1
|
Patra S, Liu J, Jiang J, Ding X, Huang C, Keech C, Steiner G, Stevens PS, Jung N, Boor BE. Rapid Nucleation and Growth of Indoor Atmospheric Nanocluster Aerosol during the Use of Scented Volatile Chemical Products in Residential Buildings. ACS ES&T AIR 2024; 1:1276-1293. [PMID: 39417158 PMCID: PMC11474976 DOI: 10.1021/acsestair.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 10/19/2024]
Abstract
Scented volatile chemical products (sVCPs) are frequently used indoors. We conducted field measurements in a residential building to investigate new particle formation (NPF) from sVCP emissions. State-of-the-art instrumentation was used for real-time monitoring of indoor atmospheric nanocluster aerosol (NCA; 1-3 nm particles) size distributions and terpene mixing ratios. We integrated our NCA measurements with a comprehensive material balance model to analyze sVCP-nucleated indoor NCA dynamics. Our results reveal that sVCPs significantly increase indoor terpene mixing ratios (10-1,000 ppb), exceeding those in outdoor forested environments. The emitted terpenes react with indoor atmospheric O3 and initiate indoor NPF, resulting in nucleation rates as high as ∼105 cm-3 s-1 and condensational growth rates up to 300 nm h-1; these are orders of magnitude higher than those reported during outdoor NPF events. Notably, high particle nucleation rates significantly increase indoor atmospheric NCA concentrations (105-108 cm-3), and high growth rates drive their survival and growth to sizes that efficiently reach the deepest regions of the human respiratory system. We found sVCP-nucleated NCA to cause respiratory exposures and dose rates comparable to or exceeding those from primary aerosol sources such as gas stoves and diesel engines, highlighting their significant impact on indoor atmospheric environments.
Collapse
Affiliation(s)
- Satya
S. Patra
- Lyles
School of Civil and Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray
W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianghui Liu
- Lyles
School of Civil and Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinglin Jiang
- Lyles
School of Civil and Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray
W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaosu Ding
- Lyles
School of Civil and Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chunxu Huang
- Lyles
School of Civil and Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray
W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| | - Connor Keech
- DURAG
Inc., Minnetonka, Minnesota 55343, United States
| | - Gerhard Steiner
- GRIMM
Aerosol Technik Ainring GmbH & Co. KG, Ainring 83404, Germany
| | - Philip S. Stevens
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- O’Neill
School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Nusrat Jung
- Lyles
School of Civil and Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brandon E. Boor
- Lyles
School of Civil and Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray
W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Wang N, Müller T, Ernle L, Bekö G, Wargocki P, Williams J. How Does Personal Hygiene Influence Indoor Air Quality? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9750-9759. [PMID: 38780915 PMCID: PMC11155237 DOI: 10.1021/acs.est.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Humans are known to be a continuous and potent indoor source of volatile organic compounds (VOCs). However, little is known about how personal hygiene, in terms of showering frequency, can influence these emissions and their impact on indoor air chemistry involving ozone. In this study, we characterized the VOC composition of the air in a controlled climate chamber (22.5 m3 with an air change rate at 3.2 h-1) occupied by four male volunteers on successive days under ozone-free (∼0 ppb) and ozone-present (37-40 ppb) conditions. The volunteers either showered the evening prior to the experiments or skipped showering for 24 and 48 h. Reduced shower frequency increased human emissions of gas-phase carboxylic acids, possibly originating from skin bacteria. With ozone present, increasing the number of no-shower days enhanced ozone-skin surface reactions, yielding higher levels of oxidation products. Wearing the same clothing over several days reduced the level of compounds generated from clothing-ozone reactions. When skin lotion was applied, the yield of the skin ozonolysis products decreased, while other compounds increased due to ozone reactions with lotion ingredients. These findings help determine the degree to which personal hygiene choices affect the indoor air composition and indoor air exposures.
Collapse
Affiliation(s)
- Nijing Wang
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Tatjana Müller
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Lisa Ernle
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Gabriel Bekö
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, 2800 Lyngby, Denmark
| | - Pawel Wargocki
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, 2800 Lyngby, Denmark
| | - Jonathan Williams
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
- Climate
& Atmosphere Research Centre, The Cyprus
Institute, 1645 Nicosia, Cyprus
| |
Collapse
|
3
|
Langer S, Weschler CJ, Bekö G, Morrison G, Sjöblom A, Giovanoulis G, Wargocki P, Wang N, Zannoni N, Yang S, Williams J. Squalene Depletion in Skin Following Human Exposure to Ozone under Controlled Chamber Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6693-6703. [PMID: 38577981 DOI: 10.1021/acs.est.3c09394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A major component of human skin oil is squalene, a highly unsaturated hydrocarbon that protects the skin from atmospheric oxidants. Skin oil, and thus squalene, is continuously replenished on the skin surface. Squalene is also quickly consumed through reactions with ozone and other oxidants. This study examined the extent of squalene depletion in the skin oils of the forearm of human volunteers after exposure to ozone in a climate chamber. Temperature, relative humidity (RH), skin coverage by clothing, and participants' age were varied in a controlled manner. Concentrations of squalene were determined in skin wipe samples collected before and after ozone exposure. Exposures to ozone resulted in statistically significant decreases in post-exposure squalene concentrations compared to pre-exposure squalene concentrations in the skin wipes when squalene concentrations were normalized by concentrations of co-occurring cholesterol but not by co-occurring pyroglutamic acid (PGA). The rate of squalene loss due to ozonolysis was lower than its replenishment on the skin surface. Within the ranges examined, temperature and RH did not significantly affect the difference between normalized squalene levels in post-samples versus pre-samples. Although not statistically significant, skin coverage and age of the volunteers (three young adults, three seniors, and three teenagers) did appear to impact squalene depletion on the skin surfaces.
Collapse
Affiliation(s)
- Sarka Langer
- IVL Swedish Environmental Research Institute, Environmental Chemistry, 40014 Göteborg, Sweden
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Division Building Services Engineering, 412 96 Göteborg, Sweden
| | - Charles J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, United States
- International Centre for Indoor Environment and Energy, Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
- Healthy and Sustainable Built Environment Research Centre, Ajman University, P.O. Box 346 Ajman, United Arab Emirates
| | - Glenn Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, United States
| | - Ann Sjöblom
- IVL Swedish Environmental Research Institute, Environmental Chemistry, 40014 Göteborg, Sweden
| | - Georgios Giovanoulis
- IVL Swedish Environmental Research Institute, Environmental Chemistry, 40014 Göteborg, Sweden
| | - Pawel Wargocki
- International Centre for Indoor Environment and Energy, Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Nijing Wang
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Nora Zannoni
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Shen Yang
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jonathan Williams
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
4
|
Yang S, Müller T, Wang N, Bekö G, Zhang M, Merizak M, Wargocki P, Williams J, Licina D. Influence of Ventilation on Formation and Growth of 1-20 nm Particles via Ozone-Human Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4704-4715. [PMID: 38326946 PMCID: PMC10938884 DOI: 10.1021/acs.est.3c08466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Ozone reaction with human surfaces is an important source of ultrafine particles indoors. However, 1-20 nm particles generated from ozone-human chemistry, which mark the first step of particle formation and growth, remain understudied. Ventilation and indoor air movement could have important implications for these processes. Therefore, in a controlled-climate chamber, we measured ultrafine particles initiated from ozone-human chemistry and their dependence on the air change rate (ACR, 0.5, 1.5, and 3 h-1) and operation of mixing fans (on and off). Concurrently, we measured volatile organic compounds (VOCs) and explored the correlation between particles and gas-phase products. At 25-30 ppb ozone levels, humans generated 0.2-7.7 × 1012 of 1-3 nm, 0-7.2 × 1012 of 3-10 nm, and 0-1.3 × 1012 of 10-20 nm particles per person per hour depending on the ACR and mixing fan operation. Size-dependent particle growth and formation rates increased with higher ACR. The operation of mixing fans suppressed the particle formation and growth, owing to enhanced surface deposition of the newly formed particles and their precursors. Correlation analyses revealed complex interactions between the particles and VOCs initiated by ozone-human chemistry. The results imply that ventilation and indoor air movement may have a more significant influence on particle dynamics and fate relative to indoor chemistry.
Collapse
Affiliation(s)
- Shen Yang
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Tatjana Müller
- Max
Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
| | - Nijing Wang
- Max
Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
| | - Gabriel Bekö
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, 2800 Kongens Lyngby, Denmark
| | - Meixia Zhang
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- School
of Mechanical Engineering, Beijing Institute
of Technology, 100081 Beijing, China
| | - Marouane Merizak
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pawel Wargocki
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jonathan Williams
- Max
Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
- Energy,
Environment and Water Research Center, The
Cyprus Institute, 2121 Nicosia, Cyprus
| | - Dusan Licina
- Human-Oriented
Built Environment Lab, School of Architecture, Civil and Environmental
Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Li X, Yan Y, Fang X, Tu J. Numerical studies of indoor particulate and gaseous micropollutant transport and its impact on human health in densely-occupied spaces. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123031. [PMID: 38036091 DOI: 10.1016/j.envpol.2023.123031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/22/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Micropollutants (MPs) have increasingly become a matter of concern owing to potential health risks associated with human inhalation exposure, particularly in densely-occupied indoor environments. This study employed numerical simulations in a traditional built indoor workspace and a public transport cabin to elucidate the transport dynamics and health impacts of particulate and gaseous type of indoor MPs on varying groups of occupants. The risk of infection from pathogen-bearing MPs was evaluated in the workspace using the integrated Eulerian-Lagrangian and modified Wells-Riley model. In the cabin environment, the health impact of inhaled TVOC within the human nasal system was assessed via the integrated nasal-involved manikin model and cancer/non-cancer risk model. The results demonstrated that when ventilation layout was in favour of restricting particulate MPs spread, considerably high health risks (up to 17.22% infection possibility) were generally found in near-fields of emission source (< 2.25 m). Conversely, if the ventilated flow interacts robustly with emission source, every occupant has a minimum 5% infection risk. Incorporating the nasal cavity in the human model offers a nuanced understanding of gaseous MP distributions post-inhalation. Notably, the olfactory and sinus regions displayed heightened vulnerability to TVOC exposure, with a 62.5%-108% concentration increase compared to other nasal areas. Cancer risk assessment plausibly explained the rising occurrence of brain and central nervous system cancer for aircrew members. Non-cancer risk was found acceptable. This study was expected to advance the understanding of environmental pollution and the health risks tied to indoor MPs in densely-populated environments.
Collapse
Affiliation(s)
- Xueren Li
- School of Engineering, RMIT Unversity, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Yihuan Yan
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Xiang Fang
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Jiyuan Tu
- School of Engineering, RMIT Unversity, PO Box 71, Bundoora, VIC, 3083, Australia
| |
Collapse
|
6
|
Qu Y, Xie D, Liu Y. Emissions of Volatile Organic Compounds from Human Occupants in a Student Office: Dependence on Ozone Concentration. ACS ENVIRONMENTAL AU 2024; 4:3-11. [PMID: 38250339 PMCID: PMC10797682 DOI: 10.1021/acsenvironau.3c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 01/23/2024]
Abstract
Human occupants themselves constitute an important source of volatile organic compounds (VOCs) in indoor environments through breath and dermal emissions. In order to quantify VOC emissions from occupants under real-world settings, previous indoor observational studies often determined emission factors (i.e., average emission rates per person). However, the values obtained across these studies exhibited large variability, and the causes of this variability still need to be understood. Herein we report 10-day real-time VOC measurements in a university student office, using a proton transfer reaction-quadrupole interface-time-of-flight mass spectrometer. A method was developed to identify VOCs of primary human origin and to quantify the corresponding emission factors, accounting for the dynamically changing occupancy level and ventilation rate in the assessed office. We found that the emission factors of many dermally emitted VOCs strongly increased as the ozone concentration increased from <3 to 10-15 ppb. These VOCs include geranyl acetone, 6-methyl-5-hepten-2-one (6-MHO), and C10-C12 saturated aldehydes, which align with characteristic first-generation ozonolysis products of skin oil. The strongest increase occurred for 6-MHO, from 113 to 337 μg/h/p. In comparison, acetone and isoprene, which are primarily emitted from human breath, varied little with the ozone level. In light of this finding, we conducted an integrated analysis of emission factors reported in the literature for two frequently reported species, namely, 6-MHO and decanal. Ozone concentration alone can explain 94-97% of the variation in their emission factors across previous studies, and the best-estimated ozone dependence obtained using the literature data is consistent with those obtained in the current study. These results suggest that the ozone concentration is a key factor regulating emission factors of many dermally emitted VOCs in real indoor environments, which has to be considered when reporting or using the emission factors.
Collapse
Affiliation(s)
- Yuekun Qu
- Key
Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Science and Engineering, Peking University, Beijing 100871, PR China
| | - Di Xie
- Key
Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Science and Engineering, Peking University, Beijing 100871, PR China
| | - Yingjun Liu
- Key
Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Science and Engineering, Peking University, Beijing 100871, PR China
- Center
for Environment and Health, Peking University, Beijing 100871, PR China
| |
Collapse
|
7
|
Qu Y, Zou Z, Weschler CJ, Liu Y, Yang X. Quantifying Ozone-Dependent Emissions of Volatile Organic Compounds from the Human Body. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13104-13113. [PMID: 37610659 DOI: 10.1021/acs.est.3c02340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Ozone reactions on human body surfaces produce volatile organic compounds (VOCs) that influence indoor air quality. However, the dependence of VOC emissions on the ozone concentration has received limited attention. In this study, we conducted 36 sets of single-person chamber experiments with three volunteers exposed to ozone concentrations ranging from 0 to 32 ppb. Emission fluxes from human body surfaces were measured for 11 targeted skin-oil oxidation products. For the majority of these products, the emission fluxes linearly correlated with ozone concentration, indicating a constant surface yield (moles of VOC emitted per mole of ozone deposited). However, for the second-generation oxidation product 4-oxopentanal, a higher surface yield was observed at higher ozone concentrations. Furthermore, many VOCs have substantial emissions in the absence of ozone. Overall, these results suggest that the complex surface reactions and mass transfer processes involved in ozone-dependent VOC emissions from the human body can be represented using a simplified parametrization based on surface yield and baseline emission flux. Values of these two parameters were quantified for targeted products and estimated for other semiquantified VOC signals, facilitating the inclusion of ozone/skin oil chemistry in indoor air quality models and providing new insights on skin oil chemistry.
Collapse
Affiliation(s)
- Yuekun Qu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ziwei Zou
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, People's Republic of China
| | - Charles J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, United States
- International Centre for Indoor Environment and Energy, Technical University of Denmark, Lyngby 2800, Denmark
| | - Yingjun Liu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
- Center for Environment and Health, Peking University, Beijing 100871, People's Republic of China
| | - Xudong Yang
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
8
|
Ding X, Jiang J, Tasoglou A, Huber H, Shah AD, Jung N. Evaluation of Workplace Exposures to Volatile Chemicals During COVID-19 Building Disinfection Activities with Proton Transfer Reaction Mass Spectrometry. Ann Work Expo Health 2023; 67:546-551. [PMID: 36728003 DOI: 10.1093/annweh/wxac096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 12/23/2022] [Indexed: 02/03/2023] Open
Abstract
We conducted an experimental case study to demonstrate the application of proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) for mobile breathing zone (BZ) monitoring of volatile chemical exposures in workplace environments during COVID-19 disinfection activities. The experiments were conducted in an architectural engineering laboratory-the Purdue zero Energy Design Guidance for Engineers (zEDGE) Tiny House, which served as a simulated workplace environment. Controlled disinfection activities were carried out on impermeable high-touch indoor surfaces, including the entry door, kitchen countertop, toilet bowl, bathroom sink, and shower. Worker inhalation exposure to volatile organic compounds (VOCs) was evaluated by attaching the PTR-TOF-MS sampling line to the researcher's BZ while the disinfection activity was carried out throughout the entire building. The results demonstrate that significant spatiotemporal variations in VOC concentrations can occur in the worker's BZ during multi-surface disinfection events. Application of high-resolution monitoring techniques, such as PTR-TOF-MS, are needed to advance characterization of worker exposures towards the development of appropriate mitigation strategies for volatile disinfectant chemicals.
Collapse
Affiliation(s)
- Xiaosu Ding
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jinglin Jiang
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | | | - Heinz Huber
- Edelweiss Technology Solutions, LLC, 14250 Sweetbriar Lane, Novelty, OH 44072, USA
| | - Amisha D Shah
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA.,Division of Environmental and Ecological Engineering, Purdue University, 500 Central Drive, West Lafayette, IN 47907, USA
| | - Nusrat Jung
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Wang N, Ernle L, Bekö G, Wargocki P, Williams J. Emission Rates of Volatile Organic Compounds from Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4838-4848. [PMID: 35389619 PMCID: PMC9022422 DOI: 10.1021/acs.est.1c08764] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 05/30/2023]
Abstract
Human-emitted volatile organic compounds (VOCs) are mainly from breath and the skin. In this study, we continuously measured VOCs in a stainless-steel environmentally controlled climate chamber (22.5 m3, air change rate at 3.2 h-1) occupied by four seated human volunteers using proton transfer reaction time-of-flight mass spectrometry and gas chromatography mass spectrometry. Experiments with human whole body, breath-only, and dermal-only emissions were performed under ozone-free and ozone-present conditions. In addition, the effect of temperature, relative humidity, clothing type, and age was investigated for whole-body emissions. Without ozone, the whole-body total emission rate (ER) was 2180 ± 620 μg h-1 per person (p-1), dominated by exhaled chemicals. The ERs of oxygenated VOCs were positively correlated with the enthalpy of the air. Under ozone-present conditions (∼37 ppb), the whole-body total ER doubled, with the increase mainly driven by VOCs resulting from skin surface lipids/ozone reactions, which increased with relative humidity. Long clothing (more covered skin) was found to reduce the total ERs but enhanced certain chemicals related to the clothing. The ERs of VOCs derived from this study provide a valuable data set of human emissions under various conditions and can be used in models to better predict indoor air quality, especially for highly occupied environments.
Collapse
Affiliation(s)
- Nijing Wang
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Lisa Ernle
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Gabriel Bekö
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, Nils Koppels Alle 402, 2800 Lyngby, Denmark
| | - Pawel Wargocki
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, Nils Koppels Alle 402, 2800 Lyngby, Denmark
| | - Jonathan Williams
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
- Climate
& Atmosphere Research Centre, The Cyprus
Institute, 1645 Nicosia, Cyprus
| |
Collapse
|