1
|
Yang P, Wang Y, Tian X, Cui Y, Jiang T, Liu G, Liu Y, Guo Y, Hu L, Shi J, Zhang Q, Yin Y, Cai Y, Jiang G. Heating-Induced Redox Property Dynamics of Peat Soil Dissolved Organic Matter in a Simulated Peat Fire: Electron Exchange Capacity and Molecular Characteristics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:489-500. [PMID: 39748518 DOI: 10.1021/acs.est.4c09174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Peatlands store one-third of the world's soil organic carbon. Globally increased fires altered peat soil organic matter chemistry, yet the redox property and molecular dynamics of peat-dissolved organic matter (PDOM) during fires remain poorly characterized, limiting our understanding of postfire biogeochemical processes. Clarifying these dynamic changes is essential for effective peatland fire management. This study demonstrates temperature-dependent dynamic changes in the electron exchange capacity (EEC) of PDOM by simulating peat soil burning, significantly affecting microbial iron reduction. At low fire temperatures (200-250 °C), the EEC remains constant by releasing more phenolic moieties to enhance the electron-donating capacity (EDC). Higher temperatures (500 °C) diminish 90% of the EEC by consuming phenolic-quinone moieties. Pyrolytic PDOM (pyPDOM) contributes to 40% of the EEC of peat soil, with this contribution declining at higher temperatures. Phenolic-quinone moieties remain the primary redox-active moieties in pyPDOM. Fourier transform ion cyclotron resonance mass spectrometry analysis shows that postfire EDC depends more on phenolic types than abundance, with monophenol-like molecules (C < 12) being more significant than polyphenol-like (C ≥ 12). Quinone moieties in pyPDOM are associated with high-oxygen condensed aromatics, and their depletion reduces the electron-accepting capacity, weakening its electron shuttle effect in microbial iron reduction. Our findings enhance the understanding of the changes in PDOM redox properties during fires.
Collapse
Affiliation(s)
- Peijie Yang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Wang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangwei Tian
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Cui
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Shi
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Li X, Han Y, Zhang Y, Shao Q, Dong C, Li J, Ding B, Zhang Y. Effects of wildfire on soil microbial communities in karst forest ecosystems of southern Guizhou Province, China. Appl Environ Microbiol 2024; 90:e0124524. [PMID: 39475286 DOI: 10.1128/aem.01245-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/27/2024] [Indexed: 11/21/2024] Open
Abstract
Wildfires are unpredictable disturbances with profound effects on soil properties and microbial communities within forest ecosystems. However, knowledge of post-fire microbial communities in karst forests remains limited. In this study, microbial amplicon sequencing techniques were employed to investigate the impact of wildfires on the composition, diversity, function, and co-occurrence network of soil microbial communities in karst forest landscapes and to identify the key soil physicochemical factors affecting the post-fire microbial communities. The wildfire affected the fungal community to a greater extent than the bacterial community, with the former shifting from a dominance of Basidiomycota to Ascomycota at the phylum level, while the relative abundance of Actinobacteria increased significantly in the bacterial community. Moreover, the wildfire increased the α-diversity of the microbial community and changed the β-diversity. Network analysis indicated significant reductions in the complexity of microbial community networks and the hub microbiome in burned soils compared to those of unburned soils. Functional predictions indicated an increase in the highly abundant functional taxa of chemoheterotrophic and aerobic chemoheterotrophic bacteria, along with a significant rise in saprotrophic functional fungal taxa following the fire. In addition, soil organic matter, total nitrogen, total phosphorus, and soil water content emerged as key soil physicochemical factors affecting post-fire soil microbial communities in the karst forest. Overall, this study revealed the structural and functional characteristics of soil microbial communities and their key influencing factors after a fire in a karst forest, which will provide a valuable theoretical basis for ecosystem restoration after a wildfire.IMPORTANCEDespite the significant impacts of wildfires on forest ecosystems, most existing studies have largely focused on boreal and Mediterranean coniferous forest types, with limited research on the impacts of coniferous and broadleaf forest types in subtropical karst regions. This study reveals the effects of wildfires on soil microbial communities of coniferous and broadleaf forest types in a karst forest. The results of this study not only improve the understanding of the effects of wildfires on the composition, diversity, function, and network of soil microbial communities but also provide a meaningful theoretical basis for post-fire ecosystem restoration in the karst forest.
Collapse
Affiliation(s)
- Xu Li
- Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Yanfeng Han
- Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Yunlin Zhang
- Key Laboratory of Ecology and Management on Forest Fire in Higher Education institutions of Guizhou Province/Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, Guizhou, China
| | - Qiuyu Shao
- Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Chunbo Dong
- Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Jianfeng Li
- Key Laboratory of Ecology and Management on Forest Fire in Higher Education institutions of Guizhou Province/Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, Guizhou, China
| | - Bo Ding
- Key Laboratory of Ecology and Management on Forest Fire in Higher Education institutions of Guizhou Province/Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, Guizhou, China
| | - Yanwei Zhang
- Key Laboratory of Ecology and Management on Forest Fire in Higher Education institutions of Guizhou Province/Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Zhu S, Yang P, Yin Y, Zhang S, Lv J, Tian S, Jiang T, Wang D. Influences of wildfire on the soil dissolved organic matter characteristics and its electron-donating capacity. WATER RESEARCH 2024; 266:122382. [PMID: 39298894 DOI: 10.1016/j.watres.2024.122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Global increases in the intensity and frequency of wildfires are driving major changes in soil organic matter (SOM) characteristics, including soil dissolved organic matter (DOM). As the most crucial component of SOM, soil DOM plays a pivotal role in the carbon cycle and regulates the environmental fate of contaminants through its versatile reactivities, including electron-donating capacity (EDC). However, it is still being determined how wildfire influences key characteristics of soil DOM and subsequent effects on EDC in forest soils. Thus, we conducted our study to fill this gap with the forest soils of Jinyun Mountain Nature Reserve of China, which experienced an unprecedented wildfire event in 2022. The results from optical characterization, high-performance size-exclusion chromatography (HPSEC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) showed decreasing molecular weight but elevating nitrogen-containing molecular formulas of soil DOM in the burned soils. This could be attributed to the Maillard reaction and microbial re-colonies. Additionally, wildfires increased the condensed aromatics and lignin components in soil DOM. In the burned soils, we observed increasing EDC of soil DOM, which accounts for an increase in lignin-derived phenolic components. Overall, the findings of this study demonstrate that eco-disturbances, such as wildfires, induce alterations in the properties of DOM, leading to variations in its reactivity and potentially influencing the fate of environmental pollutants beyond carbon dynamics alone. Thus, incorporating the dynamic properties of soil DOM, particularly in the context of climate change, can enhance the assessment of risks associated with contaminants in soil and water, providing valuable insights.
Collapse
Affiliation(s)
- Sihua Zhu
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Peijie Yang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Siqi Zhang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shanyi Tian
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Dingyong Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| |
Collapse
|
4
|
Promi SI, Gardner CM, Hohner AK. Biodegradability of unheated and laboratory heated dissolved organic matter. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1429-1439. [PMID: 39011602 DOI: 10.1039/d3em00383c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Following wildfires, partially combusted biomass remains on the forest floor and erosion from the landscape can release dissolved pyrogenic organic matter (dPyOM) to surface waters. Therefore, post-fire alterations to dissolved organic matter (DOM) in aquatic systems may play a vital role in DOM stability and biogeochemical cycles. Dissolved PyOM biodegradation remains poorly understood and is expected to vary with combustion temperature and fuel source. In this study laboratory heating and leaching of forest floor materials (soil and litter) were used to compare the biodegradability of unheated, low (250 °C), and moderate (450 °C) temperature leachates. Inoculation experiments were performed with river microbes. Dissolved organic carbon (DOC) and nitrogen (DON), inorganic nitrogen, and DOM optical properties were monitored for 38 days. Inoculation experiments showed significantly greater DOC biodegradation of low and moderate temperature samples (64% and 71%, respectively) compared to unheated samples (32%). The greater DOC biodegradation may be explained by lower molecular weight DOM composition of heated leachates which was supported by higher initial E2/E3 ratios (absorbance at 250 nm/365 nm). Further, the observed decrease in the E2/E3 ratio after incubation suggests biodegradation of smaller compounds. This trend was greater for heated samples than unheated DOM. Specific ultraviolet absorbance increased after incubation, suggesting biodegradation of aliphatic compounds. Inoculated moderate temperature samples showed the greatest DON degradation (74%), followed by low temperature (58%) and unheated (51%) samples. Overall, results suggest that low and moderate temperature dPyOM was more biodegradable than unheated DOM, which may have implications for aquatic biogeochemical cycling, ecosystem function, and water quality in fire-impacted watersheds.
Collapse
Affiliation(s)
- Saraf Islam Promi
- Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, TX, USA
| | - Courtney M Gardner
- Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, TX, USA
| | - Amanda K Hohner
- Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA
- Department of Civil Engineering, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
5
|
Yin G, Guan P, Wang YH, Zhang P, Qu B, Xu S, Zhang G, He C, Shi Q, Wang J. Temporal Variations in Fire Impacts on Characteristics and Composition of Soil-Derived Dissolved Organic Matter at Qipan Mountain, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13772-13782. [PMID: 39058895 DOI: 10.1021/acs.est.4c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Dissolved organic matter (DOM), the most reactive fraction of forest soil organic matter, is increasingly impacted by wildfires worldwide. However, few studies have quantified the temporal changes in soil DOM quantity and quality after fire. Here, soil samples were collected after the Qipan Mountain Fire (3-36 months) from pairs of burned and unburned sites. DOM contents and characteristics were analyzed using carbon quantification and various spectroscopic and spectrometric techniques. Compared with the unburned sites, burned sites showed higher contents of bulk DOM and most DOM components 3 months after the fire but lower contents of them 6-36 months after the fire. During the sharp drop of DOM from 3 to 6 months after the fire, carboxyl-rich alicyclic molecule-like and highly unsaturated compounds had greater losses than condensed aromatics. Notably, the burned sites had consistently higher abundances of oxygen-poor dissolved black nitrogen and fluorescent DOM 3-36 months after the fire, particularly the abundance of pyrogenic C2 (excitation/emission maxima of <250/∼400 nm) that increased by 150% before gradually declining. This study advances the understanding of temporal variations in the effects of fire on different soil DOM components, which is crucial for future postfire environmental management.
Collapse
Affiliation(s)
- Gege Yin
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ping Guan
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ying-Hui Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Peng Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bo Qu
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shujun Xu
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
6
|
Cheng Y, Deng B, Scotland P, Eddy L, Hassan A, Wang B, Silva KJ, Li B, Wyss KM, Ucak-Astarlioglu MG, Chen J, Liu Q, Si T, Xu S, Gao X, JeBailey K, Jana D, Torres MA, Wong MS, Yakobson BI, Griggs C, McCary MA, Zhao Y, Tour JM. Electrothermal mineralization of per- and polyfluoroalkyl substances for soil remediation. Nat Commun 2024; 15:6117. [PMID: 39033169 PMCID: PMC11271446 DOI: 10.1038/s41467-024-49809-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent and bioaccumulative pollutants that can easily accumulate in soil, posing a threat to environment and human health. Current PFAS degradation processes often suffer from low efficiency, high energy and water consumption, or lack of generality. Here, we develop a rapid electrothermal mineralization (REM) process to remediate PFAS-contaminated soil. With environmentally compatible biochar as the conductive additive, the soil temperature increases to >1000 °C within seconds by current pulse input, converting PFAS to calcium fluoride with inherent calcium compounds in soil. This process is applicable for remediating various PFAS contaminants in soil, with high removal efficiencies ( >99%) and mineralization ratios ( >90%). While retaining soil particle size, composition, water infiltration rate, and cation exchange capacity, REM facilitates an increase of exchangeable nutrient supply and arthropod survival in soil, rendering it superior to the time-consuming calcination approach that severely degrades soil properties. REM is scaled up to remediate soil at two kilograms per batch and promising for large-scale, on-site soil remediation. Life-cycle assessment and techno-economic analysis demonstrate REM as an environmentally friendly and economic process, with a significant reduction of energy consumption, greenhouse gas emission, water consumption, and operation cost, when compared to existing soil remediation practices.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Bing Deng
- Department of Chemistry, Rice University, Houston, TX, USA.
- School of Environment, Tsinghua University, Beijing, China.
| | - Phelecia Scotland
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Lucas Eddy
- Department of Chemistry, Rice University, Houston, TX, USA
- Applied Physics Program, Rice University, Houston, TX, USA
- Smalley-Curl Institute, Rice University, Houston, TX, USA
| | - Arman Hassan
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Bo Wang
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (NEWT), Houston, TX, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Karla J Silva
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Bowen Li
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Kevin M Wyss
- Department of Chemistry, Rice University, Houston, TX, USA
| | | | - Jinhang Chen
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Qiming Liu
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Tengda Si
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Shichen Xu
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Xiaodong Gao
- Department of Earth, Environmental, & Planetary Sciences, Rice University, Houston, TX, USA
- Carbon Hub, Rice University, Houston, TX, USA
| | - Khalil JeBailey
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Debadrita Jana
- Department of Earth, Environmental, & Planetary Sciences, Rice University, Houston, TX, USA
| | - Mark Albert Torres
- Department of Earth, Environmental, & Planetary Sciences, Rice University, Houston, TX, USA
| | - Michael S Wong
- Department of Chemistry, Rice University, Houston, TX, USA
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (NEWT), Houston, TX, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Boris I Yakobson
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
- Smalley-Curl Institute, Rice University, Houston, TX, USA
| | | | | | - Yufeng Zhao
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
- Corban University, Salem, OR, USA.
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, USA.
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
- Smalley-Curl Institute, Rice University, Houston, TX, USA.
- NanoCarbon Center and the Rice Advanced Materials Institute, Rice University, Houston, TX, USA.
| |
Collapse
|
7
|
Zhang Z, Cui X, Qu X, Fu H, Tao S, Zhu D. Revealing Molecular Structures of Nitrogen-Containing Compounds in Dissolved Black Carbon Using Ultrahigh-Resolution Mass Spectrometry Combined with Thermodynamic Calculations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11998-12007. [PMID: 38935345 DOI: 10.1021/acs.est.4c01829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Landscape wildfires generate a substantial amount of dissolved black carbon (DBC) annually, yet the molecular nitrogen (N) structures in DBC are poorly understood. Here, we systematically compared the chemodiversity of N-containing molecules among three different DBC samples from rice straw biochar pyrolyzed at 300, 400, and 500 °C, one leached dissolved organic carbon (LDOC) sample from composted rice straw, and one fire-affected soil dissolved organic matter (SDOMFire) sample using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). N-Containing molecules contributed 20.0%, 36.1%, and 43.7% of total compounds in Combined DBC (pooling together the three DBC), LDOC, and SDOMFire, respectively, and molecules with fewer N atoms had higher proportions (i.e., N1 > N2 > N3). The N-containing molecules in Combined DBC were dominated by polycyclic aromatic (62.2%) and aromatic (14.4%) components, while those in LDOC were dominated by lignin-like (50.4%) and aromatic (30.1%) components. The composition and structures of N-containing molecules in SDOMFire were more similar to those in DBC than in LDOC. As the temperature rose, the proportion of the nitrogenous polycyclic aromatic component in DBC significantly increased with concurrent enhanced oxidation and unsaturation of N. As indicated by density functional theory (DFT)-based thermodynamic calculations, the proportion of aliphatic amide N decreased from 23.2% to 7.9%, whereas that of nitroaromatic N increased from 10.0% to 39.5% as the temperature increased from 300 to 500 °C; alternatively, the proportion of aromatic N in the 5/6 membered ring remained relatively stable (∼31%) and that of aromatic amide N peaked at 400 °C (32.7%). Our work first provides a comprehensive and thorough description of molecular N structures of DBC, which helps to better understand and predict their fate and biogeochemical behavior.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Key Laboratory of the Ministry of Education for Earth Surface Processes, School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiurui Cui
- Key Laboratory of the Ministry of Education for Earth Surface Processes, School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Shu Tao
- Key Laboratory of the Ministry of Education for Earth Surface Processes, School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Dongqiang Zhu
- Key Laboratory of the Ministry of Education for Earth Surface Processes, School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Zhang J, Zhou Z, Zeng L, Wang C, Han R, Ren X, Wang W, Xiang M, Chen S, Li H. The molecular binding sequence transformation of soil organic matter and biochar dissolved black carbon antagonizes the transport of 2,4,6-trichlorophenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174657. [PMID: 38986700 DOI: 10.1016/j.scitotenv.2024.174657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/29/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Dissolved organic matter (DOM) and dissolved black carbon (DBC) are significant environmental factors that influence the transport of organic pollutants. However, the mechanisms by which their molecular diversity affects pollutant transport remain unclear. This study elucidates the molecular binding sequence and adsorption sites through which DOM/DBC compounds antagonize the transport of 2,4,6-trichlorophenol (TCP) using column experiments and modelling. DBC exhibits a high TCP adsorption rate (kn = 5.32 × 10-22 mol1-n∙Ln-1∙min-1) and conditional stability constant (logK = 5.19-5.74), indicating a strong binding affinity and antagonistic effect on TCP. This is attributed to the high relative content of lipid/protein compounds in DBC (25.65 % and 30.28 %, respectively). Moreover, the small molecule lipid compounds showed stronger TCP adsorption energy (Ead = -0.0071 eV/-0.0093 eV) in DOM/DBC, combined with two-dimensional correlation spectroscopy model found that DOM/DBC antagonized TCP transport in the environment through binding sequences that transformed from lipid/protein small molecule compounds to lignin/tannin compounds. This study used a multifaceted approach to comprehensively assess the impact of DOM/DBC on TCP transport. It reveals that the molecular diversity of DOM/DBC is a critical factor affecting pollutant transport, providing important insights into the environmental trend and ecological effects of pollutants.
Collapse
Affiliation(s)
- Jin Zhang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Zhikang Zhou
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Lingjun Zeng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Ruixia Han
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Xinlei Ren
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Wenbing Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Minghui Xiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shuai Chen
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, PR China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
9
|
Cheng Y, Ding S, Shao Z, Song D, Jiao L, Zhang W, Duan P, He J. Persistence of dissolved organic matter in sediments influenced by environmental factors:Implication for nutrition and carbon cycle. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121387. [PMID: 38850914 DOI: 10.1016/j.jenvman.2024.121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/20/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The persistence of dissolved organic matter (DOM) plays a crucial role in the cycling and distribution of carbon and nutrients. Nonetheless, our understanding of how environmental alterations affect the persistence of sedimentary DOM remains incomplete. Excitation Emission Fluorescence Matrix-Parallel Factor Analysis (EEM-PARAFAC) was used to examine the fluorescence and compositional characteristics of hydrophilic and hydrophobic DOM (separated using XAD-8 resin) within sediments from twelve lakes and reservoirs. Fluorescence analysis indicated that DOM persistence is dependent on the proportions of the three components derived from PARAFAC. The Mantel test showed that climatic factors had the most significant impact on DOM persistence (Mantel's r = 0.46-0.54, Mantel's p = 0.001-0.007), while anthropogenic (Mantel's r = 0.24-0.32, Mantel's p = 0.03-0.05) and hydrological factors (Mantel's r = 0.03-0.22, Mantel's p = 0.06-0.40) had a somewhat lesser influence. Environmental changes resulted in a consistent decline in DOM persistence from Northeast to Southwest China, accompanied by an increase in gross primary productivity (GPP). Reduced DOM persistence due to climate, hydrological, and anthropogenic factors may lead to elevated concentrations of total phosphorus (TP), contributing to deteriorating water quality and events such as algal blooms. The decline in water quality due to reduced DOM persistence in lakes with high GPP can exacerbate the transition from carbon sinks to carbon sources. Consequently, the persistence of sedimentary DOM significantly influences nutrient and carbon cycling in lakes. Investigating DOM persistence in lakes across diverse geographic locations offers a new perspective on lake eutrophication and carbon emissions. Furthermore, it is crucial to develop targeted recommendations for lake restoration and management.
Collapse
Affiliation(s)
- Yunxuan Cheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Yunnan Key Laboratory for Pollution Processes and Control of Plateau Lake-Watersheds, Kunming, 650032, China
| | - Shuai Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhi Shao
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Di Song
- Yunnan Key Laboratory for Pollution Processes and Control of Plateau Lake-Watersheds, Kunming, 650032, China; Yunnan Academy of Ecological and Environmental Sciences, Kunming, 650032, China
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Yunnan Key Laboratory for Pollution Processes and Control of Plateau Lake-Watersheds, Kunming, 650032, China.
| | - Weizhen Zhang
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Pingzhou Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jia He
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China.
| |
Collapse
|
10
|
Xu Y, Wang X, Ou Q, Zhou Z, van der Hoek JP, Liu G. Appearance of Recalcitrant Dissolved Black Carbon and Dissolved Organic Sulfur in River Waters Following Wildfire Events. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7165-7175. [PMID: 38597176 PMCID: PMC11044583 DOI: 10.1021/acs.est.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Increasing wildfire frequency, a consequence of global climate change, releases incomplete combustion byproducts such as aquatic pyrogenic dissolved organic matter (DOM) and black carbon (DBC) into waters, posing a threat to water security. In August 2022, a series of severe wildfires occurred in Chongqing, China. Samples from seven locations along the Yangtze and Jialing Rivers revealed DBC, quantified by the benzene poly(carboxylic acid) (BPCA) method, comprising 9.5-19.2% of dissolved organic carbon (DOC). High concentrations of BPCA-DBC with significant polycondensation were detected near wildfire areas, likely due to atmospheric deposition driven by wind. Furthermore, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) revealed that wildfires were associated with an increase in condensed aromatics, proteins, and unsaturated hydrocarbons, along with a decrease in lignins. The condensed aromatics primarily consisted of dissolved black nitrogen (DBN), contributing to abundant high-nitrogen-containing compounds in locations highly affected by wildfires. Meanwhile, wildfires potentially induced the input of recalcitrant sulfur-containing protein-like compounds, characterized by high oxidation, aliphatic nature, saturation, and low aromaticity. Overall, this study revealed the appearance of recalcitrant DBC and dissolved organic sulfur in river waters following wildfire events, offering novel insights into the potential impacts of wildfires on water quality and environmental biogeochemistry.
Collapse
Affiliation(s)
- Yanghui Xu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Xintu Wang
- Key
Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- College
of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541004, China
| | - Qin Ou
- Key
Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Zhongbo Zhou
- College
of Resources and Environment, Southwest
University, Chongqing 400715, China
| | - Jan Peter van der Hoek
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- Waternet,
Department Research & Innovation,
P.O. Box 94370, 1090 GJ Amsterdam, The Netherlands
| | - Gang Liu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- University
of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
11
|
Chen J, Sun T, Yang P, Peng S, Yu J, Wang D, Zhang W. Inhibitory effect of microplastics derived organic matters on humification reaction of organics in sewage sludge under alkali-hydrothermal treatment. WATER RESEARCH 2024; 252:121231. [PMID: 38324988 DOI: 10.1016/j.watres.2024.121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Alkali-hydrothermal treatment (AHT) of sewage sludge is often used to recover value-added dissolved organic matters (DOM) enriched with artificial humic acids (HA). Microplastics (MPs), as emerging contaminants in sewage sludge, can leach organic compounds (MP-DOM) during AHT, which potentially impact the characteristics of thermally treated sludge's DOM. This study employed spectroscopy and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS) to explore the impacts of MPs on DOM composition and transformation during AHT. The biological effects of DOM were also investigated by hydroponic experiments. The results showed that the leaching of MP-DOM led to a substantial increase in DOC content of DOM of thermally treated sludge. Conversely, the HA content significantly decreased in the presence of MPs, resulting in a decline of plant growth facilitation degree. FT-ICR-MS analysis revealed that the reduction in HA content was characterized by a notable decline in the abundance of O6-7 and N1-3O6-7 molecules. Reactomics results indicated that the leaching of MP-DOM inhibited the Maillard reaction but bolstered oxidation reactions. The inhibition of Maillard reaction, resulting in a decrease in crucial precursors (dicarbonyl compounds, ketoses, and deoxyglucosone), was responsible for the decrease of HA content. The primary mechanism responsible for inhibiting the Maillard reaction was the consumption of reactive amino reactants through two pathways. Firstly, the leaching of organic acids in MP-DOM caused decrease of sludge pH, leading to the protonation of amino groups. Secondly, the lipid-like compounds in MP-DOM underwent oxidation (-2H+O), producing fatty aldehydes that consumed the reactive amino reactants. These discoveries offer enhanced insights into the specific contribution of MPs to the composition, transformation, bioactivity of DOM during AHT process.
Collapse
Affiliation(s)
- Jun Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Tong Sun
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Peng Yang
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, Jilin, China
| | - Siwei Peng
- Datang Environment Industry Group Co., Ltd, Haidian District, Beijing 100097, China
| | - Junxia Yu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Dongsheng Wang
- Department of environmental engineering, Zhejiang university, Hangzhou 310058, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
12
|
VanderRoest JP, Fowler JA, Rhoades CC, Roth HK, Broeckling CD, Fegel TS, McKenna AM, Bechtold EK, Boot CM, Wilkins MJ, Borch T. Fire Impacts on the Soil Metabolome and Organic Matter Biodegradability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4167-4180. [PMID: 38385432 DOI: 10.1021/acs.est.3c09797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Global wildfire activity has increased since the 1970s and is projected to intensify throughout the 21st century. Wildfires change the composition and biodegradability of soil organic matter (SOM) which contains nutrients that fuel microbial metabolism. Though persistent forms of SOM often increase postfire, the response of more biodegradable SOM remains unclear. Here we simulated severe wildfires through a controlled "pyrocosm" approach to identify biodegradable sources of SOM and characterize the soil metabolome immediately postfire. Using microbial amplicon (16S/ITS) sequencing and gas chromatography-mass spectrometry, heterotrophic microbes (Actinobacteria, Firmicutes, and Protobacteria) and specific metabolites (glycine, protocatechuate, citric cycle intermediates) were enriched in burned soils, indicating that burned soils contain a variety of substrates that support microbial metabolism. Molecular formulas assigned by 21 T Fourier transform ion cyclotron resonance mass spectrometry showed that SOM in burned soil was lower in molecular weight and featured 20 to 43% more nitrogen-containing molecular formulas than unburned soil. We also measured higher water extractable organic carbon concentrations and higher CO2 efflux in burned soils. The observed enrichment of biodegradable SOM and microbial heterotrophs demonstrates the resilience of these soils to severe burning, providing important implications for postfire soil microbial and plant recolonization and ecosystem recovery.
Collapse
Affiliation(s)
- Jacob P VanderRoest
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Julie A Fowler
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Charles C Rhoades
- Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, Colorado 80526, United States
| | - Holly K Roth
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Corey D Broeckling
- Bioanalysis and Omics Center, Analytical Resources Core, Colorado State University, Fort Collins, 80521, United States
| | - Timothy S Fegel
- Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, Colorado 80526, United States
| | - Amy M McKenna
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | - Emily K Bechtold
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Claudia M Boot
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Thomas Borch
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| |
Collapse
|
13
|
Zhang Q, Wang Y, Guan P, Zhang P, Mo X, Yin G, Qu B, Xu S, He C, Shi Q, Zhang G, Dittmar T, Wang J. Temperature Thresholds of Pyrogenic Dissolved Organic Matter in Heating Experiments Simulating Forest Fires. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17291-17301. [PMID: 37916767 DOI: 10.1021/acs.est.3c05265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Heating temperature (HT) during forest fires is a critical factor in regulating the quantity and quality of pyrogenic dissolved organic matter (DOM). However, the temperature thresholds at which maximum amounts of DOM are produced (TTmax) and at which the DOC gain turns into net DOC loss (TT0) remain unidentified on a component-specific basis. Here, based on solid-state 13C nuclear magnetic resonance, absorbance and fluorescence spectroscopies, and Fourier transform ion cyclotron resonance mass spectrometry, we analyzed variations in DOM composition in detritus and soil with HT (150-500 °C) and identified temperature thresholds for components on structural, fluorophoric, and molecular formula levels. TTmax was similar for detritus and soil and ranged between 225 and 250 °C for bulk dissolved organic carbon (DOC) and most DOM components. TT0 was consistently lower in detritus than in soil. Moreover, temperature thresholds differed across the DOM components. As the HT increased, net loss was observed initially in molecular formulas tentatively associated with carbohydrates and aliphatics, then proteins, peptides, and polyphenolics, and ultimately condensed aromatics. Notably, at temperatures lower than TT0, particularly at TTmax, burning increased the DOC quantity and thus might increase labile substrates to fuel soil microbial community. These composition-specific variations of DOM with temperature imply nonlinear and multiple temperature-dependent wildfire impacts on soil organic matter properties.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg 26129, Germany
| | - Yinghui Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg 26129, Germany
| | - Ping Guan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Peng Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaohan Mo
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055, China
| | - Gege Yin
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bo Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shujun Xu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg 26129, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg 26129, Germany
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
14
|
Zhang H, Ni J, Wei R, Chen W. Water-soluble organic carbon (WSOC) from vegetation fire and its differences from WSOC in natural media: Spectral comparison and self-organizing maps (SOM) classification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165180. [PMID: 37385508 DOI: 10.1016/j.scitotenv.2023.165180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Vegetation fire frequently occurs globally and produces two types of water-soluble organic carbon (WSOC) including black carbon WSOC (BC-WSOC) and smoke-WSOC, they will eventually enter the surface environment (soil and water) and participate in the eco-environmental processes on the earth surface. Exploring the unique features of BC-WSOC and smoke-WSOC is critical and fundamental for understanding their eco-environmental effects. Presently, their differences from the natural WSOC of soil and water remain unknown. This study produced various BC-WSOC and smoke-WSOC by simulating vegetation fire and used UV-vis, fluorescent EEM-PARAFAC, and fluorescent EEM-SOM to analyze their different features from natural WSOC of soil and water. The results showed that the maximum yield of smoke-WSOC reached about 6600 folds that of BC-WSOC after a vegetation fire event. The increasing burning temperature decreased the yield, molecular weight, polarity, and protein-like matters abundance of BC-WSOC and increased the aromaticity of BC-WSOC, but presented a negligible effect on the features of smoke-WSOC. Furthermore, compared with natural WSOC, BC-WSOC had a greater aromaticity, smaller molecular weight, and more humic-like matters, while smoke-WSOC had a lower aromaticity, smaller molecular size, higher polarity, and more protein-like matters. EEM-SOM analysis indicated that the ratio between the fluorescence intensity at Ex/Em: 275 nm/320 nm and the sum fluorescence intensity at Ex/Em: 275 nm/412 nm and Ex/Em: 310 nm/420 nm could effectively differentiate WSOC of different sources, following the order of smoke-WSOC (0.64-11.38) > water-WSOC and soil-WSOC (0.06-0.76) > BC-WSOC (0.0016-0.04). Hence, BC-WSOC and smoke-WSOC possibly directly alter the quantity, properties, and organic compositions of WSOC in soil and water. Owing to smoke-WSOC having far greater yield and bigger difference from natural WSOC than BC-WSOC, the eco-environmental effect of smoke-WSOC deposition should be given more attention after a vegetation fire.
Collapse
Affiliation(s)
- Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ran Wei
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| |
Collapse
|
15
|
Deng B, Carter RA, Cheng Y, Liu Y, Eddy L, Wyss KM, Ucak-Astarlioglu MG, Luong DX, Gao X, JeBailey K, Kittrell C, Xu S, Jana D, Torres MA, Braam J, Tour JM. High-temperature electrothermal remediation of multi-pollutants in soil. Nat Commun 2023; 14:6371. [PMID: 37821460 PMCID: PMC10567823 DOI: 10.1038/s41467-023-41898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
Soil contamination is an environmental issue due to increasing anthropogenic activities. Existing processes for soil remediation suffer from long treatment time and lack generality because of different sources, occurrences, and properties of pollutants. Here, we report a high-temperature electrothermal process for rapid, water-free remediation of multiple pollutants in soil. The temperature of contaminated soil with carbon additives ramps up to 1000 to 3000 °C as needed within seconds via pulsed direct current input, enabling the vaporization of heavy metals like Cd, Hg, Pb, Co, Ni, and Cu, and graphitization of persistent organic pollutants like polycyclic aromatic hydrocarbons. The rapid treatment retains soil mineral constituents while increases infiltration rate and exchangeable nutrient supply, leading to soil fertilization and improved germination rates. We propose strategies for upscaling and field applications. Techno-economic analysis indicates the process holds the potential for being more energy-efficient and cost-effective compared to soil washing or thermal desorption.
Collapse
Affiliation(s)
- Bing Deng
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
| | - Robert A Carter
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Yi Cheng
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Yuan Liu
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
| | - Lucas Eddy
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Applied Physics Program, Rice University, Houston, TX, 77005, USA
- Smalley-Curl Institute, Rice University, Houston, TX, 77005, USA
| | - Kevin M Wyss
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Mine G Ucak-Astarlioglu
- Geotechnical and Structures Laboratory, U.S. Army Engineer Research & Development Center, Vicksburg, MS, 39180, USA
| | - Duy Xuan Luong
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Applied Physics Program, Rice University, Houston, TX, 77005, USA
| | - Xiaodong Gao
- Department of Earth, Environmental, & Planetary Sciences, Rice University, Houston, TX, 77005, USA
- Carbon Hub, Rice University, Houston, TX, 77005, USA
| | - Khalil JeBailey
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Carter Kittrell
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Shichen Xu
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Debadrita Jana
- Department of Earth, Environmental, & Planetary Sciences, Rice University, Houston, TX, 77005, USA
| | - Mark Albert Torres
- Department of Earth, Environmental, & Planetary Sciences, Rice University, Houston, TX, 77005, USA
| | - Janet Braam
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
- Smalley-Curl Institute, Rice University, Houston, TX, 77005, USA.
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA.
- NanoCarbon Center and the Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
16
|
Zhang Q, Lv J, He A, Cao D, He X, Zhao L, Wang Y, Jiang G. Investigation with ESI FT-ICR MS on sorbent selectivity and comprehensive molecular composition of landfill leachate dissolved organic matter. WATER RESEARCH 2023; 243:120359. [PMID: 37499543 DOI: 10.1016/j.watres.2023.120359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Molecular characterization of landfill leachate dissolved organic matter (LDOM) is essential for developing effective processing techniques. However, the molecular selectivity of extraction method and ionization modes often leads to the bias of molecular characterization of LDOM. Here, seven representative sorbents were selected and electrospray ionization negative ion mode (ESI (-)) and positive ion mode (ESI (+)) Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to investigate the molecular composition of different LDOM samples. Obvious sorbent selectivity during extraction procedure was observed, resulting in the underestimation of molecular diversity of LDOM from 32.7% to 69.3%. Totally, 14,000-18,000 unique molecules were obtained in a single sample, indicating the unprecedented molecular diversity of LDOM. Lignins, proteins and lipids are three major molecular groups in LDOM, and N or S containing molecules occupied 83%. Although much of total organic carbon was removed during biochemical treatment process, the molecular diversity of LDOM was not reduced because a considerable of bio-recalcitrant molecules was produced. The results uncover the sorbents selectivity and ionization modes selectivity in LDOM analysis and provided a comprehensive change of LDOM molecular composition during biochemical treatment, which benefits the development of accurate methods to remove organic carbon in landfill leachate.
Collapse
Affiliation(s)
- Qiurui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Anen He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Song F, Li T, Wu F, Leung KMY, Hur J, Zhou L, Bai Y, Zhao X, He W, Ruan M. Temperature-Dependent Molecular Evolution of Biochar-Derived Dissolved Black Carbon and Its Interaction Mechanism with Polyvinyl Chloride Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7285-7297. [PMID: 37098046 DOI: 10.1021/acs.est.3c01463] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Biochar-derived dissolved black carbon (DBC) molecules are dependent on the BC formation temperature and affect the fate of emerging contaminants in waters, such as polyvinyl chloride microplastic (MPPVC). However, the temperature-dependent evolution and MPPVC-interaction of DBC molecules remain unclear. Herein, we propose a novel DBC-MPPVC interaction mechanism by systematically interpreting heterogeneous correlations, sequential responses, and synergistic relationships of thousands of molecules and their linking functional groups. Two-dimensional correlation spectroscopy was proposed to combine Fourier transform-ion cyclotron resonance mass spectrometry and spectroscopic datasets. Increased temperature caused diverse DBC molecules and fluorophores, accompanied by molecular transformation from saturation/reduction to unsaturation/oxidation with high carbon oxidation states, especially for molecules with acidic functional groups. The temperature response of DBC molecules detected via negative-/positive-ion electrospray ionization sequentially occurred in unsaturated hydrocarbons → lignin-like → condensed aromatic → lipid-/aliphatic-/peptide-like → tannin-like → carbohydrate-like molecules. DBC molecular changes induced by temperature and MPPVC interaction were closely coordinated, with lignin-like molecules contributing the most to the interaction. Functional groups in DBC molecules with m/z < 500 showed a sequential MPPVC-interaction response of phenol/aromatic ether C-O, alkene C═C/amide C═O → polysaccharides C-O → alcohol/ether/carbohydrate C-O groups. These findings help to elucidate the critical role of DBCs in MP environmental behaviors.
Collapse
Affiliation(s)
- Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tingting Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei He
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Mingqi Ruan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
18
|
Honeyman AS, Merl T, Spear JR, Koren K. Optode-based chemical imaging of laboratory burned soil reveals millimeter-scale heterogeneous biogeochemical responses. ENVIRONMENTAL RESEARCH 2023; 224:115469. [PMID: 36773636 DOI: 10.1016/j.envres.2023.115469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Soil spatial responses to fire are unclear. Using optical chemical sensing with planar 'optodes', pH and dissolved O2 concentration were tracked spatially with a resolution of 360 μm per pixel for 72 h after burning soil in the laboratory with a butane torch (∼1300 °C) and then sprinkling water to simulate a postfire moisture event. Imaging data from planar optodes correlated with microbial activity (quantified via RNA transcripts). Post-fire and post-wetting, soil pH increased throughout the entire ∼13 cm × 17 cm × 20 cm rectangular cuboid of sandy loam soil. Dissolved O2 concentrations were not impacted until the application of water postfire. pH and dissolved O2 both negatively correlated (p < 0.05) with relative transcript expression for galactose metabolism, the degradation of aromatic compounds, sulfur metabolism, and narH. Additionally, dissolved O2 negatively correlated (p < 0.05) with the relative activity of carbon fixation pathways in Bacteria and Archaea, amoA/amoB, narG, nirK, and nosZ. nifH was not detected in any samples. Only amoB and amoC correlated with depth in soil (p < 0.05). Results demonstrate that postfire soils are spatially complex on a mm scale and that using optode-based chemical imaging as a chemical navigator for RNA transcript sampling is effective.
Collapse
Affiliation(s)
- Alexander S Honeyman
- Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Theresa Merl
- Aarhus University Centre for Water Technology, Department of Biology, Section for Microbiology, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark
| | - John R Spear
- Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA; Quantitative Biosciences and Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA.
| | - Klaus Koren
- Aarhus University Centre for Water Technology, Department of Biology, Section for Microbiology, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark.
| |
Collapse
|
19
|
Li G, Sun L, Wang J, Dou X, Ji S, Hu T, Gao C. Effects of pyrogenic carbon addition after fire on soil carbon mineralization in the Great Khingan Mountains peatlands (Northeast China). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161102. [PMID: 36566854 DOI: 10.1016/j.scitotenv.2022.161102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Wildfires play a critical role in regulating soil carbon (C) budgets in peatland ecosystems, and their frequency and intensity are increasing owing to climate change and human activities. Wildfires not only emit CO2 during the combustion process but also produce pyrogenic carbon (PyC), which accumulates in the soil C pool and influences soil C decomposition. However, the role of PyC after a fire in peatland soil C mineralization has rarely been examined. This study investigated the effects of PyC addition on peatland soil C mineralization and its potential driving mechanisms using an anaerobic/aerobic incubation experiment with peat soils collected from typical peatlands in the Great Khingan Mountains, Northeast China. The effect of PyC was more pronounced under aerobic conditions than under anaerobic conditions. The mean C- mineralization rates of soil were significantly increased by 45.2 ± 15.5 % and 87.6 ± 14.3 % with 10 % PyC250°C addition after the initial stage (D7) of aerobic and anaerobic incubation, but PyC600°C addition caused a to decrease. Compared with PyC600°C, PyC250°C addition significantly increased the available N content and altered the soil microbial activities, which may be the primary reason for the increase in C mineralization rates. Furthermore, adding a high concentration of PyC (10 %) reduced the concentration of phenolics but increased phenol oxidase activity, which promoted C mineralization rates. Thus, PyC250°C addition to peat soils mainly influences the microbial biomass C content through the accumulation of available N and phenolics, which ultimately positively affects C mineralization rates.
Collapse
Affiliation(s)
- Guangxin Li
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Hexing Road 26, Harbin 150040, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, 130102 Changchun, China
| | - Long Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Jianyu Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Xu Dou
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Shengzhen Ji
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, 130102 Changchun, China
| | - Tongxin Hu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Hexing Road 26, Harbin 150040, China.
| | - Chuanyu Gao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, 130102 Changchun, China.
| |
Collapse
|
20
|
Roth HK, Nelson AR, McKenna AM, Fegel TS, Young RB, Rhoades CC, Wilkins MJ, Borch T. Impact of beaver ponds on biogeochemistry of organic carbon and nitrogen along a fire-impacted stream. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1661-1677. [PMID: 36004537 DOI: 10.1039/d2em00184e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wildfires, which are increasing in frequency and severity in the western U.S., impact water quality through increases in erosion, and transport of nutrients and metals. Meanwhile, beaver populations have been increasing since the early 1900s, and the ponds they create slow or impound hydrologic and elemental fluxes, increase soil saturation, and have a high potential to transform redox active elements (e.g., oxygen, nitrogen, sulfur, and metals). However, it remains unknown how the presence of beaver ponds in burned watersheds may impact retention and transformation of chemical constituents originating in burned uplands (e.g., pyrogenic dissolved organic matter; pyDOM) and the consequences for downstream water quality. Here, we investigate the impact of beaver ponds on the chemical properties and molecular composition of dissolved forms of C and N, and the microbial functional potential encoded within these environments. The chemistry and microbiology of surface water and sediment changed along a stream sequence starting upstream of fire and flowing through multiple beaver ponds and interconnecting stream reaches within a burned high-elevation forest watershed. The relative abundance of N-containing compounds increased in surface water of the burned beaver ponds, which corresponded to lower C/N and O/C, and higher aromaticity as characterized by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The resident microbial communities lack the capacity to process such aromatic pyDOM, though genomic analyses demonstrate their potential to metabolize various compounds in the anaerobic sediments of the beaver ponds. Collectively, this work highlights the role of beaver ponds as biological "hotspots" with unique biogeochemistry in fire-impacted systems.
Collapse
Affiliation(s)
- Holly K Roth
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Amelia R Nelson
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Amy M McKenna
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
- National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility, Florida State University, FL, USA
| | - Timothy S Fegel
- Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, CO, USA
| | - Robert B Young
- Chemical Analysis & Instrumentation Laboratory, New Mexico State University, Las Cruces, NM, USA
| | - Charles C Rhoades
- Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, CO, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas Borch
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
21
|
Nelson AR, Narrowe AB, Rhoades CC, Fegel TS, Daly RA, Roth HK, Chu RK, Amundson KK, Young RB, Steindorff AS, Mondo SJ, Grigoriev IV, Salamov A, Borch T, Wilkins MJ. Wildfire-dependent changes in soil microbiome diversity and function. Nat Microbiol 2022; 7:1419-1430. [PMID: 36008619 PMCID: PMC9418001 DOI: 10.1038/s41564-022-01203-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 07/18/2022] [Indexed: 12/13/2022]
Abstract
Forest soil microbiomes have crucial roles in carbon storage, biogeochemical cycling and rhizosphere processes. Wildfire season length, and the frequency and size of severe fires have increased owing to climate change. Fires affect ecosystem recovery and modify soil microbiomes and microbially mediated biogeochemical processes. To study wildfire-dependent changes in soil microbiomes, we characterized functional shifts in the soil microbiota (bacteria, fungi and viruses) across burn severity gradients (low, moderate and high severity) 1 yr post fire in coniferous forests in Colorado and Wyoming, USA. We found severity-dependent increases of Actinobacteria encoding genes for heat resistance, fast growth, and pyrogenic carbon utilization that might enhance post-fire survival. We report that increased burn severity led to the loss of ectomycorrhizal fungi and less tolerant microbial taxa. Viruses remained active in post-fire soils and probably influenced carbon cycling and biogeochemistry via turnover of biomass and ecosystem-relevant auxiliary metabolic genes. Our genome-resolved analyses link post-fire soil microbial taxonomy to functions and reveal the complexity of post-fire soil microbiome activity.
Collapse
Affiliation(s)
- Amelia R Nelson
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Adrienne B Narrowe
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
- Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, PA, USA
| | - Charles C Rhoades
- Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, CO, USA
| | - Timothy S Fegel
- Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, CO, USA
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Holly K Roth
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kaela K Amundson
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert B Young
- Chemical Analysis and Instrumentation Laboratory, New Mexico State University, Las Cruces, NM, USA
| | - Andrei S Steindorff
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephen J Mondo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Asaf Salamov
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thomas Borch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
22
|
Bahureksa W, Borch T, Young RB, Weisbrod CR, Blakney GT, McKenna AM. Improved Dynamic Range, Resolving Power, and Sensitivity Achievable with FT-ICR Mass Spectrometry at 21 T Reveals the Hidden Complexity of Natural Organic Matter. Anal Chem 2022; 94:11382-11389. [PMID: 35917115 DOI: 10.1021/acs.analchem.2c02377] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fourier transform ion-cyclotron resonance mass spectrometry (FT-ICR MS) is the only mass analyzer that can resolve the molecular complexity of natural organic matter at the level of elemental composition assignment. Here, we leverage the high dynamic range, resolving power, resistance to peak coalescence, and maximum ion number and ion trapping duration in a custom built, 21 tesla hybrid linear ion trap /FT-ICR mass spectrometer for a dissolved organic matter standard (Suwanne River Fulvic Acid). We compare the effect of peak-picking threshold (3σ, 4σ, 5σ, and 6σ) on number of elemental composition assignments, mass measurement accuracy, and dynamic range for a 6.3 s transient across the mass range of m/z 200-1200 that comprises the highest achieved resolving power broadband FT-ICR mass spectrum collected to date. More than 36 000 species are assigned with signal magnitude greater than 3σ at root-mean-square mass error of 36 ppb, the most species identified reported to date for dissolved organic matter. We identify 18O and 17O isotopologues and resolve isobaric overlaps on the order of a few electrons across a wide mass range (up to m/z 1000) leveraging mass resolving powers (3 000 000 at m/z 200) only achievable by 21 T FT-ICR MS and increased by ∼30% through absorption mode data processing. Elemental compositions unique to the 3σ span a wide compositional range of aromaticity not detected at higher peak-picking thresholds. Furthermore, we leverage the high dynamic range at 21 T FT-ICR MS to provide a molecular catalogue of a widely utilized reference standard (SRFA) to the analytical community collected on the highest performing mass analyzer for complex mixture analysis to date. This instrument is available free of charge to scientists worldwide.
Collapse
Affiliation(s)
- William Bahureksa
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 United States
| | - Thomas Borch
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 United States.,Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, United States
| | - Robert B Young
- Chemical Analysis & Instrumentation Laboratory, New Mexico State University, MSC 3RES, Las Cruces, New Mexico 88003, United States
| | - Chad R Weisbrod
- National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility, Florida State University,1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| | - Greg T Blakney
- National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility, Florida State University,1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| | - Amy M McKenna
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, United States.,National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility, Florida State University,1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| |
Collapse
|