1
|
Li J, Li C, Han Y, Yang J, Hu Y, Xu H, Zhou Y, Zuo J, Tang Y, Lei C, Li C, Wang H. Bacterial membrane vesicles from swine farm microbial communities harboring and safeguarding diverse functional genes promoting horizontal gene transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175639. [PMID: 39168346 DOI: 10.1016/j.scitotenv.2024.175639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Antibiotic resistance (AMR) poses a significant global health challenge, with swine farms recognized as major reservoirs of antibiotic resistance genes (ARGs). Recently, bacterial membrane vesicles (BMVs) have emerged as novel carriers mediating horizontal gene transfer. However, little is known about the ARGs carried by BMVs in swine farm environments and their transfer potential. This study investigated the distribution, sources, and microbiological origins of BMVs in three key microbial habitats of swine farms (feces, soil, and fecal wastewater), along with the ARGs and mobile genetic elements (MGEs) they harbor. Characterization of BMVs revealed particle sizes ranging from 20 to 500 nm and concentrations from 108 to 1012 particles/g, containing DNA and proteins. Metagenomic sequencing identified BMVs predominantly composed of members of the Proteobacteria phyla, including Pseudomonadaceae, Moraxellaceae, and Enterobacteriaceae, carrying diverse functional genes encompassing resistance to 14 common antibiotics and 74,340 virulence genes. Notably, multidrug resistance, tetracycline, and chloramphenicol resistance genes were particularly abundant. Furthermore, BMVs harbored various MGEs, primarily plasmids, and demonstrated the ability to protect their DNA cargo from degradation and facilitate horizontal gene transfer, including the transmission of resistance genes. In conclusion, this study reveals widespread presence of BMVs carrying ARGs and potential virulence genes in swine farm feces, soil, and fecal wastewater. These findings not only provide new insights into the role of extracellular DNA in the environment but also highlight concerns regarding the gene transfer potential mediated by BMVs and associated health risks.
Collapse
Affiliation(s)
- Jinpeng Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650000, China.
| | - Yun Han
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Jian Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Yulian Hu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Heting Xu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Yi Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Jing Zuo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Yizhi Tang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Cui Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
2
|
Ma R, Peng L, Tang R, Jiang T, Chang J, Li G, Wang J, Yang Y, Yuan J. Bioaerosol emission characteristics and potential risks during composting: Focus on pathogens and antimicrobial resistance. JOURNAL OF HAZARDOUS MATERIALS 2024; 481:136466. [PMID: 39549575 DOI: 10.1016/j.jhazmat.2024.136466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
In this study, we analyzed bioaerosol emission characteristics and potential risks of antimicrobial resistance (AMR) during composting using the impaction culture method and metagenomic sequencing. The results showed that the highly saturated water vapor in the emission gas mitigated particulate matter emission during the thermophilic period. About the bioaerosols, the airborne aerobic bacterial emissions were suppressed as composting enters the mature period, and the airborne fungi are usually present as single-cell or small-cell aggregates (< 3.3 µm). In addition, the microbial community structure in bioaerosols was stable and independent of composting time. Most importantly, the PM2.5 in bioaerosols contained large amounts of antibiotic resistance genes (ARGs), potential pathogens, and multidrug resistant pathogens, which were diverse and present in high concentrations. Among them, ARGs concentrations encoding 21 antibiotics ranged from - 4.50 to 0.70 ppm/m3 (Log10 ARGs). Among the 89 potential human pathogens detected, Escherichia coli, Salmonella enterica, Klebsiella pneumoniae, and Staphylococcus aureus were the only culturable potentially multidrug resistant pathogens carrying multiple ARGs encoding resistance at high concentrations (- 0.57 to 1.15 ppm/m3 (Log10 ARGs)), and were more likely to persist and multiply in oligotrophic environments. Our findings indicate that composting technology can transfer AMR from solid compost to gas phase and increase the risk of AMR transmission.
Collapse
Affiliation(s)
- Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Lijuan Peng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruolan Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Tao Jiang
- School of New Energy Materials and Chemistry, Leshan Normal University, Sichuan 614000, China
| | - Jiali Chang
- School of New Energy Materials and Chemistry, Leshan Normal University, Sichuan 614000, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Ai C, Cui P, Liu C, Wu J, Xu Y, Liang X, Yang QE, Tang X, Zhou S, Liao H, Friman VP. Viral and thermal lysis facilitates transmission of antibiotic resistance genes during composting. Appl Environ Microbiol 2024; 90:e0069524. [PMID: 39078126 PMCID: PMC11337816 DOI: 10.1128/aem.00695-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/06/2024] [Indexed: 07/31/2024] Open
Abstract
While the distribution of extracellular ARGs (eARGs) in the environment has been widely reported, the factors governing their release remain poorly understood. Here, we combined multi-omics and direct experimentation to test whether the release and transmission of eARGs are associated with viral lysis and heat during cow manure composting. Our results reveal that the proportion of eARGs increased 2.7-fold during composting, despite a significant and concomitant reduction in intracellular ARG abundances. This relative increase of eARGs was driven by composting temperature and viral lysis of ARG-carrying bacteria based on metagenome-assembled genome (MAG) analysis. Notably, thermal lysis of mesophilic bacteria carrying ARGs was a key factor in releasing eARGs at the thermophilic phase, while viral lysis played a relatively stronger role during the non-thermal phase of composting. Furthermore, MAG-based tracking of ARGs in combination with direct transformation experiments demonstrated that eARGs released during composting pose a potential transmission risk. Our study provides bioinformatic and experimental evidence of the undiscovered role of temperature and viral lysis in co-driving the spread of ARGs in compost microbiomes via the horizontal transfer of environmentally released DNA. IMPORTANCE The spread of antibiotic resistance genes (ARGs) is a critical global health concern. Understanding the factors influencing the release of extracellular ARGs (eARGs) is essential for developing effective strategies. In this study, we investigated the association between viral lysis, heat, and eARG release during composting. Our findings revealed a substantial increase in eARGs despite reduced intracellular ARG abundance. Composting temperature and viral lysis were identified as key drivers, with thermal lysis predominant during the thermophilic phase and viral lysis during non-thermal phases. Moreover, eARGs released during composting posed a transmission risk through horizontal gene transfer. This study highlights the significance of temperature and phage lysis in ARG spread, providing valuable insights for mitigating antibiotic resistance threats.
Collapse
Affiliation(s)
- Chaofan Ai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peng Cui
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiawei Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Xu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolong Liang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Qiu-e Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | | |
Collapse
|
4
|
Li S, Bu J, Pan X, Li Q, Zuo X, Xiao G, Du J, Zhang LK, Xia B, Gao Z. SARS-CoV-2 envelope protein-derived extracellular vesicles act as potential media for viral spillover. J Med Virol 2024; 96:e29782. [PMID: 39011762 DOI: 10.1002/jmv.29782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024]
Abstract
Extracellular vesicles (EVs) are shown to be a novel viral transmission model capable of increasing a virus's tropism. According to our earlier research, cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or transfected with envelope protein plasmids generate a novel type of EVs that are micrometer-sized and able to encase virus particles. Here, we showed the capacity of these EVs to invade various animals both in vitro and in vivo independent of the angiotensin-converting enzyme 2 receptor. First, via macropinocytosis, intact EVs produced from Vero E6 (monkey) cells were able to enter cells from a variety of animals, including cats, dogs, bats, hamsters, and minks, and vice versa. Second, when given to zebrafish with cutaneous wounds, the EVs showed favorable stability in aqueous environments and entered the fish. Moreover, infection of wild-type (WT) mice with heterogeneous EVs carrying SARS-CoV-2 particles led to a strong cytokine response and a notable amount of lung damage. Conversely, free viral particles did not infect WT mice. These results highlight the variety of processes behind viral transmission and cross-species evolution by indicating that EVs may be possible vehicles for SARS-CoV-2 spillover and raising risk concerns over EVs' potential for viral gene transfer.
Collapse
Affiliation(s)
- Shuangqu Li
- Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiwen Bu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyan Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiguang Li
- Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Zuo
- Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jiulin Du
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Bingqing Xia
- Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaobing Gao
- Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, 22 Chinese Academy of Science, Zhongshan, China
| |
Collapse
|
5
|
Amábile-Cuevas CF, Lund-Zaina S. Non-Canonical Aspects of Antibiotics and Antibiotic Resistance. Antibiotics (Basel) 2024; 13:565. [PMID: 38927231 PMCID: PMC11200725 DOI: 10.3390/antibiotics13060565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The understanding of antibiotic resistance, one of the major health threats of our time, is mostly based on dated and incomplete notions, especially in clinical contexts. The "canonical" mechanisms of action and pharmacodynamics of antibiotics, as well as the methods used to assess their activity upon bacteria, have not changed in decades; the same applies to the definition, acquisition, selective pressures, and drivers of resistance. As a consequence, the strategies to improve antibiotic usage and overcome resistance have ultimately failed. This review gathers most of the "non-canonical" notions on antibiotics and resistance: from the alternative mechanisms of action of antibiotics and the limitations of susceptibility testing to the wide variety of selective pressures, lateral gene transfer mechanisms, ubiquity, and societal factors maintaining resistance. Only by having a "big picture" view of the problem can adequate strategies to harness resistance be devised. These strategies must be global, addressing the many aspects that drive the increasing prevalence of resistant bacteria aside from the clinical use of antibiotics.
Collapse
Affiliation(s)
| | - Sofia Lund-Zaina
- Department of Public Health, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
6
|
Wang Y, Li S, Wang T, Zou M, Peng X. Extracellular Vesicles From Mycoplasma gallisepticum: Modulators of Macrophage Activation and Virulence. J Infect Dis 2024; 229:1523-1534. [PMID: 37929888 DOI: 10.1093/infdis/jiad486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular communication by transporting proteins. To investigate the pathogenesis of Mycoplasma gallisepticum, a major threat to the poultry industry, we isolated and characterized M. gallisepticum-produced EVs. Our study highlights the significant impact of M. gallisepticum-derived EVs on immune function and macrophage apoptosis, setting them apart from other M. gallisepticum metabolites. These EVs dose-dependently enhance M. gallisepticum adhesion and proliferation, simultaneously modulating Toll-like receptor 2 and interferon γ pathways and thereby inhibiting macrophage activation. A comprehensive protein analysis revealed 117 proteins in M. gallisepticum-derived EVs, including established virulence factors, such as GapA, CrmA, VlhA, and CrmB. Crucially, these EV-associated proteins significantly contribute to M. gallisepticum infection. Our findings advance our comprehension of M. gallisepticum pathogenesis, offering insights for preventive strategies and emphasizing the pivotal role of M. gallisepticum-derived EVs and their associated proteins. This research sheds light on the composition and crucial role of M. gallisepticum-derived EVs in M. gallisepticum pathogenesis, aiding our fight against M. gallisepticum infections.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shiying Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tengfei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Shuai X, Zhou Z, Zhu L, Achi C, Lin Z, Liu Z, Yu X, Zhou J, Lin Y, Chen H. Ranking the risk of antibiotic resistance genes by metagenomic and multifactorial analysis in hospital wastewater systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133790. [PMID: 38368689 DOI: 10.1016/j.jhazmat.2024.133790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Antimicrobial resistance poses a serious threat to human health. Hospital wastewater system (HWS) is an important source of antibiotic resistance genes (ARGs). The risk of ARGs in HWS is still an under-researched area. In this study, we collected publicly metagenomic datasets of 71 hospital wastewater samples from 18 hospitals in 13 cities. A total of 9838 contigs were identified to carry 383 unique ARGs across all samples, of which 2946 contigs were plasmid-like sequences. Concurrently, the primary hosts of ARGs within HWS were found to be Escherichia coli and Klebsiella pneumoniae. To further evaluate the risk of each ARG subtype, we proposed a risk assessment framework based on the importance of corresponding antibiotics as defined by the WHO and three other indicators - ARG abundance (A), mobility (M), and host pathogenicity (P). Ninety ARGs were identified as R1 ARGs having high-risk scores, which meant having a high abundance, high mobility, and carried by pathogens in HWS. Furthermore, 25% to 49% of genomes from critically important pathogens accessed from NCBI carried R1 ARGs. A significantly higher number of R1 ARGs was carried by pathogens in the effluents of municipal wastewater treatment plants from NCBI, highlighting the role of R1 ARGS in accelerating health and environmental risks.
Collapse
Affiliation(s)
- Xinyi Shuai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenchao Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Chioma Achi
- Ineos Oxford Institute of Antimicrobial Research, Department of Biology, University of Oxford, United Kingdom
| | - Zejun Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Yu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinyu Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanhan Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Jiang Z, Luo K, Zeng H, Li J. Monitoring of Medical Wastewater by Sensitive, Convenient, and Low-Cost Determination of Small Extracellular Vesicles Using a Glycosyl-Imprinted Sensor. ACS Sens 2024; 9:1252-1260. [PMID: 38373338 DOI: 10.1021/acssensors.3c02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The monitoring of small extracellular vesicles (sEVs) in medical waste is of great significance for the prevention of the spread of infectious diseases and the treatment of environmental pollutants in medical waste. Highly sensitive and selective detection methods are urgently needed due to the low content of sEVs in waste samples and the complex sample composition. Herein, a glycosyl-imprinted electrochemical sensor was constructed and a novel strategy for rapid, sensitive, and selective sEVs detection was proposed. The characteristic trisaccharide at the end of the glycosyl chain of the glycoprotein carried on the surface of the sEVs was used as the template molecule. The glycosyl-imprinted polymer films was then prepared by electropolymerization with o-phenylenediamine (o-PD) and 3-aminophenylboronic acid (m-APBA) as functional monomers. sEVs were captured by the imprinted cavities through the recognition and adsorption of glycosyl chains of glycoproteins on sEVs. The m-APBA molecule also acted as a signal probe and was then attached on the immobilized glycoprotein on the surface of sEVs by boric acid affinity. The electrochemical signal of m-APBA was amplificated due to the abundant glycoproteins on the surface of sEVs. The detection range of the sensor was 2.1 × 104 to 8.7 × 107 particles/mL, and the limit of detection was 1.7 × 104 particles/mL. The sensor was then applied to the determination of sEVs in medical wastewater and urine, which showed good selectivity, low detection cost, and good sensitivity.
Collapse
Affiliation(s)
- Zejun Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Kui Luo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jianping Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
9
|
Li LJ, Xu F, Xu JX, Yan Y, Su JQ, Zhu YG, Li H. Spatiotemporal Changes of Antibiotic Resistance, Potential Pathogens, and Health Risk in Kindergarten Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3919-3930. [PMID: 38353611 DOI: 10.1021/acs.est.3c07935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The microorganisms present in kindergartens are extremely important for children's health during their three-year preschool education. To assess the risk of outdoor dust in kindergartens, the antibiotic resistome and potential pathogens were investigated in dust samples collected from 59 kindergartens in Xiamen, southeast China in both the winter and summer. Both high-throughput quantitative PCR and metagenome analysis revealed a higher richness and abundance of antibiotic resistance genes (ARGs) in winter (P < 0.05). Besides, the bloom of ARGs and potential pathogens was evident in the urban kindergartens. The co-occurrence patterns among ARGs, mobile genetic elements (MGEs), and potential pathogens suggested some bacterial pathogens were potential hosts of ARGs and MGEs. We found a large number of high-risk ARGs in the dust; the richness and abundance of high-risk ARGs were higher in winter and urban kindergartens compared to in summer and peri-urban kindergartens, respectively. The results of the co-occurrence patterns and high-risk ARGs jointly reveal that urbanization will significantly increase the threat of urban dust to human beings and their risks will be higher in winter. This study unveils the close association between ARGs/mobile ARGs and potential pathogens and emphasizes that we should pay more attention to the health risks induced by their combination.
Collapse
Affiliation(s)
- Li-Juan Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Fei Xu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian-Xin Xu
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
10
|
Hicks E, Rogers NMK, Hendren CO, Kuehn MJ, Wiesner MR. Extracellular Vesicles and Bacteriophages: New Directions in Environmental Biocolloid Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16728-16742. [PMID: 37898880 DOI: 10.1021/acs.est.3c05041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
There is a long-standing appreciation among environmental engineers and scientists regarding the importance of biologically derived colloidal particles and their environmental fate. This interest has been recently renewed in considering bacteriophages and extracellular vesicles, which are each poised to offer engineers unique insights into fundamental aspects of environmental microbiology and novel approaches for engineering applications, including advances in wastewater treatment and sustainable agricultural practices. Challenges persist due to our limited understanding of interactions between these nanoscale particles with unique surface properties and their local environments. This review considers these biological particles through the lens of colloid science with attention given to their environmental impact and surface properties. We discuss methods developed for the study of inert (nonbiological) particle-particle interactions and the potential to use these to advance our understanding of the environmental fate and transport of extracellular vesicles and bacteriophages.
Collapse
Affiliation(s)
- Ethan Hicks
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas M K Rogers
- Department of Mechanical Engineering, Porter School of Earth and Environmental Studies, Tel Aviv University, Tel Aviv 69978, Israel
| | - Christine Ogilvie Hendren
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
- Research Institute for Environment, Energy and Economics, Appalachian State University, Boone, North Carolina 28608, United States
| | - Meta J Kuehn
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Mark R Wiesner
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
11
|
Qin Y, Shi Z, Zhu L, Li H, Lu W, Ye G, Huang Q, Cui L. Impact of Airborne Pathogen-Derived Extracellular Vesicles on Macrophages Revealed by Raman Spectroscopy and Multiomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15858-15868. [PMID: 37812447 DOI: 10.1021/acs.est.3c04800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Long-term exposure to the indoor environment may pose threats to human health due to the presence of pathogenic bacteria and their byproducts. Nanoscale extracellular vesicles (EVs) extensively secreted from pathogenic bacteria can traverse biological barriers and affect physio-pathological processes. However, the potential health impact of EVs from indoor dust and the underlying mechanisms remain largely unexplored. Here, Raman spectroscopy combined with multiomics (genomics and proteomics) was used to address these issues. Genomic analysis revealed that Pseudomonas was an efficient producer of EVs that harbored 68 types of virulence factor-encoding genes. Upon exposing macrophages to environmentally relevant doses of Pseudomonas aeruginosa PAO1-derived EVs, macrophage internalization was observed, and release of inflammatory factors was determined by RT-PCR. Subsequent Raman spectroscopy and unsupervised surprisal analysis of EV-affected macrophages distinguished metabolic alterations, particularly in proteins and lipids. Proteomic analysis further revealed differential expression of proteins in inflammatory and metabolism-related pathways, indicating that EV exposure induced macrophage metabolic reprogramming and inflammation. Collectively, our findings revealed that pathogen-derived EVs in the indoor environments can act as a new mediator for pathogens to exert adverse health effects. Our method of Raman integrated with multiomics offers a complementary approach for rapid and in-depth understanding of EVs' impact.
Collapse
Affiliation(s)
- Yifei Qin
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Shi
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- State Environment Protection Key Laboratory of Satellite Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
| | - Longji Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hongzhe Li
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wenjia Lu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guozhu Ye
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Cui
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
12
|
Zhu L, Huang H, Avellán‐Llaguno RD, Qin Y, An X, Su J, Huang Q, Zhu Y. Diverse functional genes harboured in extracellular vesicles from environmental and human microbiota. J Extracell Vesicles 2022; 11:e12292. [PMID: 36463395 PMCID: PMC9719567 DOI: 10.1002/jev2.12292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Exchange of mobile functional genes within microbiota benefits the microbial community. However, the status of the mobile gene pool in environment is still largely unclear, impeding the understanding on the process of gene transfer in natural microbial communities. The release of extracellular vesicles (EVs) by diverse organisms has been proposed to be a vital way in the complex networks of interactions between microbes and their habitats. In this study, we hypothesized that microbial EVs encapsulating functional DNA are widely distributed in the environmental matrix. The prevalence, source and DNA cargoes of EVs in three types of typical microbial habitats were studied. High abundance of EVs comparable to the bacterial concentration was found in human faeces, wastewater and soil. Metagenomic analysis showed the diverse and differential taxonomy of EVs-associated DNA compared to source microbiome. An array of efficient EVs producing species was identified. A wide variety of mobile genes including glycoside hydrolase family 25 were enriched. Antibiotic resistance genes co-localizing with mobile genetic elements were abundant in the EVs. This study provides novel insights into the prevalent EVs as a reservoir for the mobile functional genes in the natural environment.
Collapse
Affiliation(s)
- Li‐Ting Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Hai‐Ning Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Ricardo David Avellán‐Llaguno
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Yifei Qin
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Xin‐Li An
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Jian‐Qiang Su
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- National Basic Science Data CenterBeijingChina
| | - Yong‐Guan Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| |
Collapse
|
13
|
Liao H, Li H, Duan CS, Zhou XY, Luo QP, An XL, Zhu YG, Su JQ. Response of soil viral communities to land use changes. Nat Commun 2022; 13:6027. [PMID: 36224209 PMCID: PMC9556555 DOI: 10.1038/s41467-022-33771-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/30/2022] [Indexed: 02/07/2023] Open
Abstract
Soil viruses remain understudied when compared to virus found in aquatic ecosystems. Here, we investigate the ecological patterns of soil viral communities across various land use types encompassing forest, agricultural, and urban soil in Xiamen, China. We recovered 59,626 viral operational taxonomic units (vOTUs) via size-fractioned viromic approach with additional mitomycin C treatment to induce virus release from bacterial fraction. Our results show that viral communities are significantly different amongst the land use types considered. A microdiversity analysis indicates that selection act on soil vOTUs, resulting in disparities between land use associated viral communities. Soil pH is one of the major determinants of viral community structure, associated with changes of in-silico predicted host compositions of soil vOTUs. Habitat disturbance and variation of soil moisture potentially contribute to the dynamics of putative lysogenic vOTUs. These findings provide mechanistic understandings of the ecology and evolution of soil viral communities in changing environments.
Collapse
Affiliation(s)
- Hu Liao
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Hu Li
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China
| | - Chen-Song Duan
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xin-Yuan Zhou
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qiu-Ping Luo
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xin-Li An
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China
| | - Yong-Guan Zhu
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China ,grid.9227.e0000000119573309State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Jian-Qiang Su
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
14
|
Qin YF, Lu XY, Shi Z, Huang QS, Wang X, Ren B, Cui L. Deep Learning-Enabled Raman Spectroscopic Identification of Pathogen-Derived Extracellular Vesicles and the Biogenesis Process. Anal Chem 2022; 94:12416-12426. [PMID: 36029235 DOI: 10.1021/acs.analchem.2c02226] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pathogenic bacterial infections, exacerbated by increasing antimicrobial resistance, pose a major threat to human health worldwide. Extracellular vesicles (EVs), secreted by bacteria and acting as their "long-distance weapons", play an important role in the occurrence and development of infectious diseases. However, no efficient methods to rapidly detect and identify EVs of different bacterial origins are available. Here, label-free Raman spectroscopy in combination with a new deep learning model of the attentional neural network (aNN) was developed to identify pathogen-derived EVs at Gram±, species, strain, and even down to physiological levels. By training the aNN model with a large Raman data set from six typical pathogen-derived EVs, we achieved the identification of EVs with high accuracies at all levels: exceeding 96% at the Gram and species levels, 93% at the antibiotic-resistant and sensitive strain levels, and still above 87% at the physiological level. aNN enabled Raman spectroscopy to interrogate the bacterial origin of EVs to a much higher level than previous methods. Moreover, spectral markers underpinning EV discrimination were uncovered from subtly different EV spectra via an interpretation algorithm of the integrated gradient. A further comparative analysis of the rich Raman biochemical signatures of EVs and parental pathogens clearly revealed the biogenesis process of EVs, including the selective encapsulation of biocomponents and distinct membrane compositions from the original bacteria. This developed platform provides an accurate and versatile means to identify pathogen-derived EVs, spectral markers, and the biogenesis process. It will promote rapid diagnosis and allow the timely treatment of bacterial infections.
Collapse
Affiliation(s)
- Yi-Fei Qin
- Xiamen Key Laboratory of Indoor Air and Health, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Yu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zheng Shi
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.,State Environment Protection Key Laboratory of Satellite Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian-Sheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Li Cui
- Xiamen Key Laboratory of Indoor Air and Health, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
15
|
Douanne N, Dong G, Amin A, Bernardo L, Blanchette M, Langlais D, Olivier M, Fernandez-Prada C. Leishmania parasites exchange drug-resistance genes through extracellular vesicles. Cell Rep 2022; 40:111121. [PMID: 35858561 DOI: 10.1016/j.celrep.2022.111121] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Leishmania are eukaryotic parasites that have retained the ability to produce extracellular vesicles (EVs) through evolution. To date, it has been unclear if different DNA entities could be associated with Leishmania EVs and whether these could constitute a mechanism of horizontal gene transfer (HGT). Herein, we investigate the DNA content of EVs derived from drug-resistant parasites, as well as the EVs' potential to act as shuttles for DNA transfer. Next-generation sequencing and PCR assays confirm the enrichment of amplicons carrying drug-resistance genes associated with EVs. Transfer assays of drug-resistant EVs highlight a significant impact on the phenotype of recipient parasites induced by the expression of the transferred DNA. Recipient parasites display an enhanced growth and better control of oxidative stress. We provide evidence that eukaryotic EVs function as efficient mediators in HGT, thereby facilitating the transmission of drug-resistance genes and increasing the fitness of cells when encountering stressful environments.
Collapse
Affiliation(s)
- Noélie Douanne
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 626 CIMIA Sicotte Street, Saint-Hyacinthe, QC J2S 2M2, Canada; The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - George Dong
- IDIGH, The Research Institute of the McGill University Health Centre, 2155 Guy Street, Montreal, QC H3H 2L9, Canada
| | - Atia Amin
- Department of Human Genetics, McGill University Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Lorena Bernardo
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 626 CIMIA Sicotte Street, Saint-Hyacinthe, QC J2S 2M2, Canada; The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mathieu Blanchette
- School of Computer Science, McGill University, Montreal, QC H3A 0E9, Canada
| | - David Langlais
- Department of Human Genetics, McGill University Genome Centre, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, QC, Canada
| | - Martin Olivier
- IDIGH, The Research Institute of the McGill University Health Centre, 2155 Guy Street, Montreal, QC H3H 2L9, Canada; Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, QC, Canada.
| | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 626 CIMIA Sicotte Street, Saint-Hyacinthe, QC J2S 2M2, Canada; The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, QC, Canada.
| |
Collapse
|