1
|
Gao H, Fang M, Zhang Z, Han Y, Wang D, Wang Y, Xia H, Zhu X, Miao S, Kang X. Electronic coupling of iron-cobalt in Prussian blue towards improved peroxydisulfate activation. J Colloid Interface Sci 2025; 678:1087-1098. [PMID: 39241470 DOI: 10.1016/j.jcis.2024.08.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Prussian blue analogs (PBAs) have attracted extensive attention in the field of aqueous organic degradation due to the tremendous potential for peroxydisulfate (PDS) activation. However, the relationship between the d-band center of the catalyst and the activation behavior of PDS remained largely unexplored. Herein, a series of Fe-Co PBAs-based catalysts with different Fe/Co ratios (Fe-Co PBAs-1 = 1: 0.52; Fe-Co PBAs-2 = 1: 1.21, and Fe-Co PBAs-3 = 1: 1.48) have been prepared by a facile hydrothermal procedure and subsequent acid treatment (Fe-Co PBAs-xH). The as-prepared Fe-Co PBAs-xH exhibited superior PDS activation performance and excellent recyclability in the degradation of methylene blue (MB). Density functional theory calculations revealed that the electron-occupied state of the Fe-Co PBAs was shifted to the Fermi level, indicating a strong interaction and easier electron transfer. Moreover, the d-band center of Fe-Co PBAs was upshifted relative to that of Fe PBAs, suggesting easier adsorption of MB and PDS, which was beneficial to enhancing catalytic activation and subsequent dissociation. Radicals such as •OH, 1O2, O2•-, and SO4•- were determined by the radical quenching experiment and electron paramagnetic resonance (EPR) testing in the Fe-Co PBAs-3H/PDS system, and the order of MB degradation by the free active radical is •OH > 1O2 > O2•- > SO4•-. The degradation pathway and potential ecotoxicity of MB and its intermediates were also studied. This work can provide new insights to construct the efficient catalysts for the activation of PDS and the degradation of organic pollutants.
Collapse
Affiliation(s)
- Hongcheng Gao
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China.
| | - Mengchen Fang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Zhenzhu Zhang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Yi Han
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Dejin Wang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China.
| | - Yi Wang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Hongyu Xia
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Xiaojing Zhu
- Research Center of Advanced Chemical Equipment, Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, China.
| | - Shihao Miao
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xiongwu Kang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
2
|
Zuo S, Wang Y, Wan J. Enhanced peroxymonosulfate activation for emerging contaminant degradation via defect-engineered interfacial electric field in FeNC. J Colloid Interface Sci 2025; 678:713-721. [PMID: 39216398 DOI: 10.1016/j.jcis.2024.08.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Peroxymonosulfate (PMS) activation technology has important application value in treating emerging contaminant (ECs), but it still faces challenges in achieving efficient electron transfer and metal valence cycling. In this study, the interfacial electric field characteristics of FeNC catalysts were adjusted by introducing NC defects to affect the electron transfer process, thereby enhancing the catalytic performance of PMS. It is found that in the FeNC structure, the shift of the charge generates an interfacial electric field, which can promote the directional transfer of electrons. Through quantitative structure-activity relationship (QSAR) analysis, it was confirmed that the defect played a decisive role in regulating the interfacial electric field and improving the catalytic reaction efficiency. The interfacial electric field-mediated superexchange interaction realizes the electron donor effect of organic pollutants and the effective electron transfer between the Fe site, accelerates the electron cycling of the Fe site, and realizes the rapid and stable catalysis of PMS. The increase of the occupancy state distribution of d orbitals near the Fermi level provides favorable conditions for electron transitions and catalytic activation of PMS. ECs can be converted into environmentally friendly, non-toxic and harmless substances through. This defect-controlled interface electric field strategy realizes rapid electron directional transfer, which provides a new solution for improving the catalytic efficiency of PMS and the safe treatment of ECs in water.
Collapse
Affiliation(s)
- Shiyu Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China.
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Yang W, Gong W, Zhu L, Ma X, Xu W. Novel catalytic behavior of defective nanozymes with catalase-mimicking characteristics for the degradation of tetracycline. J Colloid Interface Sci 2025; 677:952-966. [PMID: 39178674 DOI: 10.1016/j.jcis.2024.08.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Although nanozymes have shown significant potential in wastewater treatment, enhancing their degradation performance remains challenging. Herein, a novel catalytic behavior was revealed for defective nanozymes with catalase-mimicking characteristics that efficiently degraded tetracycline (TC) in wastewater. Hydroxyl groups adsorbed on defect sites facilitated the in-situ formation of vacancies during catalysis, thereby replenishing active sites. Additionally, electron transfer considerably enhanced the catalytic reaction. Consequently, numerous reactive oxygen species (ROS) were generated through these processes and subsequent radical reactions. The defective nanozymes, with their unique catalytic behavior, proved effective for the catalytic degradation of TC. Experimental results demonstrate that •OH, •O2-, 1O2 and e- were the primary contributors to the degradation process. In real wastewater samples, the normalized degradation rate constant for defective nanozymes reached 26.0 min-1 g-1 L, exceeding those of other catalysts. This study reveals the new catalytic behavior of defective nanozymes and provides an effective advanced oxidation process for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Wenping Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Lu H, Hou L, Zhang Y, Cao X, Xu X, Shang Y. Pilot-scale and large-scale Fenton-like applications with nano-metal catalysts: From catalytic modules to scale-up applications. WATER RESEARCH 2024; 266:122425. [PMID: 39265214 DOI: 10.1016/j.watres.2024.122425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Recently, great efforts have been made to advance the pilot-scale and engineering-scale applications of Fenton-like processes using various nano-metal catalysts (including nanosized metal-based catalysts, smaller nanocluster catalysts, and single-atom catalysts, etc.). This step is essential to facilitate the practical applications of advanced oxidation processes (AOPs) for these highly active nano-metal catalysts. Before large-scale implementation, these nano-metal catalysts must be converted into the effective catalyst modules (such as catalytic membranes, fluidized beds, or polypropylene sphere suspension systems), as it is not feasible to use suspended powder catalysts for large-scale treatment. Therefore, the pilot-scale and engineering applications of nano-metal catalysts in Fenton-like systems in recent years is exciting. In addition, the combination of life cycle assessment (LCA) and techno-economic analysis (TEA) can provide a useful support tool for engineering scale Fenton-like applications. This paper summarizes the designs and fabrications of various advanced modules based on nano-metal catalysts, analyzes the advantages and disadvantages of these catalytic modules, and further discusses their Fenton-like pilot scale or engineering applications. Concepts of future Fenton-like engineering applications of nano-metal catalysts were also discussed. In addition, current challenges and future expectations in pilot-scale or engineering applications are assessed in conjunction with LCA and TEA. These challenges require further technological advances to enable larger scale engineering applications in the future. The aim of these efforts is to increase the potential of nanoscale AOPs for practical wastewater treatment.
Collapse
Affiliation(s)
- Haoyun Lu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Lifei Hou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Yang Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Xiaoqiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
5
|
Li X, Li Y, Yang S. Enhanced mineralization of nitrophenols by a novel C@ZVAl-PS based sequential reduction-oxidation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175288. [PMID: 39111419 DOI: 10.1016/j.scitotenv.2024.175288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
Widely employed nitrophenols (NPs) are refractory and antioxidant due to their strong electron-withdrawing group (-NO2). Actually, NPs are readily reduced to aminophenols (APs). However, APs remain toxic and necessitate further treatment. Herein, we utilized a novel sequential reduction-oxidation system of carbon-modified zero-valent aluminum (C@ZVAl) combined with persulfate (PS) for the thorough removal of both NPs and APs. The results demonstrated that p-nitrophenol (PNP, up to 1000 mg/L) exhibited complete reduction to p-aminophenol (PAP), and then over 98.0 % of PAP could be effectively oxidized, in the meantime the removal rate of chemical oxygen demand (COD) was as high as 95.9 %. Based on the SEM and XPS characterizations, we found that C@ZVAl has exceptionally high reactivity that generates massive electrons and reduces PNP to PAP through accelerated electron transfer. In the subsequent oxidation step, PS can be rapidly activated by C@ZVAl to generate SO4- radicals for PAP oxidization. Meanwhile, the mineralization of COD proceeds. The temporal binding of reduction and oxidation can be regulated by varying the PS dosing time. Namely, the appropriate delay in PS dosing facilitates sufficient reduction to provide enough reactants for oxidation, favoring the mineralization of PNP and COD. More crucially, dinitrodiazophenol (DDNP) in an actual explosive wastewater without any pretreatment can be effectively mineralized by this sequential reduction-oxidation system, affirming the excellent performance of this process in practical applications. In conclusion, the C@ZVAl-PS based sequential reduction-oxidation looks very promising for enhanced mineralization of nitro-substituted organic contaminants.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yang Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shiying Yang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
6
|
Gao X, Chen J, Che H, Yang HB, Liu B, Ao Y. Accelerating Small Electron Polaron Dissociation and Hole Transfer at Solid-Liquid Interface for Enhanced Heterogeneous Photoreaction. J Am Chem Soc 2024; 146:30455-30463. [PMID: 39467667 DOI: 10.1021/jacs.4c11123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In a photocatalysis process, quick charge recombination induced by small electron polarons in a photocatalyst and sluggish kinetics of hole transfer at the solid-liquid interface have greatly limited photocatalytic efficiency. Herein, we demonstrate hydrated transition metal ions as mediators that can simultaneously accelerate small electron polaron dissociation (via metal ion reduction) and hole transfer (through high-valence metal production) at the solid-liquid interface for improved photocatalytic pollutant degradation. Fe3+, by virtue of its excellent redox ability as a homogeneous mediator, enables the BiVO4 photocatalyst to achieve drastically increased photocatalytic degradation performance, up to 684 times that without Fe3+. The enhanced performance results from Fe(IV) species production (via Fe3+ oxidation) induced by dissociation of small electron polarons (via Fe3+ reduction), featuring an extremely low kinetic barrier (5.4 kJ mol-1) for oxygen atom transfer thanks to the donor-acceptor orbital interaction between Fe(IV) and organic pollutants. This work constructs a high-efficiency artificial photosynthetic system through synergistically eliminating electron localization and breaking hole transfer limitation at the solid-liquid interface for constructing high-efficiency artificial photosynthetic systems.
Collapse
Affiliation(s)
- Xin Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing 210098, China
| | - Huinan Che
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing 210098, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR999077, China
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR999077, China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing 210098, China
| |
Collapse
|
7
|
Wang X, Chen H, Qian Y, Li X, Li X, Xu X, Wu Y, Zhang W, Xue G. Sludge-derived hydrochar modulates complete nonradical electron transfer in peroxydisulfate activation via pyrrolic-N and carbon defect: Implication for degrading electron-rich ionizable anilines compounds. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135724. [PMID: 39236539 DOI: 10.1016/j.jhazmat.2024.135724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Nonradical electron transfer process (ETP) is a promising pathway for pollutant degradation in peroxydisulfate-based advanced oxidation processes (PDS-AOPs). However, there is a critical bottleneck to trigger ETP by sludge-derived hydrochar due to its negatively charged surface, inferior porosity and electrical conductivity. Herein, pyrrolic-N doped and carbon defected sludge-derived hydrochar (SDHC-N) was constructed for PDS activation to degrade anilines ionizable organic compounds (IOC) through complete nonradical ETP oxidation. Degradation of anilines IOC was not only affected by the electron-donating capacity but also proton concentration in solution because of the ionizable amino group (-NH2). Diverse effects including proton favor, insusceptible and inhibition were observed. Impressively, addition of HCO3 with strong proton binding capacity boosted aniline degradation nearly 10 times. Moreover, characterizations and theoretical calculations demonstrated that pyrrolic-N increased electron density and created positively charged surface, profoundly promoting generation of SDHC-N-S2O82-* complexes. More delocalized electrons around carbon defect could enhance electron mobility. This work guides a rational design of sludge-derived hydrochar to mediate nonradical ETP oxidation, and provides insights into the impacts of proton on anilines IOC degradation.
Collapse
Affiliation(s)
- Xiaonuan Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yajie Qian
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xianying Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xianbao Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ying Wu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenjuan Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
8
|
Tang Q, Wu B, Huang X, Ren W, Liu L, Tian L, Chen Y, Zhang LS, Sun Q, Kang Z, Ma T, Zou JP. Electron transfer mediated activation of periodate by contaminants to generate 1O 2 by charge-confined single-atom catalyst. Nat Commun 2024; 15:9549. [PMID: 39500863 PMCID: PMC11538331 DOI: 10.1038/s41467-024-53941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
The electron transfer process (ETP) is able to avoid the redox cycling of catalysts by capturing electrons from contaminants directly. However, the ETP usually leads to the formation of oligomers and the reduction of oxidants to anions. Herein, the charge-confined Fe single-atom catalyst (Fe/SCN) with Fe-N3S1 configuration was designed to achieve ETP-mediated contaminant activation of the oxidant by limiting the number of electrons gained by the oxidant to generate 1O2. The Fe/SCN-activate periodate (PI) system shows excellent contaminant degradation performance due to the combination of ETP and 1O2. Experiments and DFT calculations show that the Fe/SCN-PI* complex with strong oxidizing ability triggers the ETP, while the charge-confined effect allows the single-electronic activation of PI to generate 1O2. In the Fe/SCN + PI system, the 100% selectivity dechlorination of ETP and the ring-opening of 1O2 avoid the generation of oligomers and realize the transformation of large-molecule contaminants into small-molecule biodegradable products. Furthermore, the Fe/SCN + PI system shows excellent anti-interference ability and application potential. This work pioneers the generation of active species using ETP's electron to activate oxidants, which provides a perspective on the design of single-atom catalysts via the charge-confined effect.
Collapse
Affiliation(s)
- Qianqian Tang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Bangxiang Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Xiaowen Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Lingling Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Lei Tian
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Ying Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Long-Shuai Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China.
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, P. R. China.
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Zhibing Kang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jian-Ping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China.
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, P. R. China.
| |
Collapse
|
9
|
Xu G, Sun L, Tu Y, Teng X, Qi Y, Wang Y, Li A, Xie X, Gu X. Highly stable carbon-coated nZVI composite Fe 0@RF-C for efficient degradation of emerging contaminants. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100457. [PMID: 39161572 PMCID: PMC11331822 DOI: 10.1016/j.ese.2024.100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Nanoscale zerovalent iron (nZVI) has garnered significant attention as an efficient advanced oxidation activator, but its practical application is hindered by aggregation and oxidation. Coating nZVI with carbon can effectively addresses these issues. A simple and scalable production method for carbon-coated nZVI composite is highly desirable. The anti-oxidation and catalytic performance of carbon-coated nZVI composite merit in-depth research. In this study, a highly stable carbon-coated core-shell nZVI composite (Fe0@RF-C) was successfully prepared using a simple method combining phenolic resin embedding and carbothermal reduction. Fe0@RF-C was employed as a heterogeneous persulfate (PS) activator for degrading 2,4-dihydroxybenzophenone (BP-1), an emerging contaminant. Compared to commercial nZVI, Fe0@RF-C exhibited superior PS activation performance and oxidation resistance. Nearly 95% of BP-1 was removed within 10 min in the Fe0@RF-C/PS system. The carbon layer promotes the enrichment of BP-1 and accelerates its degradation through singlet oxygen oxidation and direct electron transfer processes. This study provides a straightforward approach for designing highly stable carbon-coated nZVI composite and elucidates the enhanced catalytic performance mechanism by carbon layers.
Collapse
Affiliation(s)
- Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lin Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yizhou Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaolei Teng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yaoyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
- Nanjing University & Yancheng Academy of Environment Protection Technology and Engineering, Nanjing, 210023, China
- Jiangxi Nanxin Environmental Protection Technology Co. LTD, Jiujiang City, Jiangxi Province, 330300, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
10
|
Zhong H, Gong Z, Yu J, Hou Y, Tao Y, Fu Q, Yang H, Xiao X, Cao X, Wang J, Ouyang G. Remarkable Active Site Utilization in Edge-Hosted-N Doped Carbocatalysts for Fenton-Like Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404958. [PMID: 39258821 PMCID: PMC11538648 DOI: 10.1002/advs.202404958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Improving the utilization of active sites in carbon catalysts is significant for various catalytic reactions, but still challenging, mainly due to the lack of strategies for controllable introduction of active dopants. Herein, a novel "Ar plasma etching-NH3 annealing" strategy is developed to regulate the position of active N sites, while maintaining the same nitrogen species and contents. Theoretical and experimental results reveal that the edge-hosted-N doped carbon nanotubes (E-N-CNT), with only 0.29 at.% N content, show great affinity to peroxymonosulfate (PMS), and exhibit excellent Fenton-like activity by generating singlet oxygen (1O2), which can reach as high as 410 times higher than the pristine CNT. The remarkable utilization of edge-hosted nitrogen atom is further verified by the edge-hosted-N enriched carbocatalyst, which shows superior capability for 4-chlorophenol degradation with a turnover frequency (TOF) value as high as 3.82 min-1, and the impressive TOF value can even surpass those of single-atom catalysts. This work proposes a controllable position regulation of active sites to improve atom utilization, which provides a new insight into the design of excellent Fenton-like catalysts with remarkable atom utilization efficiency.
Collapse
Affiliation(s)
- Huajie Zhong
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Zeyu Gong
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Jiaxing Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Yu Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Yuan Tao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Qi Fu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Huangsheng Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Xinzhe Xiao
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Xingzhong Cao
- Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049P. R. China
| | - Junhui Wang
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Gangfeng Ouyang
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
- College of Chemistry & Molecular EngineeringCenter of Advanced Analysis and Computational ScienceZhengzhou UniversityZhengzhou450001P. R. China
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous ChemicalsGuangdong Institute of Analysis (China National Analytical Center Guangzhou)Guangdong Academy of Science100 Xianlie Middle RoadGuangzhou510070P. R. China
| |
Collapse
|
11
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
12
|
Zhou H, Zhong S, Chen J, Ren S, Ren W, Lai B, Guan X, Ma T, Wang S, Duan X. Overlooked Complexation and Competition Effects of Phenolic Contaminants in a Mn(II)/Nitrilotriacetic Acid/Peroxymonosulfate System: Inhibited Generation of Primary and Secondary High-Valent Manganese Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19080-19089. [PMID: 39276341 DOI: 10.1021/acs.est.4c07370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Organic contaminants with lower Hammett constants are typically more prone to being attacked by reactive oxygen species (ROS) in advanced oxidation processes (AOPs). However, the interactions of an organic contaminant with catalytic centers and participating ROS are complex and lack an in-depth understanding. In this work, we observed an abnormal phenomenon in AOPs that the degradation of electron-rich phenolics, such as 4-methoxyphenol, acetaminophen, and 4-presol, was unexpectedly slower than electron-deficient phenolics in a Mn(II)/nitrilotriacetic acid/peroxymonosulfate (Mn(II)/NTA/PMS) system. The established quantitative structure-activity relationship revealed a volcano-type dependence of the degradation rates on the Hammett constants of pollutants. Leveraging substantial analytical techniques and modeling analysis, we concluded that the electron-rich phenolics would inhibit the generation of both primary (Mn(III)NTA) and secondary (Mn(V)NTA) high-valent manganese species through complexation and competition effects. Specifically, the electron-rich phenolics would form a hydrogen bond with Mn(II)/NTA/PMS through outer-sphere interactions, thereby reducing the electrophilic reactivity of PMS to accept the electron transfer from Mn(II)NTA, and slowing down the generation of reactive Mn(III)NTA. Furthermore, the generated Mn(III)NTA is more inclined to react with electron-rich phenolics than PMS due to their higher reaction rate constants (8314 ± 440, 6372 ± 146, and 6919 ± 31 M-1 s-1 for 4-methoxyphenol, acetaminophen, and 4-presol, respectively, as compared with 671 M-1 s-1 for PMS). Consequently, the two-stage inhibition impeded the generation of Mn(V)NTA. In contrast, the complexation and competition effects are insignificant for electron-deficient phenolics, leading to declined reaction rates when the Hammett constants of pollutants increase. For practical applications, such complexation and competition effects would cause the degradation of electron-rich phenolics to be more susceptible to water matrixes, whereas the degradation of electron-deficient phenolics remains largely unaffected. Overall, this study elucidated the intricate interaction mechanisms between contaminants and reactive metal species at both the electronic and kinetic levels, further illuminating their implications for practical treatment.
Collapse
Affiliation(s)
- Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Junwen Chen
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shiying Ren
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Wei Ren
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
13
|
Wu JH, Yu HQ. Confronting the Mysteries of Oxidative Reactive Species in Advanced Oxidation Processes: An Elephant in the Room. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18496-18507. [PMID: 39382033 DOI: 10.1021/acs.est.4c06725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Advanced oxidation processes (AOPs) are rapidly evolving but still lack well-established protocols for reliably identifying oxidative reactive species (ORSs). This Perspective presents both the radical and nonradical ORSs that have been identified or proposed, along with the extensive controversies surrounding oxidative mechanisms. Conventional identification tools, such as quenchers, probes, and spin trappers, might be inadequate for the analytical demands of systems in which multiple ORSs coexist, often yielding misleading results. Therefore, the challenges of identifying these complex, short-lived, and transient ORSs must be fully acknowledged. Refining analytical methods for ORSs is necessary, supported by rigorous experiments and innovative paradigms, particularly through kinetic analysis based on in situ spectroscopic techniques and multiple-probe strategies. To demystify these complex ORSs, future efforts should be made to develop advanced tools and strategies to enhance the mechanism understanding. In addition, integrating real-world conditions into experimental designs will establish a reliable framework in fundamental studies, providing more accurate insights and effectively guiding the design of AOPs.
Collapse
Affiliation(s)
- Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Chen Z, Meng G, Han Z, Li H, Chi S, Hu G, Zhao X. Interfacial anchoring cobalt species mediated advanced oxidation: Degradation performance and mechanism of organic pollutants. J Colloid Interface Sci 2024; 679:67-78. [PMID: 39442207 DOI: 10.1016/j.jcis.2024.10.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The development of highly catalytic activity, low-cost and environmentally friendly catalysts is crucial for the use of advanced oxidation processes (AOPs) to treat organic pollutants. In this study, to reduce costs, enhance catalytic activity and avoid secondary pollution form metal ions, pomelo peel was used as raw material, combined with surface crystallization, carbon layer protection and heat treatment technology to effectively construct AOPs catalyst that can efficiently activate peroxymonosulfate (PMS) to degrade harmful organic pollutants. Under the optimal conditions, the Co/BC-PMS system can degrade about 100 % of tetracycline (TC, a spectral antibiotic) within 5 min, and the degradation rate of TC can still reach 100 % even if Co/BC (cobalt anchored on biochar) was reused for 6 times. The Co/BC-PMS system can resist complex environmental conditions, including acidic solution, alkaline solution, coexisting ions, different water quality, and is universal for the degradation of most organic pollutants. The integrated purification column with Co/BC as the core realizes the continuous and complete degradation of organic pollutants and has the ability of practical application. Radical capture and monitoring combined with density-functional-theory calculations confirmed that the Co(111) and amorphous CoO sites in Co/BC are the key to driving PMS to degrade organic pollutants, Co/BC can efficiently adsorb PMS and promote the dissociation of PMS into highly active OH, SO4- and 1O2, and these reactive oxygen species jointly promote the degradation of organic pollutants. This study provides experimental support and theoretical insights for the design of efficient AOPs catalysts, and plays an important role in promoting the development of AOPs.
Collapse
Affiliation(s)
- Zidan Chen
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Guanghao Meng
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Zenghui Han
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Hongjiang Li
- China School of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Shaoming Chi
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Xue Zhao
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
15
|
Qian X, Wang S, Cheng H, Li L, Liu Y, Duan J, Wang D, Ma J. Catalytic oxidation of Mn(II) in the co-presence of Fe(II) by free chlorine: significance of in situ formed Mn(II)-doped Fe(III) oxides. WATER RESEARCH 2024; 268:122630. [PMID: 39454270 DOI: 10.1016/j.watres.2024.122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Fe(II) and Mn(II) are abundant in groundwater and require operationally simple and efficient method to remove in drinking water treatment. The rapid oxidation of Mn(II) is essential in water treatment. This study investigates the efficiency of Mn(II) oxidation by free chlorine in the presence of Fe(II). The results demonstrate that the presence of Fe(II) significantly accelerates the oxidation rate of Mn(II) by free chlorine under neutral and alkaline conditions. The rapid oxidation of Fe(II) by free chlorine and the presence of Mn(II) promote the formation of in situ Mn(II)-doped ferrihydrite. Kinetic modeling and characterization of Fe(III) oxides confirm that the heterogeneous catalytic effect of the Mn(II)-doped ferrihydrite, rather than manganese oxides or their coupled catalytic effect, is responsible for the enhanced oxidation rates. The doped Mn(II) substitutes the tetrahedral Fe(III) ions in the ferrihydrite, introducing additional negative charges at the doped sites. The increased charge enhances Mn(II) adsorption and lowers its redox potential, thereby accelerating Mn(II) oxidation rate through direct electron transfer with adjacent free chlorine. Additionally, the lepidocrocite formed by the reaction between Fe(II) and dissolved oxygen significantly impedes the catalytic performance. These findings provide new insights into the catalytic co-oxidation mechanism of Fe(II) and Mn(II), and help the optimization of water treatment engineering practices.
Collapse
Affiliation(s)
- Xuecong Qian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shilong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haijun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Luwei Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yun Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jinhao Duan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Da Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
16
|
Yao Y, Zhang L, Qiu Y, Li Z, Ma Z, Wang S. Phase-activity relationship of MnO 2 nanomaterials in periodate oxidation for organic pollutant degradation. WATER RESEARCH 2024; 264:122224. [PMID: 39153314 DOI: 10.1016/j.watres.2024.122224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/21/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Manganese dioxide (MnO2), renowned for its abundant natural crystal phases, emerges as a leading catalyst candidate for the degradation of pollutants. The relationship between its crystal phase and catalytic activity, particularly for periodate activation, has remained both ambiguous and contentious. This study delineates the influence of various synthetic MnO2 phase structures on their capabilities in catalyzing periodate-assisted pollutant oxidation. Five distinct MnO2 phase structures (α-, β-, γ-, δ-, and ε-MnO₂) were prepared and evaluated to activate periodate and degrade pollutants, following the sequence: α-MnO₂ > γ-MnO₂ > β-MnO₂ > ε-MnO₂ > δ-MnO₂. Through quenching experiments, electron paramagnetic resonance tests, and in situ electrochemical studies, we found an electron transfer-mediated process drive pollutant degradation, facilitated by a highly reactive metastable intermediate complex (MnO₂/PI*). Quantitative structure-activity relationship analysis further indicated that degradation efficiency is strongly associated with both the crystal phase and the Mn (IV) content, highlighting it as a key active site. Moreover, the α-MnO₂ phase demonstrated exceptional recycling stability, enabling an effective pollutant removal in a continuous flow packed-bed reactor for 168 h. Thus, α-MnO₂/PI proved highly effective in mineralizing organic pollutants and reducing their toxicities, highlighting its significant potential for environmental remediation.
Collapse
Affiliation(s)
- Yunjin Yao
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China.
| | - Lijie Zhang
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Yongjie Qiu
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Zhan Li
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Ziwei Ma
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
17
|
Li H, Jin X, Owens G, Chen Z. Reconstructing the electron and spin structures of nanoscale iron sulfide through a biosurfactant layer towards radical-nonradical co-dominant regime. J Colloid Interface Sci 2024; 672:299-310. [PMID: 38843682 DOI: 10.1016/j.jcis.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
Radical-nonradical co-dominant pathways have become a hot topic in advanced oxidation, but achieving this on transition metal sulfides (TMS) remains challenging because their inherently higher electron and spin densities always induce radicals rather than nonradicals. Herein, a biosurfactant layer (BLR) was introduced to redistribute the electron and spin structure of nanoscale iron sulfide (FeS), which allowed both radical and nonradical to co-dominate the catalytic reaction. The resulting BLR-encased FeS hybrid (BLR@FeS) exhibited satisfactory removal efficiency (98.5 %) for hydrogen peroxide (H2O2) activation, outperforming both the constituent components [FeS (70.9 %) and BLR (86.2 %)]. Advanced characterizations showed that C, O, N-related sites (-CO and -NC) in BLR attracted electrons in FeS due to their strong electronegativity and electron-withdrawing capacity, which not only decreased electron density in FeS, but also resulted in a shift of the Fe/S sites from the high-spin to the medium-spin state. The reaction routes established by the BLR@FeS/H2O2 system maintained desirable stability against environmental interferences such as common inorganic anions, humic acid and changes in pH. Our study provides a state-of-the-art, molecule-level understanding of tunable co-dominant pathways and expands the targeted applications in the field of advanced oxidation.
Collapse
Affiliation(s)
- Heng Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Xiaoying Jin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China.
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA, 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China.
| |
Collapse
|
18
|
Chen Z, Cai H, Huang F, Wang Z, Chen Y, Liu Z, Xie P. Degradation of β-lactam antibiotics by Fe(III)/HSO 3- system and their quantitative structure-activity relationship. ENVIRONMENTAL RESEARCH 2024; 259:119577. [PMID: 38986801 DOI: 10.1016/j.envres.2024.119577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
β-lactam antibiotics, extensively used worldwide, pose significant risks to human health and ecological safety due to their accumulation in the environment. Recent studies have demonstrated the efficacy of transition metal-activated sulfite systems, like Fe(Ⅲ)/HSO3-, in removing PPCPs from water. However, research on their capability to degrade β-lactam antibiotics remains sparse. This paper evaluates the degradation of 14 types of β-lactam antibiotics in Fe(Ⅲ)/HSO3- system and establishes a QSAR model correlating molecular descriptors with degradation rates using the MLR method. Using cefazolin as a case study, this research predicts degradation pathways through NPA charge and Fukui function analysis, corroborated by UPLC-MS product analysis. The investigation further explores the influence of variables such as HSO3- dosage, substrate concentration, Fe(Ⅲ) dosage, initial pH and the presence of common seen water matrices including humic acid and bicarbonate on the degradation efficiency. Optimal conditions for cefazolin degradation in Fe(Ⅲ)/HSO3- system were determined to be 93.3 μM HSO3-, 8.12 μM Fe(Ⅲ) and an initial pH of 3.61, under which the interaction of Fe(Ⅲ) dosage with initial pH was found to significantly affect the degradation efficiency. This study not only provides a novel degradation approach for β-lactam antibiotics but also expands the theoretical application horizon of the Fe(Ⅲ)/HSO3- system.
Collapse
Affiliation(s)
- Zhenbin Chen
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety & Pollution Control, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haohan Cai
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety & Pollution Control, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Feng Huang
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety & Pollution Control, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety & Pollution Control, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Pengchao Xie
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety & Pollution Control, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
19
|
Zeng Y, He D, Sun J, Zhang A, Luo H, Pan X. Non-radical oxidation driven by iron-based materials without energy assistance in wastewater treatment. WATER RESEARCH 2024; 264:122255. [PMID: 39153313 DOI: 10.1016/j.watres.2024.122255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Chemical oxidation is extensively utilized to mitigate the impact of organic pollutants in wastewater. The non-radical oxidation driven by iron-based materials is noted for its environmental friendliness and resistance to wastewater matrix, and it is a promising approach for practical wastewater treatment. However, the complexity of heterogeneous systems and the diversity of evolutionary pathways make the mechanisms of non-radical oxidation driven by iron-based materials elusive. This work provides a systematic review of various non-radical oxidation systems driven by iron-based materials, including singlet oxygen (1O2), reactive iron species (RFeS), and interfacial electron transfer. The unique mechanisms by which iron-based materials activate different oxidants (ozone, hydrogen peroxide, persulfate, periodate, and peracetic acid) to produce non-radical oxidation are described. The roles of active sites and the unique structures of iron-based materials in facilitating non-radical oxidation are discussed. Commonly employed identification methods in wastewater treatment are compared, such as quenching, chemical probes, spectroscopy, mass spectrometry, and electrochemical testing. According to the process of iron-based materials driving non-radical oxidation to remove organic pollutants, the driving factors at different stages are summarized. Finally, challenges and countermeasures are proposed in terms of mechanism exploration, detection methods and practical applications of non-radical oxidation driven by iron-based materials. This work provides valuable insights for understanding and developing non-radical oxidation systems.
Collapse
Affiliation(s)
- Yifeng Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
20
|
Guo X, Wang Y, Xiao C, Yao Y, Qi J, Zhou Y, Yang Y, Zhu Z, Li J. Excellent bisphenol A removal performance triggered by electron-transfer regime on cobalt phosphide embedded in nitrogen, sulfur-doped carbon/MXene. J Colloid Interface Sci 2024; 679:1171-1180. [PMID: 39423683 DOI: 10.1016/j.jcis.2024.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The non-radical pathway dominated by the electron transfer process (ETP) has gained considerable attention for the removal of organic contaminants in persulfate-based advanced oxidation processes. Rationally designing new catalysts with optimized composition and structural merits and further elucidating the enhanced removal mechanism are of great importance. In this work, we successfully synthesized a nitrogen-sulfur co-doped carbon encapsulated cobalt phosphide (Co2P) on both sides of MXene nanosheets (MZPC) to degrade bisphenol A (BPA) from organic wastewater. The results indicated that BPA was degraded by 98.2 % in a mere 5 min using 0.1 g L-1 of peroxymonosulfate (PMS) and 0.05 g L-1 of the optimized catalyst (MZPC-9), exhibiting an excellent pseudo-first-order kinetics rate constant (k = 1.485 min-1). Uniformly dispersed Co2P nanoparticles (approximately 9.4 nm, calculated using the Scherrer equation) on both sides of MXene exhibited enhanced binding affinity with PMS, forming the MZPC-9-PMS* metastable complexes with potent oxidative capability. The resultant MZPC-9-PMS* complexes induced the polymerization reaction of BPA and achieved 81 % total organic carbon (TOC) removal. This study offers a novel perspective on the design of metal active centers to enhance the ETP-dominated non-radical pathway for pollutant degradation.
Collapse
Affiliation(s)
- Xin Guo
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yunlong Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chengming Xiao
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yiyuan Yao
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yujun Zhou
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yue Yang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhigao Zhu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
21
|
Tian Q, Jiang Y, Duan X, Li Q, Gao Y, Xu X. Low-peroxide-consumption fenton-like systems: The future of advanced oxidation processes. WATER RESEARCH 2024; 268:122621. [PMID: 39426044 DOI: 10.1016/j.watres.2024.122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Conventional heterogeneous Fenton-like systems employing different peroxides have been developed for water/wastewater remediation. However, a large population of peroxides consumed during various Fenton-like systems with low utilization efficiency and associated secondary contamination have become the bottlenecks for their actual applications. Recent strategies for lowering the peroxide consumptions to develop economic Fenton-like systems are primarily devoted to the effective radical generation and subsequent high-efficiency radical utilization through catalysts/systems engineering, leveraging emerging nonradical oxidation pathways with higher selectivity and longer life of the reactive intermediate, as well as reactor designs for promoting the mass transfer and peroxides decomposition to improve the yield of radicals/nonradicals. However, a comparative review summarizing the mechanisms and pathways of these strategies has not yet been published. In this review, we endeavor to showcase the designated systems achieving the reduction of peroxides while ensuring high catalytic activity from the perspective of the above strategic mechanisms. An in-depth understanding of these aspects will help elucidate the key mechanisms for achieving economic peroxide consumption. Finally, the existing problems of these strategies are put forward, and new ideas and research directions for lowering peroxide consumption are proposed to promote the application of various Fenton-like systems in actual wastewater purification.
Collapse
Affiliation(s)
- Qingbai Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yue Jiang
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
22
|
Zhang C, Gao Y, Wang C, Sun H. The regulating mechanisms of Triton X-100 affected oxidation of PAHs in site soil aggregates using sodium citrate assisted Fe 2+-persulfate. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135439. [PMID: 39137545 DOI: 10.1016/j.jhazmat.2024.135439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Here, we present a first investigation of the inhibition mechanism of surfactant Triton X-100 (TX-100) on the oxidation degradation of polycyclic aromatic hydrocarbons (PAHs) in site soil aggregates using sodium citrate assisted Fe2+-activated persulfate (SC/Fe2+/PS). First, TX-100 was not only competed the adsorption sites of soil aggregates with PS, but also consumed PS, which inhibit the PAHs remediation rate in the TX-100 elution followed by the SC/Fe2+/PS oxidation system from 55.6 % in the oxidation system to 50.3 %. Furthermore, in the oxidation followed by elution system, PAHs was adsorbed on the iron minerals produced during the oxidation, which would be form a bound PAHs that was difficult to react with PS, and then re-eluted to the soil by the TX-100. Additionally, it was found that the oxidative and the elution efficiency of PAHs exhibited negative correlations with aggregate particle sizes. Finally, soil microorganism communities were more strongly changed by SC/Fe2+/PS oxidation and PAHs concentration than that of TX-100 elution, with obvious alterations bacteria than fungi, the effects of SC/Fe2+/PS and PAHs concentration on microorganism communities were opposite. This study provided a proof of regulating mechanisms for the site soil remediation using surfactants combined with the iron-PS system.
Collapse
Affiliation(s)
- Chunhui Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yue Gao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
23
|
Jiang Z, Shi Z, Li C, Wang H, Huang Y, Ye L. Nitrogen-Doped Carbon Materials for Persulfate Activation via Electron Transfer Pathways. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20584-20595. [PMID: 39297556 DOI: 10.1021/acs.langmuir.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The incorporation of nitrogen into carbon materials is a strategy that effectively boosts their catalytic potency. Herein, a nitrogen-enriched carbon substance, designated as CN0.6, was synthesized from melamine, serving as a precursor. This substance has been established to act as an efficient catalyst devoid of metals for the activation of peroxymonosulfate (PMS). At a temperature of 25 °C, a concentration of 0.05 g/L CN0.6 along with 1 mM PMS suffices to achieve the complete degradation of concentrated tetracycline hydrochloride (TC) in a short period of 4 min. This enhanced catalytic performance is attributed to the optimal level of nitrogen doping, which elevates the pyrrolic nitrogen content and introduces additional defects characterized by an ID/IG ratio of 1.02. These factors collectively augment the adsorptive capacity for PMS and create a greater number of active sites to facilitate its activation. The dominance of a nonradical electron transfer mechanism in the CN0.6/PMS system has been confirmed through a series of analyses, including radical identification, quenching tests, and electrochemical assessments. Employing high-resolution liquid chromatography coupled with tandem mass spectrometry (LC-MS), the investigation identified three potential degradation routes for TC. Furthermore, the intermediates produced are determined to possess reduced toxicity in comparison to TC. The findings of this study offer a approach to the synthesis of highly efficient nitrogen-doped, metal-free catalysts, presenting a promising strategy for the degradation of environmental pollutants.
Collapse
Affiliation(s)
- Ziyi Jiang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang ,Hubei 443002, China
| | - Zhonglian Shi
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang ,Hubei 443002, China
| | - Chao Li
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang ,Hubei 443002, China
| | - Huiqing Wang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang ,Hubei 443002, China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China
| | - Liqun Ye
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang ,Hubei 443002, China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
24
|
Pan M, He Z, Yang X. Functional biochar accelerates peroxymonosulfate activation for organic contaminant degradation via the specific B-C-N configuration. CHEMOSPHERE 2024; 365:143202. [PMID: 39218261 DOI: 10.1016/j.chemosphere.2024.143202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Functional biochar designed with heteroatom doping facilitates the activation of peroxymonosulfate (PMS), triggering both radical and non-radical systems and thus augmenting pollutant degradation efficiency. A sequence of functional biochar, derived from hyperaccumulator (Sedum alfredii) residues, was synthesized via sequential doping with boron and nitrogen. The SABC-B@N-2 exhibited outstanding catalytic effectiveness in activating PMS to degrade the model pollutant, acid orange 7 (Kobs = 0.0655 min-1), which was 6.75 times more active than the pristine biochar and achieved notable mineralization efficiency (71.98%) at reduced PMS concentration (0.1 mM). Relative contribution evaluations, using steady-state concentrations combined with electrochemical and in situ Raman analyses, reveal that co-doping with boron and nitrogen alters the reaction pathway, transitioning from PMS activation through multiple reactive oxygen species (ROSs) to a predominantly non-radical process facilitated by electron transfer. Moreover, the previously misunderstood concept that singlet oxygen (1O2) plays a central role in the degradation of AO7 has been clarified. Correlation analysis and density functional theory calculations indicate that the distinct BCN configuration, featuring the BC2O group and pyridinic-N, is fundamental to the active site. This research substantially advances the sustainability of phytoremediation by offering a viable methodology to synthesize highly catalytic functional biochar utilizing hyperaccumulator residues.
Collapse
Affiliation(s)
- Minghui Pan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Fort Pierce, FL, 34945, USA
| | - Xiaoe Yang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
25
|
Yin K, Xu X, Yue Q, Shang Y, Li Y, Gao Y, Gao B. Pore modulation of single atomic Fe sites for ultrafast Fenton-like chemistry with amplified electron migration oxidation. WATER RESEARCH 2024; 268:122545. [PMID: 39378749 DOI: 10.1016/j.watres.2024.122545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/30/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
The limited interaction between pollutants, oxidants, and the surface catalytic sites of single atom catalysts (SACs) restricts the water decontamination effectiveness. Confining catalytic sites within porous structures enables the localized enrichment of reactants for optimized reaction kinetics, while the specific regulatory mechanisms remain unclear. Herein, SACs with porous modification significantly improves the utilization of peroxymonosulfate (PMS) and pollutant degradation activity. Confining catalytic sites in porous structure effectively reduces the mass transfer distance between radicals (SO4•- and •OH) and pollutants, thereby improving reaction performance. Pore modulation changes the surface electronic structure, leading to a significant improvement in the electron migration process. The system shows significant potential in effectively oxidizing various common emerging pollutants, and exhibits robust resistance to interference from environmental matrices. Moreover, a quantitative evaluation using life cycle assessment (LCA) indicates that the pFe-SAC/PMS system showcases superior environmental importance and practicality.
Collapse
Affiliation(s)
- Kexin Yin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
26
|
Zhuang W, Zhao X, Luo Q, Lv X, Zhang Z, Zhang L, Sui M. Task decomposition strategy based on machine learning for boosting performance and identifying mechanisms in heterogeneous activation of peracetic acid process. WATER RESEARCH 2024; 267:122521. [PMID: 39357159 DOI: 10.1016/j.watres.2024.122521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Heterogeneous activation of peracetic acid (PAA) process is a promising method for removing organic pollutants from water. Nevertheless, this process is constrained by several complex factors, such as the selection of catalysts, optimization of reaction conditions, and identification of mechanism. In this study, a task decomposition strategy was adopted by combining a catalyst and reaction condition optimization machine learning (CRCO-ML) model and a mechanism identification machine learning (MI-ML) model to address these issues. The Categorical Boosting (CatBoost) model was identified as the best-performing model for the dataset (1024 sets and 7122 data points) in this study, achieving an R2 of 0.92 and an RMSE of 1.28. Catalyst composition, PAA dosage, and catalyst dosage were identified as the three most important features through SHAP analysis in the CRCO-ML model. The HCO3- is considered the most influential water matrix affecting the k value. The errors between all reverse experiment results and the predictions of the CRCO-ML and MI-ML models were <10 % and 15 %, respectively. This interdisciplinary work provides novel insights into the design and application of the heterogeneous activation of PAA process, significantly contributing to the rapid development of this technology.
Collapse
Affiliation(s)
- Wei Zhuang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiao Zhao
- Academy for Engineering and Technology, Fudan University, Shanghai 200000, China.
| | - Qianqian Luo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xinyuan Lv
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhilin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lihua Zhang
- Academy for Engineering and Technology, Fudan University, Shanghai 200000, China
| | - Minghao Sui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
27
|
Li S, Jiang X, Xu W, Li M, Liu Z, Han W, Yu C, Li J, Wang H, Yeung KL. Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal. WATER RESEARCH 2024; 267:122456. [PMID: 39357158 DOI: 10.1016/j.watres.2024.122456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024]
Abstract
The degradation of multiple organic pollutants in wastewater via advanced oxidation processes might involve different radicals, of which the types and concentrations vary upon interacting with different pollutants. In this study, electrochemical activation of peroxymonosulfate (E/PMS) using advanced activated carbon cloth (ACC) as electrode was applied for simultaneous degradation of mixed pollutants, e.g., metronidazole (MNZ) and p-chloroaniline (PCA). 92.5 % of MNZ and 91.4 % of PCA can be degraded at the cathode and anode at a low current density and PMS concentration, respectively. The rate constants for the simultaneous removal of MNZ and PCA in the E/PMS/MNZ(PCA) system were 118 times and 6 times higher than those in the sole PMS system, and 2.5 times and 1.6 times higher than those in the E/Na2SO4/MNZ(PCA) system, respectively. Different electrochemical characteristics, EPR spectra and radical quenching tests verified that the degradation of MNZ and PCA in the optimal system proceeded primarily through non-radical-dominated oxidation, involving electron transfer and 1O2 effect. The system also exhibited low energy consumption (0.215 kWh/m-3·order-1), broad operational pH range, excellent removal efficiency for water matrix, and low by-products toxicity, indicating its strong potential for practical applications. The ACC, with its super stable, low cost, and electrochemical activity, make it as a promising materials applicable in the E/PMS system for degradation of multiple pollutants. The study further elucidated the mechanism of pollutant interaction with electrode materials in terms of radical and non-radical transformation, providing fundamental insight into the application of this system for treatment of complex wastewater.
Collapse
Affiliation(s)
- Shuai Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Weicheng Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China.
| | - Meng Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhang Liu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | - Wei Han
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | - Chenglong Yu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiesen Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - King Lun Yeung
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| |
Collapse
|
28
|
Wu Y, Zhao K, Wu S, Su Y, Yu H, Qian X, Shi X, Liu A, Huo S, Li WW, Niu J. Fundamental Insights into the Direct Electron Transfer Mechanism on Ag Atomic Cluster. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39288224 DOI: 10.1021/acs.est.4c06064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The nonradical oxidation pathway for pollutant degradation in Fenton-like catalysis is favorable for water treatment due to the high reaction rate and superior environmental robustness. However, precise regulation of such reactions is still restricted by our poor knowledge of underlying mechanisms, especially the correlation between metal site conformation of metal atom clusters and pollutant degradation behaviors. Herein, we investigated the electron transfer and pollutant oxidation mechanisms of atomic-level exposed Ag atom clusters (AgAC) loaded on specifically crafted nitrogen-doped porous carbon (NPC). The AgAC triggered a direct electron transfer (DET) between the terminal oxygen (Oα) of surface-activated peroxodisulfate and the electron-donating substituents-containing contaminants (EDTO-DET), rendering it 11-38 times higher degradation rate than the reported carbon-supported metal catalysts system with various single-atom active centers. Heterocyclic substituents and electron-donating groups were more conducive to degradation via the EDTO-DET system, while contaminants with high electron-absorbing capacity preferred the radical pathway. Notably, the system achieved 79.5% chemical oxygen demand (COD) removal for the treatment of actual pharmaceutical wastewater containing 1053 mg/L COD within 30 min. Our study provides valuable new insights into the Fenton-like reactions of metal atom cluster catalysts and lays an important basis for revolutionizing advanced oxidation water purification technologies.
Collapse
Affiliation(s)
- Yanan Wu
- College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Kun Zhao
- College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shuai Wu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xubin Qian
- College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Xinglei Shi
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Aoshen Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shengli Huo
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Junfeng Niu
- College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
29
|
Tao Y, Hou Y, Yang H, Gong Z, Yu J, Zhong H, Fu Q, Wang J, Zhu F, Ouyang G. Interlayer synergistic reaction of radical precursors for ultraefficient 1O 2 generation via quinone-based covalent organic framework. Proc Natl Acad Sci U S A 2024; 121:e2401175121. [PMID: 39250664 PMCID: PMC11420197 DOI: 10.1073/pnas.2401175121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/28/2024] [Indexed: 09/11/2024] Open
Abstract
Singlet oxygen (1O2) is important in the environmental remediation field, however, its efficient production has been severely hindered by the ultrafast self-quenching of the as-generated radical precursors in the Fenton-like reactions. Herein, we elaborately designed lamellar anthraquinone-based covalent organic frameworks (DAQ-COF) with sequential localization of the active sites (C═O) at molecular levels for visible-light-assisted peroxymonosulfate (PMS) activation. Theoretical and experimental results revealed that the radical precursors (SO5·-) were formed in the nearby layers with the migration distance less than 0.34 nm, via PMS donating electrons to the photogenerated holes. This interlayer synergistic effect eventually led to ultraefficient 1O2 production (14.8 μM s-1), which is 12 times that of the highest reported catalyst. As an outcome, DAQ-COF enabled the complete degradation of bisphenol A in 5 min with PMS under natural sunlight irradiation. This interlayer synergistic concept represents an innovative and effective strategy to increase the utilization efficiency of ultrashort-lived radical precursors, providing inspirations for subtle structural construction of Fenton-like catalysts.
Collapse
Affiliation(s)
- Yuan Tao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemistry, Sun Yat-Sen University, Guangzhou510006, China
| | - Yu Hou
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemistry, Sun Yat-Sen University, Guangzhou510006, China
| | - Huangsheng Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemistry, Sun Yat-Sen University, Guangzhou510006, China
| | - Zeyu Gong
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai519082, China
| | - Jiaxing Yu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemistry, Sun Yat-Sen University, Guangzhou510006, China
| | - Huajie Zhong
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai519082, China
| | - Qi Fu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemistry, Sun Yat-Sen University, Guangzhou510006, China
| | - Junhui Wang
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai519082, China
| | - Fang Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemistry, Sun Yat-Sen University, Guangzhou510006, China
| | - Gangfeng Ouyang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemistry, Sun Yat-Sen University, Guangzhou510006, China
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai519082, China
- College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Zhengzhou450001, China
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Academy of Science, Guangzhou510070, China
| |
Collapse
|
30
|
Gong Y, Chen Z, Wu Y, Wang A, Zhao S. Revisiting the Iron(II)/Cobalt(II)-Based Homogenous Fenton-like Processes from the Standpoint of Diverse Metal-Oxygen Complexes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16589-16599. [PMID: 39238135 DOI: 10.1021/acs.est.4c03211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The aqueous FeIV-oxo complex and FeIII-peroxy complex (e.g., ligand-assisted or interfacial FeIII-hydroperoxo intermediates) have been recognized as crucial reactive intermediates for decontamination in iron-based Fenton-like processes. Intermediates with terminal oxo ligands can undergo the oxygen atom exchange process with water molecules, whereas peroxides are unable to induce such exchanges. Therefore, these distinct metal-oxygen complexes can be distinguished based on the above feature. In this study, we identified previously unknown intermediates with a peroxy moiety and cobalt center that were generated during peroxymonosulfate (PMS) activation via aqueous CoII ions under acidic conditions. Results of theoretical calculations and tip-enhanced Raman spectroscopy revealed that the CoII ion tended to coordinate with the PMS anion to form a bidentate complex with a tetrahedral structure. These reactive cobalt intermediates were collectively named the CoII-PMS* complex. Depending on the inherent characteristics of the target contaminants, the CoII-PMS* complex can directly oxidize organic compounds or trigger PMS disproportionation to release hydroxyl radicals and sulfate radicals for collaborative decontamination. This work provides a comparative study between iron- and cobalt-based Fenton-like processes and proposes novel insights from the standpoint of diverse metal-oxygen complexes.
Collapse
Affiliation(s)
- Yingxu Gong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yining Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
31
|
Luo L, Zheng M, Du E, Wang J, Guan X, Guo H. Development of a New Permanganate/Chlorite Process for Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16578-16588. [PMID: 39219237 DOI: 10.1021/acs.est.4c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Development of new technologies with strong selectivity for target pollutants and low sensitivity toward a water matrix remains challenging. Herein, we introduced a novel strategy that used chlorite as an activator for Mn(VII) at pH 4.8, turning the inert reactivity of the pollutants toward Mn(VII) into a strong reactivity. This paved a new way for triggering reactions in water decontamination. By utilizing sulfamethoxazole (SMX) as a typical pollutant, we proposed coupled pathways involving electron transfer across hydrogen bonds (TEHB) and oxidation by reactive manganese species. The results indicated that a hydrogen bonding complex, SMX-ClO2-*, formed through chlorite binding the amino group of SMX initially in the TEHB route; such a complex exhibited a stronger reduction capability toward Mn(VII). Chlorite, in the hydrogen bonding complex SMX-ClO2-*, can then complex with Mn(VII). Consequently, a new reactive center (SMX-ClO2--Mn(VII)*) was formed, initiating the transfer of electrons across hydrogen bonds and the preliminary degradation of SMX. This is followed by the involvement of the generated Mn(V)-ClO2-/Mn(III) in the reduction process of Mn(VII). Such a process showed pH-dependent degradation, with a removal ratio ranging from 80% to near-stagnation as pH increased from 4.8 to 7. Combining with pKa analysis showed that the predominant forms of contaminants were crucial for the removal efficiency of pollutants by the Mn(VII)/chlorite process. The impact of the water matrix was demonstrated to have few adverse or even beneficial effects. With satisfactory performance against numerous contaminants, this study introduced a novel Mn(VII) synergistic strategy, and a new reactivity pattern focused on reducing the reduction potential of the contaminant, as opposed to increasing the oxidation potential of oxidants.
Collapse
Affiliation(s)
- Liping Luo
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Jingquan Wang
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hongguang Guo
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
32
|
Li S, Wang W, Wu H, Zhang X, Liang R, Zhang X, Song G, Jing J, Li S, Zhou M. Performance enhancement and mechanism of electroenhanced peroxymonosulfate activation by single-atom Fe catalyst modified electrodes. Proc Natl Acad Sci U S A 2024; 121:e2404965121. [PMID: 39236234 PMCID: PMC11406293 DOI: 10.1073/pnas.2404965121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Peroxymonosulfate-based electrochemical advanced oxidation processes (PMS-EAOPs) have great potential for sustainable water purification, so an in-depth understanding of its catalytic mechanism is imperative to facilitate its practical application. Herein, the performance enhancement and mechanism of electroenhanced PMS activation by single-atom Fe catalyst modified carbon felt was investigated. Compared with the anode, the cathode exhibited faster bisphenol A degradation (kcathode = 0.073 vs. kanode = 0.015 min-1), increased PMS consumption (98.8 vs. 10.3%), and an order of magnitude reduction of Fe dissolution (0.068 vs. 0.787 mg L-1). Mass transfer is a key factor limiting PMS activation, while the electrostriction of water in the hydrophobic region caused by cathode electric field (CEF) significantly increased mass transfer coefficient (km, cathode = 1.49 × 10-4 vs. km, anode = 2.68 × 10-5 m s-1). The enhanced activation of PMS is a synergistic result between electroactivation and catalyst-activation, which is controlled by the applied current density. 1O2 and direct electron transfer are the main active species and activation pathway, which achieve high degradation efficiency over pH 3 to 10. Density functional theory calculations prove CEF increases the adsorption energy, lengthens the O-O bond in PMS, and promotes charge transfer. A flow-through convection unit achieves sustainable operation with high removal efficiency (99.5% to 97.5%), low electrical energy consumption (0.15 kWh log-1 m-3), and low Fe leaching (0.81% of the total single atom Fe). This work reveals the critical role of electric fields in modulating Fenton-like catalytic activity, which may advance the development of advanced oxidation processes and other electrocatalytic applications.
Collapse
Affiliation(s)
- Shuaishuai Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huizhong Wu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiuwu Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiheng Liang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuyang Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ge Song
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiana Jing
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shasha Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
33
|
Wu Z, Xiong Z, Huang B, Yao G, Zhan S, Lai B. Long-range interactions driving neighboring Fe-N 4 sites in Fenton-like reactions for sustainable water decontamination. Nat Commun 2024; 15:7775. [PMID: 39237559 PMCID: PMC11377441 DOI: 10.1038/s41467-024-52074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Actualizing efficient and sustainable environmental catalysis is essential in global water pollution control. The single-atom Fenton-like process, as a promising technique, suffers from reducing potential environmental impacts of single-atom catalysts (SACs) synthesis and modulating functionalized species beyond the first coordination shell. Herein, we devised a high-performance SAC possessing impressive Fenton-like reactivity and extended stability by constructing abundant intrinsic topological defects within carbon planes anchored with Fe-N4 sites. Coupling atomic Fe-N4 moieties and adjacent intrinsic defects provides potent synergistic interaction. Density functional theory calculations reveal that the intrinsic defects optimize the d-band electronic structure of neighboring Fe centers through long-range interactions, consequently boosting the intrinsic activity of Fe-N4 sites. Life cycle assessment and long-term steady operation at the device level indicate promising industrial-scale treatment capability for actual wastewater. This work emphasizes the feasibility of synergistic defect engineering for refining single-atom Fenton-like chemistry and inspires rational materials design toward sustainable environmental remediation.
Collapse
Affiliation(s)
- Zelin Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, China
| | - Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, China
- Sino-German Centre for innovative Environmental Technologies (WATCH e.V.), Aachen, Germany
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China.
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Zheng H, Zhu Z, Li S, Niu J, Dong X, Leong YK, Chang JS. Dissecting the ecological risks of sulfadiazine degradation intermediates under different advanced oxidation systems: From toxicity to the fate of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173678. [PMID: 38848919 DOI: 10.1016/j.scitotenv.2024.173678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/20/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
The incomplete degradation of antibiotics in water can produce intermediates that carry environmental risks and thus warrant concerns. In this study, the degradation of high concentrations of antibiotic sulfadiazine (SDZ) by advanced oxidation processes that leverage different reactive oxide species was systematically evaluated in terms of the influence of different degradation intermediates on the propagation of antibiotic resistance genes (ARGs). The ozone, persulfate, and photocatalytic oxidation systems for SDZ degradation are dominated by ozone, direct electron transfer, and singlet oxygen, hole, and superoxide radicals, respectively. These processes produce 15 intermediates via six degradation pathways. Notably, it was determined that three specific intermediates produced by the ozone and persulfate systems were more toxic than SDZ. In contrast, the photocatalytic system did not produce any intermediates with toxicity exceeding that of SDZ. Microcosm experiments combined with metagenomics confirmed significant changes in microbiota community structure after treatment with SDZ and its intermediates, including significant changes in the abundance of Flavobacterium, Dungenella, Archangium, and Comamonas. This treatment also led to the emergence of sulfonamide ARGs. The total abundance of sulfonamide ARGs was found to be positively correlated with residual SDZ concentration, with the lowest total abundance observed in the photocatalytic system. Additionally, the correlation analysis unveiled microbiota carrying sulfonamide ARGs.
Collapse
Affiliation(s)
- Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Zhiwei Zhu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xu Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
35
|
Wang G, Huang D, Cheng M, Du L, Chen S, Zhou W, Li R, Li S, Huang H, Xu W, Tang L. The Surface Confinement of FeO Assists in the Generation of Singlet Oxygen and High-Valent Metal-Oxo Species for Enhanced Fenton-Like Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401970. [PMID: 38770987 DOI: 10.1002/smll.202401970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/03/2024] [Indexed: 05/22/2024]
Abstract
Transition metal compounds (TMCs) have long been potential candidate catalysts in persulfate-based advanced oxidation process (PS-AOPs) due to their Fenton-like catalyze ability for radical generation. However, the mechanism involved in TMCs-catalyzed nonradical PS-AOPs remains obscure. Herein, the growth of FeO on the Fe3O4/carbon precursor is regulated by restricted pyrolysis of MIL-88A template to activate peroxymonosulfate (PMS) for tetracycline (TC) removal. The higher FeO incorporation conferred a 2.6 times higher degradation performance than that catalyzed by Fe3O4 and also a higher interference resistance to anions or natural organic matter. Unexpectedly, the quenching experiment, probe method, and electron paramagnetic resonance quantitatively revealed that the FeO reassigned high nonradical species (1O2 and FeIV═O) generation to replace original radical system created by Fe3O4. Density functional theory calculation interpreted that PMS molecular on strongly-adsorbed (200) and (220) facets of FeO enjoyed unique polarized electronic reception for surface confinement effect, thus the retained peroxide bond energetically supported the production of 1O2 and FeIV═O. This work promotes the mechanism understanding of TMCs-induced surface-catalyzed persulfate activation and enables them better perform catalytic properties in wastewater treatment.
Collapse
Affiliation(s)
- Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Sha Chen
- College of Materials Science and Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Sai Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Hai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
36
|
Lu N, Liu F. Tempospatially Confined Catalytic Membranes for Advanced Water Remediation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311419. [PMID: 38345861 DOI: 10.1002/adma.202311419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
The application of homogeneous catalysts in water remediation is limited by their excessive chemical and energy input, weak regenerability, and potential leaching. Heterogeneous catalytic membranes (CMs) offer a new approach to facilitate efficient, selective, and continuous pollutant degradation. Thus, integrating membranes and continuous filtration with heterogeneous advanced oxidation processes (AOPs) can promote thermodynamic and kinetic mass transfers in spatially confined intrapores and facilitate diffusion-reaction processes. Despite the remarkable advantages of heterogeneous CMs, their engineering application is practically restricted due to the fuzzy design criteria for specific applications. Herein, the recent advances in CMs for advanced water remediation are critically reviewed and the design flow for tempospatially confined CMs is proposed. Further, state-of-the-art CM materials and their catalytic mechanisms are reviewed, after which the tempospatial confinement mechanisms comprising the nanoconfinement effect, interface effect, and kinetic mass transfer are emphasized, thus clarifying their roles in the construction and performance optimization of CMs. Additionally, the fabrication methods for CMs based on their catalysts and pore sizes are summarized and an overview of their application and performance evaluations is presented. Finally, future directions for CMs in materials research and water treatment, are presented.
Collapse
Affiliation(s)
- Na Lu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
37
|
Hu J, Gong H, Fu K, Jia J, Zhu N. Overcoming metals redox rate limitations in spinel oxide-driven Fenton-like reactions via synergistic heteroatom doping and carbon anchoring for efficient micropollutant removal. WATER RESEARCH 2024; 261:122020. [PMID: 38971079 DOI: 10.1016/j.watres.2024.122020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
The transition metals redox rate limitations of spinel oxides during Fenton-like reactions hinder its efficient and sustainable treatment of actual wastewater. Herein, we propose to optimize the electronic structure of Co-Mn spinel oxide (CM) via sulfur doping and carbon matrix anchoring synergistically, enhancing the radicals-nonradicals Fenton-like processes for efficient water decontamination. Activating peroxymonosulfate (PMS) with optimised spinel oxide (CMSAC) achieved near-complete removal of ofloxacin (10 mg/L) within 6 min, showing 8.4 times higher efficiency than CM group. Significantly higher yields of SO4·- and high-valent metal species in CMSAC/PMS system provided exceptional resistance to co-existing anions, enabling efficient removal of various emerging contaminants in high salinity leachate. Specifically, sulfur coordination and carbon anchoring-induced oxygen vacancy synergistically improved the electronic structure and electron transfer efficiency of CMSAC, thus forming highly reactive Co sites and significantly reducing the energy barrier for Co(IV)=O generation. The reductive sulfur species facilitated the conversion of Co(III) to Co(II), thereby maintaining the stability of the catalytic activity of CMSAC. This work developed a synergistic optimization strategy to overcome the metals redox rate limitations of spinel oxides in Fenton-like reactions, providing deep mechanistic insights for designing Fenton-like catalysts suitable for practical applications.
Collapse
Affiliation(s)
- Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kaixing Fu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jinping Jia
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
38
|
Lan MY, Li YH, Wang CC, Li XJ, Cao J, Meng L, Gao S, Ma Y, Ji H, Xing M. Multi-channel electron transfer induced by polyvanadate in metal-organic framework for boosted peroxymonosulfate activation. Nat Commun 2024; 15:7208. [PMID: 39174565 PMCID: PMC11341957 DOI: 10.1038/s41467-024-51525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
Catalytic peroxymonosulfate (PMS) activation processes don't solely rely on electron transfer from dominant metal centers due to the complicated composition and interface environment of catalysts. Herein the synthesis of a cobalt based metal-organic framework containing polyvanadate [V4O12]4- cluster, Co2(V4O12)(bpy)2 (bpy = 4,4'-bipyridine), is presented. The catalyst demonstrates superior degradation activity toward various micropollutants, with higher highest occupied molecular orbital (HOMO), via nonradical attack. The X-ray absorption spectroscopy and density functional theory (DFT) calculations demonstrate that Co sites act as both PMS trapper and electron donor. In situ spectral characterizations and DFT calculations reveal that the terminal oxygen atoms in the [V4O12]4- electron sponge could interact with the terminal hydrogen atoms in PMS to form hydrogen bonds, promoting the generation of SO5* intermediate via both dynamic pull and direct electron transfer process. Further, Co2(V4O12)(bpy)2 exhibits long-term water purification ability, up to 40 h, towards actual wastewater discharged from an ofloxacin production factory. This work not only presents an efficient catalyst with an electron sponge for water environmental remediation via nonradical pathway, but also provides fundamental insights into the Fenton-like reaction mechanism.
Collapse
Affiliation(s)
- Ming-Yan Lan
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, PR China
| | - Yu-Hang Li
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, PR China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, PR China.
| | - Xin-Jie Li
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, PR China
| | - Jiazhen Cao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Linghui Meng
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, PR China
| | - Shuai Gao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, PR China
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, PR China
| | - Haodong Ji
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, PR China.
| | - Mingyang Xing
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
39
|
Niu L, Lei Q, Zhao T, Tang Z, Cai Y, Hou D, Zhang S, Fang M, Hou G, Zhao X, Wu F. In situ N-doping engineered biochar catalysts for oxidation degradation of sulfadiazine via nonradical pathways: Singlet oxygen and electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173206. [PMID: 38761925 DOI: 10.1016/j.scitotenv.2024.173206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Understanding the structure of non-metallic heteroatom-doped carbon catalysts and the subsequent degradation of new pollutants is crucial for designing more efficient carbon catalysts. Environmentally friendly in situ N-doped biochar catalysts were prepared for peroxymonosulfate (PMS) activation and sulfadiazine (SDZ) degradation. The acid washing process and calcination temperature of catalyst increased π-π* shake up, graphitic N percentage, specific surface area and defects, promoting the transformation of pollutant degradation mechanism from radical pathway to non-radical pathway. 100 % of the SDZ with the initial concentration of 10 mg/L was quickly degraded within 60 min using 0.2 g/L catalysts and 0.5 mM PMS. Excellent catalytic performance was attributed to singlet oxygen and electron transfer-dominated non-radical pathways. The four potential degradation pathways of SDZ were proposed, and toxicity predication indicated that overall biotoxicity of the intermediates during SDZ degradation was decreased. This research deepens our understanding of the mechanisms of non-radical pathways and guides the synthesis of carbon-based catalysts.
Collapse
Affiliation(s)
- Lin Niu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qitao Lei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment & Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Tianhui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Siyuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Mengyuan Fang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Guoqing Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
40
|
Feng M, Xu Z, Xie H, Lin K, Zhang M. Ultra-efficient peroxymonosulfate utilization and trichloroethylene degradation in heterogeneous catalytic system guided by sheet-like Cu 2MnO 4 nanoparticles: The role of Cu(III)-O species and free radicals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121799. [PMID: 38991347 DOI: 10.1016/j.jenvman.2024.121799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/13/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Synthesizing cubic spinel Cu2MnO4 with nanosheet structure (SCMO) aimed to construct a "non-radical-mediated radical-oxidative reaction", for increasing PMS utilization efficiency, and solving the defects of SO4•- and •OH through indirect PMS activation by electron transfer process. Compared with box-like Cu2MnO4 (11.1%, 0.0035 min-1) and ordinary Cu2MnO4 nanoparticles (21.3%, 0.0070 min-1), SCMO/PMS showed excellent trichloroethylene removal (98.8%, 0.1577 min-1). The pivotal role of Cu(III) was determined based on EPR analysis, quenching experiments, chemical probe experiments, hydrogen temperature-programmed reduction and Raman spectroscopy analysis, in-situ FTIR and Raman analyses. In brief, the interaction between PMS and SCMO could produce surface-bonded reactive complexes and the subsequent breaking of O-O bond in the sub-stable structure allowed the conversion of Cu(II) to Cu(III), which in turn facilitates the generation of •OH and SO4•-. The density functional theory (DFT) calculations provided supporting evidence for the electron donor role of SCMO and the increase of the electron acceptance capacity of PMS. SCMO/PMS system showed good resistance and degradation efficiency to complex composition and combined pollutants in actually contaminated groundwater, respectively. However, the coexistence of high concentrations of arsenic could significantly affect SCMO performance due to their adsorption on -OH groups, which still need in-depth study.
Collapse
Affiliation(s)
- Meiyun Feng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiqiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310003, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
41
|
Wu J, Yang X, Xu D, Ong SL, Hu J. Peroxydisulfate-based Non-radical Oxidation of Rhodamine B by Fe-Mn Doped Granular Activated Carbon: Kinetics and Mechanism Study. Chem Asian J 2024; 19:e202400482. [PMID: 38884566 DOI: 10.1002/asia.202400482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
While numerous persulfate-based advanced oxidation processes (AOPs) have been studied based on fancy catalysts, the practical combination of Fe or Mn modified granular activated carbon (GAC) has seldom been investigated. The present study focused on a green and readily synthesized Fe-Mn bimetallic oxide doped GAC (Fe-Mn@GAC), to uncover its catalytic kinetics and mechanism when used in the peroxydisulfate (PDS)-based oxidation process for degrading Rhodamine B (RhB), a representative xenobiotic dye. The synthesized Fe-Mn@GAC was characterized by SEM-EDS, XRD, ICP-OES and XPS analyses to confirm its physicochemical properties. The catalytic kinetics of Fe-Mn@GAC+PDS system were evaluated under varying conditions, including PDS and catalyst dosages, solution pH, and the presence of anions. It was found Fe-Mn@GAC exhibited robust catalytic performance, being insensitive to a wide pH range from 3 to 11, and the presence of anions such as Cl-, SO4 2-, NO3 - and CO3 2-. The catalytic mechanism was investigated by EPR and quenching experiments. The results indicated the catalytic system processed a non-radical oxidation pathway, dominated by direct electron transfer between RhB and Fe-Mn@GAC, with singlet oxygen (1O2) playing a secondary role. The catalytic system also managed to maintain a RhB removal above 81 % in successive 10 cycles, and recover to 89.5 % after simple DI water rinse, showing great reusability. The catalytic system was further challenged by real dye-containing wastewater, achieving a decolorization rate of 84.5 %. This work not only provides fresh insight into the kinetics and mechanism of the Fe-Mn@GAC+PDS catalytic system, but also demonstrates its potential in the practical application in real dye-containing wastewater treatment.
Collapse
Affiliation(s)
- Jiahua Wu
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, No.377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Xuan Yang
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, No.377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Dong Xu
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, No.377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Say Leong Ong
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, No.377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Jiangyong Hu
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, No.377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| |
Collapse
|
42
|
Miao J, Jiang Y, Wang X, Li X, Zhu Y, Shao Z, Long M. Correlating active sites and oxidative species in single-atom catalyzed Fenton-like reactions. Chem Sci 2024; 15:11699-11718. [PMID: 39092108 PMCID: PMC11290428 DOI: 10.1039/d4sc02621g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
Single-atom catalysts (SACs) have gained widespread popularity in heterogeneous catalysis-based advanced oxidation processes (AOPs), owing to their optimal metal atom utilization efficiency and excellent recyclability by triggering reactive oxidative species (ROS) for target pollutant oxidation in water. Systematic summaries regarding the correlation between the active sites, catalytic activity, and reactive species of SACs have rarely been reported. This review provides an overview of the catalytic performance of carbon- and metal oxide-supported SACs in Fenton-like reactions, as well as the different oxidation pathways induced by the metal and non-metal active sites, including radical-based pathways (e.g., ·OH and SO4˙-) and nonradical-based pathways (e.g. 1O2, high-valent metal-oxo species, and direct electron transfer). Thereafter, we discuss the effects of metal types, coordination environments, and spin states on the overall catalytic performance and the generated ROS in Fenton-like reactions. Additionally, we provide a perspective on the future challenges and prospects for SACs in water purification.
Collapse
Affiliation(s)
- Jie Miao
- School of Environmental Science and Engineering, Nanjing Tech University Nanjing 211816 China
| | - Yunyao Jiang
- School of Environmental Science and Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xixi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Xue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yuan Zhu
- School of Chemistry and Chemical Engineering, Queen's University Belfast Belfast BT7 1NN UK
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
- Department of Chemical Engineering, Curtin University Perth 6845 Australia
| | - Mingce Long
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
43
|
Mao Y, Yu B, Wang P, Yue S, Zhan S. Efficient reduction-oxidation coupling degradation of nitroaromatic compounds in continuous flow processes. Nat Commun 2024; 15:6364. [PMID: 39075042 PMCID: PMC11286756 DOI: 10.1038/s41467-024-50238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
Nitroaromatic compounds (NACs) with electron-withdrawing nitro (-NO2) groups are typical refractory pollutants. Despite advanced oxidation processes (AOPs) being appealing degradation technologies, inefficient ring-opening oxidation of NACs and practical large-scale applications remain challenges. Here we tackle these challenges by designing a reduction-oxidation coupling (ROC) degradation process in LaFe0.95Cu0.05O3@carbon fiber cloth (LFCO@CFC)/PMS/Vis continuous flow system. Cu doping enhances the photoelectron transfer, thus triggering the -NO2 photoreduction and breaking the barriers in the ring opening. Also, it modulates surface electronic configuration to generate radicals and non-radicals for subsequent oxidation of reduction products. Based on this, the ROC process can effectively remove and mineralize NACs under the environmental background. More importantly, the LFCO catalyst outperformed most of the recently reported catalysts with lower cost (13.72 CNY/ton) and higher processing capacity (3600 t/month). Furthermore, the high scalability, material durability, and catalytic activity of LFCO@CFC under various realistic environmental conditions prove the potential ability for large-scale applications.
Collapse
Affiliation(s)
- Yueshuang Mao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
- College of Resources and Environment Science, Shanxi University, Taiyuan, China
| | - Bingnan Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Pengfei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Shuai Yue
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| |
Collapse
|
44
|
Dou M, Wang J, Ma Z, Han C, Zhou W, Zhang Q, Li S. Qualitative and quantitative analysis of electrons donated by pollutants in electron transfer-based oxidation system: Electrochemical measurement and theoretical calculations. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134720. [PMID: 38795478 DOI: 10.1016/j.jhazmat.2024.134720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
In order to gain a profound understanding of the fate of pollutants in advanced oxidation processes (AOPs), this study analyzed the electron contribution of pollutants qualitatively and quantitatively which rarely reported before. The rich electron transfer system was constructed by mesoporous carbon nitride (MCN) coupling with persulfate (PS) driven by visible light and the sulfanilamide antibiotics (SULs) were used as target contaminants. Firstly, the qualitative analysis of electron transfer in the system was confirmed systematically. The electron flow direction tested by i-t curves indicated that PS absorbed electrons, while SULs released electrons. The flow rate of electrons was also accelerated after the addition of SULs. The fitting curve between the kinetics and the peak potential difference tested by CV curve showed that the larger potential difference, the slower rate of oxidative degradation. Secondly, the quantification of electron transfer was achieved through theoretical calculations to simulate the interactions of the 'catalyst-oxidant-antibiotic' system. After the addition of SULs, the adsorption energy of the 'catalyst-oxidant-antibiotic' system was enhanced and the bond length of the peroxide bond was stretched. Notably, the electron transfer analysis results showed that the charge of SULs was around 0.032-0.056e, indicating that SULs pollutants played the role of electron contributors in the system. The oxidative degradation pathway included the direct cracking of S-N bond, shedding of marginal groups, ring-opening and hydroxyl addition reaction. This study clarified the electronic contribution of SULs in the oxidation system, providing necessary theoretical supplement for the analysis of the transformation of pollutants in AOPs.
Collapse
Affiliation(s)
- Mengmeng Dou
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environmental, Beijing Jiaotong University, Haidian District, Beijing 100044, China; Tangshan Research Institute, Beijing Jiaotong University, Tangshan 063000, China
| | - Jin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environmental, Beijing Jiaotong University, Haidian District, Beijing 100044, China; Tangshan Research Institute, Beijing Jiaotong University, Tangshan 063000, China.
| | - Zhaokun Ma
- Shandong Academy for Environmental Planning, Jinan 250101, China
| | - Chao Han
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environmental, Beijing Jiaotong University, Haidian District, Beijing 100044, China; Tangshan Research Institute, Beijing Jiaotong University, Tangshan 063000, China
| | - Wen Zhou
- Faculty of Education, Shinawatra University, Bangkok 10100, Thailand
| | - Qingyun Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environmental, Beijing Jiaotong University, Haidian District, Beijing 100044, China; Tangshan Research Institute, Beijing Jiaotong University, Tangshan 063000, China
| | - Shaoya Li
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environmental, Beijing Jiaotong University, Haidian District, Beijing 100044, China; Tangshan Research Institute, Beijing Jiaotong University, Tangshan 063000, China
| |
Collapse
|
45
|
Liu JY, Duan PJ, Li MX, Zhang ZQ, Bai CW, Chen XJ, Kong Y, Chen F. Direct Electron Transfer-Driven Nontoxic Oligomeric Deposition of Sulfonamide Antibiotics onto Carbon Materials for In Situ Water Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12155-12166. [PMID: 38934735 DOI: 10.1021/acs.est.4c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The rising in situ chemical oxidation (ISCO) technologies based on polymerization reactions have advanced the removal of emerging contaminants in the aquatic environment. However, despite their promise, uncertainties persist regarding their effectiveness in eliminating structurally complex contaminants, such as sulfonamide antibiotics (SAs). This study elucidated that oligomerization, rather than mineralization, predominantly governs the removal of SAs in the carbon materials/periodate system. The amine groups in SAs played a crucial role in forming organic radicals and subsequent coupling reactions due to their high f- index and low bond orders. Moreover, the study highlighted the robust adhesion of oligomers to the catalyst surface, facilitated by enhanced van der Waals forces and hydrophobic interactions. Importantly, plant and animal toxicity assessments confirmed the nontoxic nature of oligomers deposited on the carbon material surface, affirming the efficacy of carbon material-based ISCO in treating contaminated surface water and groundwater. Additionally, a novel classification approach, Δlog k, was proposed to differentiate SAs based on their kinetic control steps, providing deeper insights into the quantitative structure-activity relationship (QSAR) and facilitating the selection of optimal descriptors during the oligomerization processes. Overall, these insights significantly enhance our understanding of SAs removal via oligomerization and demonstrate the superiority of C-ISCO based on polymerization in water decontamination.
Collapse
Affiliation(s)
- Jiu-Yun Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Pi-Jun Duan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Ming-Xue Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR 999077, China
| | - Zhi-Quan Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yan Kong
- Key Laboratory of Yellow River Water Environment in Gansu Province, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
46
|
Zhou D, Li Z, Hu X, Chen L, Zhu M. Single Atom Catalyst in Persulfate Oxidation Reaction: From Atom Species to Substance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311691. [PMID: 38440836 DOI: 10.1002/smll.202311691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Indexed: 03/06/2024]
Abstract
With maximum utilization of active metal sites, more and more researchers have reported using single atom catalysts (SACs) to activate persulfate (PS) for organic pollutants removal. In SACs, single metal atoms (Fe, Co, Cu, Mn, etc.) and different substrates (porous carbon, biochar, graphene oxide, carbon nitride, MOF, MoS2, and others) are the basic structural. Metal single atoms, substances, and connected chemical bonds all have a great influence on the electronic structures that directly affect the activation process of PS and degradation efficiency to organic pollutants. However, there are few relevant reviews about the interaction between metal single atoms and substances during PS activation process. In this review, the SACs with different metal species and substrates are summarized to investigate the metal-support interaction and evaluate their effects on PS oxidation reaction process. Furthermore, how metal atoms and substrates affect the reactive species and degradation pathways are also discussed. Finally, the challenges and prospects of SACs in PS-AOPs are proposed.
Collapse
Affiliation(s)
- Daixi Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China
| | - Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Li Chen
- Department of General Practice, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China
| |
Collapse
|
47
|
Guo J, Gao B, Li Q, Wang S, Shang Y, Duan X, Xu X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403965. [PMID: 38655917 DOI: 10.1002/adma.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
48
|
Zhao X, Liu S, Tong Y, Sun L, Han Q, Feng L, Zhang L. Comparative study on the activation of peroxymonosulfate and peroxydisulfate by Ar plasma-etching CNTs for sulfamethoxazole degradation: Efficiency and mechanisms. CHEMOSPHERE 2024; 359:142287. [PMID: 38723685 DOI: 10.1016/j.chemosphere.2024.142287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Sulfamethoxazole (SMX), a widely utilized antibiotic, was continually detected in the environment, causing serious risks to aquatic ecology and water security. In this study, carbon nanotubes (CNTs) with abundant defects were developed by argon plasma-etching technology to enhance the activation of persulfate (PS, including peroxymonosulfate (PMS) and peroxydisulfate (PDS)) for SMX degradation while reducing environmental toxicity. Obviously, the increase of ID/IG value from 0.980 to 1.333 indicated that Ar plasma-etching successfully introduced rich defects into CNTs. Of note, Ar-90-CNT, whose Ar plasma-etching time was 90 min with optimum catalytic performance, exhibited a significant discrepancy between PMS activation and PDS activation. Interestingly, though the Ar-90-CNT/PDS system (kobs = 0.0332 min-1) was more efficient in SMX elimination than the Ar-90-CNT/PMS system (kobs = 0.0190 min-1), Ar plasma-etching treatment had no discernible enhancement in the catalytic efficiency of MWCNT for PDS activation. Then the discrepancy on activation mechanism between PMS and PDS was methodically investigated through quenching experiments, electron spin resonance (ESR), chemical probes, electrochemical measurements and theoretical calculations, and the findings unraveled that the created vacancy defects were the ruling active sites for the production of dominated singlet oxygen (1O2) in the Ar-90-CNT/PMS system to degrade SMX, while the electron transfer pathway (ETP), originated from PDS activation by the inherent edge defects, was the central pathway for SMX removal in the Ar-90-CNT/PDS system. Based on the toxicity test of Microcystis aeruginosa, the Ar-90-CNT/PDS system was more effective in alleviating environmental toxicity during SMX degradation. These findings not only provide insights into the discrepancy between PMS activation and PDS activation via carbon-based materials with controlled defects regulated by the plasma-etching strategy, but also efficiently degrade sulfonamide antibiotics and reduce the toxicity of their products.
Collapse
Affiliation(s)
- Xuecong Zhao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shiqi Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yao Tong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Lei Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qi Han
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
49
|
Xue Y, Sun W, Shi W, Huang CH, Santoro D. Prehydrated Electrons Activated by Continuous Electron Transfer Stemmed from Peracetic Acid Homolysis Mediated by Diamond Surface Defects for Enhanced PFOA Destruction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11152-11161. [PMID: 38867504 DOI: 10.1021/acs.est.4c02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Research on the use of peracetic acid (PAA) activated by nonmetal solid catalysts for the removal of dissolved refractory organic compounds has gained attention recently due to its improved efficiency and suitability for advanced water treatment (AWT). Among these catalysts, nanocarbon (NC) stands out as an exceptional example. In the NC-based peroxide AWT studies, the focus on the mechanism involving multimedia coordination on the NC surface (reactive species (RS) path, electron reduction non-RS pathway, and singlet oxygen non-RS path) has been confined to the one-step electron reaction, leaving the mechanisms of multichannel or continuous electron transfer paths unexplored. Moreover, there are very few studies that have identified the nonfree radical pathway initiated by electron transfer within PAA AWT. In this study, the complete decomposition (kobs = 0.1995) and significant defluorination of perfluorooctanoic acid (PFOA, deF% = 72%) through PAA/NC has been confirmed. Through the use of multiple electrochemical monitors and the exploration of current diffusion effects, the process of electron reception and conduction stimulated by PAA activation was examined, leading to the discovery of the dynamic process from the PAA molecule → NC solid surface → target object. The vital role of prehydrated electrons (epre-) before the entry of resolvable electrons into the aqueous phase was also detailed. To the best of our knowledge, this is the first instance of identifying the nonradical mechanism of continuous electron transfer in PAA-based AWT, which deviates from the previously identified mechanisms of singlet oxygen, single-electron, or double-electron single-path transfer. The pathway, along with the strong reducibility of epre- initiated by this pathway, has been proven to be essential in reducing the need for catalysts and chemicals in AWT.
Collapse
Affiliation(s)
- Yanei Xue
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Wenxin Shi
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, China
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Domenico Santoro
- USP Technologies, 3020 Gore Road, London, Ontario N5 V4T7, Canada
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| |
Collapse
|
50
|
Meng Y, Liu YQ, Wang C, Si Y, Wang YJ, Xia WQ, Liu T, Cao X, Guo ZY, Chen JJ, Li WW. Nanoconfinement steers nonradical pathway transition in single atom fenton-like catalysis for improving oxidant utilization. Nat Commun 2024; 15:5314. [PMID: 38906879 PMCID: PMC11192908 DOI: 10.1038/s41467-024-49605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.
Collapse
Affiliation(s)
- Yan Meng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Yu-Qin Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, China
| | - Yang Si
- Kunming Institute of Physics, Kunming, China
| | - Yun-Jie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Wen-Qi Xia
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Tian Liu
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Xu Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Zhi-Yan Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China.
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China.
| |
Collapse
|