.1%) were the principal sources of PCNs. Moreover, the study specified that individuals aged 19-70 in Northern Taiwan and those under the age of 12 years in Central Taiwan were found to have a significantly higher cancer risk, with values ranging from 9.26 x 10-9-1.12 x 10-7 and from 2.50 x 10-8-2.08 x 10-7respectively.
Collapse
Affiliation(s)
- Shahzada Amani Room
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Kai Ting Huang
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Shih Yu Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Po Jui Chen
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yuam-Cheng Hsu
- National Environmental Research Academy, Ministry of Environment, Taoyuan, 330, Taiwan
| | - Kai Hsien Chi
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
5
|
Guo Z, Chen X, Wu D, Huo Y, Cheng A, Liu Y, Li Q, Chen J. Higher Toxicity of Gaseous Organics Relative to Particulate Matters Emitted from Typical Cooking Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17022-17031. [PMID: 37874853 DOI: 10.1021/acs.est.3c05425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Cooking emission is known to be a significant anthropogenic source of air pollution in urban areas, but its toxicities are still unclear. This study addressed the toxicities of fine particulate matter (PM2.5) and gaseous organics by combining chemical fingerprinting analysis with cellular assessments. The cytotoxicity and reactive oxygen species activity of gaseous organics were ∼1.9 and ∼8.3 times higher than those of PM2.5, respectively. Moreover, these values of per unit mass PM2.5 were ∼7.1 and ∼15.7 times higher than those collected from ambient air in Shanghai. The total oleic acid equivalent quantities for carcinogenic and toxic respiratory effects of gaseous organics, as estimated using predictive models based on quantitative structure-property relationships, were 1686 ± 803 and 430 ± 176 μg/mg PM2.5, respectively. Both predicted toxicities were higher than those of particulate organics, consistent with cellular assessment. These health risks are primarily attributed to the high relative content and toxic equivalency factor of the organic compounds present in the gas phase, including 7,9-di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione, 2-ethylhexanoic acid, and 2-phenoxyethoxybenzene. Furthermore, these compounds and fatty acids were identified as prominent chemical markers of cooking-related emissions. The obtained results highlight the importance of control measures for cooking-emitted gaseous organics to reduce the personal exposure risks.
Collapse
Affiliation(s)
- Zihua Guo
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Xiu Chen
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Di Wu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Yaoqiang Huo
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Anyuan Cheng
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Yuzhe Liu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Qing Li
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
- Shanghai Institute of Eco-Chongming (SIEC), 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai 202162, China
| | - Jianmin Chen
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
- Shanghai Institute of Eco-Chongming (SIEC), 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai 202162, China
| |
Collapse
|
6
|
Yu J, Li H, Liu Y, Wang C. PCDD/Fs in indoor environments of residential communities around a municipal solid waste incineration plant in East China: Occurrence, sources, and cancer risks. ENVIRONMENT INTERNATIONAL 2023; 174:107902. [PMID: 37031517 DOI: 10.1016/j.envint.2023.107902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/04/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Prolonged exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) can pose several adverse outcomes on human health. However, there is limited information on public health associated with indoor PCDD/F exposure in residential environments. Here, we examined PCDD/F concentrations in indoor air and indoor dust samples obtained from households near a municipal solid waste incineration (MSWI) plant. Our measurements revealed that the toxic equivalent (TEQ) concentrations of PCDD/Fs in indoor air ranged from 0.01 to 0.05 pg TEQ/m3, which were below intervention thresholds (0.6 pg TEQ/m3). Additionally, the TEQ concentrations of PCDD/Fs in indoor dust ranged from 0.30 to 11.56 ng TEQ/kg. Higher PCDD/F levels were found in household dust in the town of Taopu compared to those in the town of Changzheng. Principal component analysis (PCA) of PCDD/Fs suggested that waste incineration was the primary source of PCDD/Fs in indoor air, whereas PCDD/Fs in indoor dust came from multiple sources. The results of the health risk assessment showed the carcinogenic risk due to indoor PCDD/F exposure was higher for adults than for nursery children and primary school children. The carcinogenic risks of PCDD/Fs for age groups residing near the MSWI plant were all less than the risk threshold (10-5). Our findings will help to better understand the levels of PCDD/F exposure among urban populations living in residential communities around the MSWI plant and to formulate corresponding control measures to reduce probabilistic risk implications.
Collapse
Affiliation(s)
- Jun Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
7
|
Li X, Chen Y, Chen Z, Guo H, Yang S, Ma X. The recent progress on gaseous chlorinated aromatics removal for environmental applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Improving Combustion Technology for Cooking Activities for Pollutant Emission Reduction and Carbon Neutrality. ATMOSPHERE 2022. [DOI: 10.3390/atmos13040561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inefficient residential solid fuel combustion contributes significantly to ambient and indoor air pollutants. It consumes large quantities of fuel and produces harmful effects on health. Improvements in residential biomass cooking stoves have great potential for energy savings and emission reduction. This study presents an advanced biomass gasifier cooking stove to overcome the disadvantages of high-pollutant emissions from widely used stoves in China. The most innovative features of the stove are (1) negative pressure produced by a jet fan located at the junction of the chimney, and (2) combustion and carbonization processes taking place in the same chamber. Compared with a traditional chimney stove, the advanced biomass gasifier cooking stove presented higher TE (thermal efficiency) and comprehensively lower pollutant emissions when raw crop straws, crop straw briquettes, and pellets were burned in it. Approximately 40% CO2 and 90% of PM2.5 (the aerodynamic diameter was less than or equal to 2.5 μm) EFs (emission factors) were eliminated, and TE drastically tripled. Furthermore, biomass briquette/pellet was identified as more suitable than raw biomass as a fuel to be burned in the new stove, especially because the raw biomass displayed an increase in the EFs of As, Se, and Pb when burned in the new stove. The advancement in biomass cooking stove technology is a practical approach to reducing the emissions of CO2, PM2.5, and other hazardous pollutants.
Collapse
|
9
|
Zhang S, Li Y, Wang S. Microbial reductive dechlorination of polychlorinated dibenzo-p-dioxins: Pathways and features unravelled via electron density. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127673. [PMID: 34776298 DOI: 10.1016/j.jhazmat.2021.127673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Microbial reductive dechlorination provides a promising approach for remediating sites contaminated with polychlorinated dibenzo-p-dioxins (PCDDs). Nonetheless, the overall dechlorination pathways and features remain elusive. Herein, we address these issues by quantum chemical calculations, considering the calibrations of reductive dechlorination of 15 PCDDs mediated by three Dehalococcoides strains. Chlorine substituents with lower electron density are prone to be microbially abstracted, which differentiates 72 microbe-active PCDDs from 3 nonactive analogues with a success rate of 100%. For all 256 transformation routes of 75 PCDDs, electron density differences of chlorines pinpoint 105 viable and 125 unviable pathways, corresponding a success rate of 90%. The feasibility of 26 reductive dechlorination pathways are uncertain because of the limited available experimental data. 98% (251/256) of microbial chlorine abstraction follows an order of ClO,Cl>ClCl,Cl>ClH,O>ClH,Cl>ClH,H=0. PCDDs solely containing chlorines at C1, C4, C6, and/or C9 can be completely dechlorinated to non-chlorinated dioxin; while PCDDs housing chlorines at C2, C3, C7, and/or C8 can be dechlorinated to 2-MCDD or 2,7/8-DCDD as final products. These findings also support reductive dechlorination of PCDDs in mixed cultures and sediments (> 98% and 83%). These findings would promote the application of dechlorinating bacteria in targeted remediation and facilitate the respective studies on other POPs.
Collapse
Affiliation(s)
- Shangwei Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Yiyang Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Influence of Molding Technology on Thermal Efficiencies and Pollutant Emissions from Household Solid Fuel Combustion during Cooking Activities in Chinese Rural Areas. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Resident combustion of solid fuel has been widely acknowledged as a high potential for pollutant reduction. However, there is a marked asymmetry between more pollutant emission and less burned volatiles of biomass and coal in the combustion process. To study the solid fuel optimum combustion form in a household stove, both the pollution reduction and energy efficient utilization of crop straws and coals were investigated. Taking the molding pressure and clay addition ratio as variable process conditions, the research of bio-coal briquette (made from the mixture of anthracite and biomass) was implemented in the range of 15~35 MP and 5~15%, respectively. Biomass and coal work complementarily for each other’s combustion property development. In particular, the pyrolysis gas produced by biomass low-temperature devolatilization is featured with low ignition point and is distributed in the bio-coal briquette. Its own combustion provides energy for anthracite particle combustion. Consequently, a positive effect was identified when bio-coal briquettes were used as residential fuel, and further improvement manifested in reducing more than 90% of particle matter (PM) and achieving about twice the thermal efficiencies (TEs) compared with the mass-weighted average values of coal briquettes and biomass briquettes. 88.8 ± 11.8%, 136.7 ± 13.7% and 81.4 ± 17.7% more TEs were provided by wheat straw–coal briquettes, rice straw–coal briquettes and maize straw–coal briquettes. 93.3 ± 3.1% (wheat straw–coal), 97.6 ± 0.2% (rice straw–coal) and 90.4 ± 2.2% (maize straw–coal) in terms of PM2.5 emission factors (EFs) was reduced. For bio-coal briquette, a 25 MPa and 10% addition were determined as the optimum molding pressure and clay addition ratio. Bio-coal briquettes with higher TEs and lower PM EFs will bring about substantial benefits for air quality promotion, human health and energy saving.
Collapse
|