1
|
Warner W, Licha T. Melamine - A PMT/vPvM substance as a generic indicator for anthropogenic activity and urbanisation? An explorative study on melamine in the water cycle and soil. CHEMOSPHERE 2025; 370:143918. [PMID: 39647792 DOI: 10.1016/j.chemosphere.2024.143918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Melamine has a high production volume today and is spread ubiquitously in the anthropogenic technosphere. It is released steadily to the water cycle by many sources. Even though melamine has low direct toxicity, chronic exposure can cause nephrolithiasis and disrupt the endocrine system. Most data on melamine is based on case studies with, when compared, partially contradictive implications. As melamine is a compound of many sources (SMS), very persistent, mobile (vPvM), and toxic (PMT) it has the potential to break through natural barriers posing a potential risk to drinking water resources. This study combines existing data with own measurements gathered through various individual monitoring campaigns with the aim to gain new insights into its environmental behaviour and hotspots. Samples from surface water bodies, groundwater, wastewater (treated, untreated), and soil samples were analysed regarding their melamine concentration via liquid chromatography coupled with tandem mass spectrometry (LC-MSMS). Besides three drinking water samples, melamine could be found in all water samples (n = 632) of this study, with a maximum concentration of 1289 ng/L in drinking water and 1120 ng/L in groundwater. While a constant baseline melamine concentration with an event-based release could be observed in most surface water bodies, higher concentrations towards Western Europe (urbanisation and chemical industry) was observed for wastewater. A similar pattern was found in the spatial distribution of melamine in agricultural soils towards an urban/suburban area. As, in general, melamine concentrations were higher towards urbans centers melamine can also be classified as an indicator of anthropogenic activity and urbanisation, but also spotlights on these areas as hotspots for potentially many compounds of the human technosphere. We call policy to shift from the existing one-size-fits-all solution to more flexible and risk-based approaches to prepare for future challenges.
Collapse
Affiliation(s)
- Wiebke Warner
- Ruhr University Bochum, Institute of Geology, Mineralogy & Geophysics, Dept. Hydrogeology and Environmental Geology, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Tobias Licha
- Ruhr University Bochum, Institute of Geology, Mineralogy & Geophysics, Dept. Hydrogeology and Environmental Geology, Universitätsstr. 150, 44801, Bochum, Germany.
| |
Collapse
|
2
|
Labad F, Santana-Viera S, Xu J, Borrell-Diaz X, Teixidó M, Pérez S. Surveillance and environmental risk of very mobile pollutants in urban stormwater and rainwater in a water-stressed city. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136959. [PMID: 39721475 DOI: 10.1016/j.jhazmat.2024.136959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Urban stormwater and rainwater in water-stressed cities serve as critical vectors for the transport and dispersion of pollutants, including very mobile compounds These pollutants, which can be influenced by factors such as land use, rainfall intensity, and urban infrastructure, pose significant risks to both human and environmental health. Although several priority pollutants have traditionally been detected in urban stormwater, little is known about the presence of very mobile compounds that may threaten urban drinking water supplies and pose environmental risks to aquatic species. In this study, 131 urban rain and stormwater samples were collected from three districts of Barcelona (Spain) and analysed for 26 very mobile pollutants that are often overlooked in conventional monitoring efforts. The findings reveal that stormwater and rainwater are major contributors to the spread of pollutants in water-stressed cities, with particular emphasis on substances like lifestyle products, pharmaceuticals, and industrial chemicals. Among the 23 compounds detected, 12 were reported for the first time to occur in urban stormwater with concentrations as high as 271 µg L-1. Measurements of dissolved organic carbon, electrical conductivity, and the presence of wastewater-borne pollutants within the correlation analysis, suggested the contribution of sanitary sewer overflows (SSO) to urban stormwater. Finally, an environmental risk assessment (worst-case scenario) was performed, showing a moderate risk of target analytes such as acesulfame and 1-naphthalenesulfonic acid (ERQ > 0.1). The results highlight the need for improved surveillance systems, more sustainable stormwater management practices, and strategies for mitigating the environmental risk posed by very mobile pollutants in regions facing water scarcity.
Collapse
Affiliation(s)
- Francesc Labad
- ONHEALTH, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain.
| | | | - Jiaqi Xu
- Groundwater and Hydrogeochemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | | | - Marc Teixidó
- Groundwater and Hydrogeochemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Sandra Pérez
- ONHEALTH, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain.
| |
Collapse
|
3
|
Zhou N, Sui S, Liu H, Yang X, Hong H, Patterson TA. Determining high priority disinfection byproducts based on experimental aquatic toxicity data and predictive models: Virtual screening and in vivo study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175489. [PMID: 39142401 DOI: 10.1016/j.scitotenv.2024.175489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 07/03/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Only about 100 disinfection byproducts (DBPs) have been tested for their potential aquatic toxicity. It is not known which specific DBPs, DBP main groups, and DBP subgroups are more toxic due to the lack of experimental toxicity data. Herein, high priority specific DBPs, DBP main groups, DBP subgroups, most sensitive model aquatic species, potential PBT and PMT (persistent, bioaccumulative/mobile, and toxic) DBPs were virtually screened for 1187 updated DBPs inventory. Priority setting based on experimental and predicted acute and chronic aquatic toxicity data found that the aromatic and alicyclic DBPs in four DBPs main groups showed high priority because larger proportions of aromatic and alicyclic DBPs are in high hazard categories (i.e. Acute and/or Chronic Toxic-1 or Toxic-2) according to the criteria in GHS system compared to the aliphatic and heterocyclic DBPs. The halophenols, estrogen-DBPs, nonhalogenated esters, and nonhalogenated aldehydes were recognized as high priority DBPs subgroups. For specific DBPs, 19 and 31 DBPs should be highly concerned in the future study because both acute and chronic toxicity of those DBPs to all of the three aquatic life (algae, Daphnia magna, fish) were classified as Toxic-1 and Toxic-2, respectively. The Daphnia magna and algae were sensitive to the acute toxicity of DBPs, while the fish and Daphnia magna were sensitive to the chronic toxicity of DBPs. One potential PBT (Tetrachlorobisphenol A) and four potential PMT DBPs were identified. For verification, the acute toxicity of four DBPs on three aquatic organism were performed, and their tested acute toxicity data to three aquatic organisms were consistent with the predictions. Our results could be beneficial to government regulators to adopt effective measures to limit the discharge of high priority DBPs and help the scientific community to develop or improve disinfection processes to reduce the production of high priority DBPs.
Collapse
Affiliation(s)
- Nan Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuxin Sui
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Huixiao Hong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Tucker A Patterson
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
4
|
Muschket M, Neuwald IJ, Zahn D, Seelig AH, Kuckelkorn J, Knepper TP, Reemtsma T. Fate of persistent and mobile chemicals in the water cycle: From municipal wastewater discharges to river bank filtrate. WATER RESEARCH 2024; 266:122436. [PMID: 39298902 DOI: 10.1016/j.watres.2024.122436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Persistent and mobile (PM) chemicals are considered detrimental for drinking water resources as they may pass through all barriers protecting these resources against pollution. However, knowledge on the occurrence of PM chemicals in the water cycle, that make their way into drinking water resources, is still limited. The effluents of six municipal wastewater treatment plants (WWTPs, n = 38), surface water of two rivers (n = 32) and bank filtrate of one site (n = 15) were analyzed for 127 suspected PM chemicals. In the rivers, median concentrations of 92 detected analytes ranged from 0.3 ng/L to 2.6 µg/L (tetrafluoroborate, BF4). Lower than average dilution from WWTP effluent to surface water of 43 PM chemicals suggests significant discharge from other sources. Many of these compounds were industrial chemicals, including cyanoguanidine, trifluoromethanesulfonic acid and BF4. River bank filtration (RBF) reduced the total concentration of 40 quantified compounds by 60 % from 19.5 µg/L in surface water to 8.4 µg/L in bank filtrate, on average. Of these, 20 compounds showed good removal (> 80 %), 14 intermediate (80 - 20 %) and 6 no removal (≤ 20 %), among them carbamazepine, hexafluorophosphate, and 2-pyrrolidone. 13 substances occurred at concentrations ≥ 0.1 µg/L in bank filtrate; for six of them toxicological data were insufficient for a health-based risk assessment. The regulatory definition of P and M chemicals, if used together with existing data on environmental half-lives (P) and Koc (M), showed little power to discriminate between chemicals well removed in RBF and those that were hardly removed. This comprehensive field study shows that RBF is a useful but incomplete barrier to retain PM chemicals from surface water. Thus, PM chemicals are, indeed, a challenge for a sustainable water supply.
Collapse
Affiliation(s)
- Matthias Muschket
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Analytical Chemistry, Permoserstrasse 15, Leipzig 04318, Germany
| | - Isabelle J Neuwald
- Hochschule Fresenius gem. Trägergesellschaft mbH, Limburger Str. 2, Idstein 65510, Germany
| | - Daniel Zahn
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Analytical Chemistry, Permoserstrasse 15, Leipzig 04318, Germany
| | - Alina H Seelig
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Analytical Chemistry, Permoserstrasse 15, Leipzig 04318, Germany
| | - Jochen Kuckelkorn
- German Environment Agency, Section of Toxicology of Drinking Water and Swimming Pool Water, Heinrich-Heine-Str. 12, Bad Elster 08645, Germany
| | - Thomas P Knepper
- Hochschule Fresenius gem. Trägergesellschaft mbH, Limburger Str. 2, Idstein 65510, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Analytical Chemistry, Permoserstrasse 15, Leipzig 04318, Germany; Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, Leipzig 04103, Germany.
| |
Collapse
|
5
|
Baygildiev T, Meijer J, Cenijn P, Riegel M, Arp HPH, Lamoree M, Hamers T. Identification of polar bioactive substances in the Upper Rhine using effect-directed analysis. WATER RESEARCH 2024; 268:122607. [PMID: 39454269 DOI: 10.1016/j.watres.2024.122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Effect-Directed Analysis (EDA) was used to identify bioactive compounds in surface and well water from the Upper Rhine, and to evaluate their properties against the criteria set for Persistent, Mobile and Toxic (PMT) and very persistent and very mobile (vPvM) substances. A multi-layered solid-phase extraction was implemented to enrich a broad range of polar substances from the collected samples. The extracts were fractionated into 108 fractions and tested in the transthyretin (TTR)-binding assay measuring displacement of fluorescently labeled thyroxine (FITC-T4 TTR-binding assay) and the Aliivibrio fischeri bioluminescence (AFB) bioassay. Bioactive fractions guided the identification strategy using high-resolution mass spectrometry. Chemical features were systematically annotated using library databases and suspect lists, incorporating an automated assessment of the quality of each annotation. Based on this assessment, each chemical feature was assigned a specific identification confidence level. Identification of bioactive compounds was facilitated by using bioassay specific suspect lists that were extracted from an in-house developed database of positive and negative TTR-binding compounds and from a recently published database of active inhibitors of AFB. This resulted in the identification and confirmation of ten bioactive substances, including four evaluated as PMT and vPvM substances (diclofenac, trifloxystrobin acid, 6:2 FTSA and PFOA), and one as a potential PMT substance (4-aminoazobenzene). This study demonstrates the effectiveness of EDA in the identification of PMT/vPvM substances in the aquatic environment, facilitating their prioritization for comprehensive environmental risk assessment and possible regulation.
Collapse
Affiliation(s)
- Timur Baygildiev
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Jeroen Meijer
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Peter Cenijn
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Marcel Riegel
- DVGW-Technologiezentrum Wasser, Karlsruher Strasse 84, 76139, Karlsruhe, Germany
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, NO-0806, Oslo, Norway; Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Marja Lamoree
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Timo Hamers
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Bach C, Boiteux V, Dauchy X. France-Wide Monitoring of 1,4-Dioxane in Raw and Treated Water: Occurrence and Exposure Via Drinking Water Consumption. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:95-104. [PMID: 39085588 PMCID: PMC11377507 DOI: 10.1007/s00244-024-01078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024]
Abstract
In recent years, 1,4-dioxane has emerged as a pollutant of increasing concern following widespread detection in the aquatic environment of several countries. This persistent contaminant with specific physical and chemical properties can be rapidly dispersed and transported to river banks, groundwater and drinking water. Given the limited data on its occurrence in France, it was considered necessary to assess the potential exposure of the French population to this compound in drinking water. An analytical method based on solid-phase extraction (SPE) combined with gas chromatography tandem mass spectrometry (GC-MS/MS) was developed and validated during this study with a limit of quantification (LOQ) of 0.15 µg/L. Recoveries in natural water matrices ranged from 113 to 117% with a relative bias not exceeding 17%. This method was used for a nationwide campaign at almost 300 sites, evenly distributed over 101 French départements (administrative units), including some that were overseas. Of the 587 samples analysed, only 8% had a concentration that was greater than or equal to the LOQ. 1,4-Dioxane was detected mainly (63%) in raw and treated water from sites associated with historical industrial practices related to the use of chlorinated solvents. Concentrations of 1,4-dioxane ranging from 0.19 to 2.85 µg/L were observed in the raw water and from 0.18 to 2.46 µg/L in the treated water. Drinking water treatment plants using ozonation, granular activated carbon and chlorination have limited effectiveness in the removal of 1,4-dioxane. The results of this study are the first step towards bridging the knowledge gap in the occurrence of 1,4-dioxane in France.
Collapse
Affiliation(s)
- Cristina Bach
- Nancy Laboratory for Hydrology, Water Chemistry Unit, ANSES, 40 rue Lionnois, 54000, Nancy, France.
| | - Virginie Boiteux
- Nancy Laboratory for Hydrology, Water Chemistry Unit, ANSES, 40 rue Lionnois, 54000, Nancy, France
| | - Xavier Dauchy
- Nancy Laboratory for Hydrology, Water Chemistry Unit, ANSES, 40 rue Lionnois, 54000, Nancy, France
| |
Collapse
|
7
|
Pálešová N, Bláhová L, Janoš T, Řiháčková K, Pindur A, Šebejová L, Čupr P. Exposure to benzotriazoles and benzothiazoles in Czech male population and its associations with biomarkers of liver function, serum lipids and oxidative stress. Int Arch Occup Environ Health 2024; 97:523-536. [PMID: 38546760 PMCID: PMC11130049 DOI: 10.1007/s00420-024-02059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/22/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Benzotriazoles and benzothiazoles (BTs) are high-production volume chemicals as well as widely distributed emerging pollutants with potential health risk. However, information about human exposure to BTs and associated health outcomes is limited. OBJECTIVE We aimed to characterise exposure to BTs among Czech men, including possible occupational exposure among firefighters, its predictors, and its associations with liver function, serum lipids and oxidative stress. METHODS 165 participants (including 110 firefighters) provided urine and blood samples that were used to quantify the urinary levels of 8 BTs (high-performance liquid chromatography-tandem mass spectrometry), and 4 liver enzymes, cholesterol, low-density lipoprotein, and 8-hydroxy-2'-deoxyguanosine. Linear regression was used to assess associations with population characteristics and biomarkers of liver function, serum lipids and oxidative stress. Regression models were adjusted for potential confounding variables and false discovery rate procedure was applied to account for multiplicity. RESULTS The BTs ranged from undetected up to 46.8 ng/mL. 2-hydroxy-benzothiazole was the most predominant compound (detection frequency 83%; median 1.95 ng/mL). 1-methyl-benzotriazole (1M-BTR) was measured in human samples for the first time, with a detection frequency 77% and median 1.75 ng/mL. Professional firefighters had lower urinary 1M-BTR compared to non-firefighters. Urinary 1M-BTR was associated with levels of γ-glutamyl transferase (β = - 17.54%; 95% CI: - 26.127, - 7.962). CONCLUSION This is the first study to investigate BT exposure in Central Europe, including potentially exposed firefighters. The findings showed a high prevalence of BTs in the study population, the relevance of 1M-BTR as a new biomarker of exposure, and an urgent need for further research into associated adverse health outcomes.
Collapse
Affiliation(s)
- Nina Pálešová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Tomáš Janoš
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Katarína Řiháčková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Aleš Pindur
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Faculty of Sports Studies, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Training Centre of Fire Rescue Service, General Directorate of Fire Rescue Service of the Czech Republic, Ministry of the Interior, Trnkova 85, 628 00, Brno, Czech Republic
| | - Ludmila Šebejová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
8
|
Seelig AH, Zahn D, Reemtsma T. Sources of persistent and mobile chemicals in municipal wastewater: a sewer perspective in Leipzig, Germany. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33259-0. [PMID: 38635091 DOI: 10.1007/s11356-024-33259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Persistent and mobile (PM) chemicals spread in the water cycle and have been widely detected, yet information about their sources is still scarce. In this study, 67 PM chemicals were analyzed in 19 wastewater samples taken in the sewer system of the city of Leipzig, Germany, covering different industrial, clinical, and domestic discharges. A total of 37 of these analytes could be detected, with highly variable median concentrations between substances (median: 0.5-800 µg L-1) and for single substances between samples (e.g., 1,4-diazabicyclo[2.2.2]octane) by up to three orders of magnitude, with the highest single concentration exceeding 10 mg L-1 (p-cumenesulfonic acid). The emission of PM chemicals into the sewer system was classified as stemming from diffuse (14 analytes) or point sources (23 analytes), while 9 analytes fulfill both criteria. Many so-called industrial chemicals were also discharged from households (e.g., tris(2-chloroethyl) phosphate or 1H-benzotriazole). Examples for analytes showing specific sources are tetrafluoroborate (traffic-related industry and metal production and finishing), ε-caprolactam (large-scale laundry), or cyanuric acid (likely swimming pool). Furthermore, a correlation between 1-cyanoguanidine and guanylurea was observed for the traffic-related industry. This study outlines that sewer sampling can provide valuable information on the sources of PM chemicals. This knowledge is a prerequisite for their future emission control at source or substitution as an alternative to end-of-pipe treatment in municipal wastewater treatment plants.
Collapse
Affiliation(s)
- Alina H Seelig
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Daniel Zahn
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.
- Institute of Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103, Leipzig, Germany.
| |
Collapse
|
9
|
Li P, Su W, Zhong L, Wang H, Huang X, Ruan T, Jiang G. Occurrence and Ecological Risk of Alkylamine Triazines in Chinese Estuarine Sediments: An Emerging Class of Persistent, Mobile, and Toxic Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6814-6824. [PMID: 38581381 DOI: 10.1021/acs.est.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Identifying persistent, mobile, and toxic (PMT) substances from synthetic chemicals is critical for chemical management and ecological risk assessment. Inspired by the triazine analogues (e.g., atrazine and melamine) in the original European Union's list of PMT substances, the occurrence and compositions of alkylamine triazines (AATs) in the estuarine sediments of main rivers along the eastern coast of China were comprehensively explored by an integrated strategy of target, suspect, and nontarget screening analysis. A total of 44 AATs were identified, of which 23 were confirmed by comparison with authentic standards. Among the remaining tentatively identified analogues, 18 were emerging pollutants not previously reported in the environment. Tri- and di-AATs were the dominant analogues, and varied geographic distributions of AATs were apparent in the investigated regions. Toxic unit calculations indicated that there were acute and chronic risks to algae from AATs on a large geographical scale, with the antifouling biocide cybutryne as a key driver. The assessment of physicochemical properties further revealed that more than half of the AATs could be categorized as potential PMT and very persistent and very mobile substances at the screening level. These results highlight that AATs are a class of PMT substances posing high ecological impacts on the aquatic environment and therefore require more attention.
Collapse
Affiliation(s)
- Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Wenyuan Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laijin Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Qian Y, Guan L, Ke Y, Wang L, Wang X, Yu N, Yu Q, Wei S, Geng J. Unveiling intricate transformation pathways of emerging contaminants during wastewater treatment processes through simplified network analysis. WATER RESEARCH 2024; 253:121299. [PMID: 38387265 DOI: 10.1016/j.watres.2024.121299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
As the key stage for purifying wastewater, elimination of emerging contaminants (ECs) is found to be fairly low in wastewater treatment plants (WWTPs). However, less knowledge is obtained regarding the transformation pathways between various chemical structures of ECs under different treatment processes. This study unveiled the transformation pathways of ECs with different structures in 15 WWTPs distributed across China by simplified network analysis (SNA) we proposed. After treatment, the molecular weight of the whole component of wastewater decreased and the hydrophilicity increased. There are significant differences in the structure of eliminated, consistent and formed pollutants. Amino acids, peptides, and analogues (AAPAs) were detected most frequently and most removable. Benzenoids were refractory. Triazoles were often produced. The high-frequency reactions in different WWTPs were similar, (de)methylation and dehydration occurred most frequently. Different biological treatment processes performed similarly, while some advanced treatment processes differed, such as a significant increase of -13.976 (2HO reaction) paired mass distances (PMDs) in the chlorine alone process. Further, the common structural transformation was uncovered. 4 anti-hypertensive drugs, including irbesartan, valsartan, olmesartan, and losartan, were identified, along with 22 transformation products (TPs) of them. OH2 and H2O PMDs occurred most frequently and in 80.81 % of the parent-transformation product pairs, the intensity of the product was higher than parent in effluents, whose risk should be considered in future assessment activity. Together our results provide a macrography perspective on the transformation processes of ECs in WWTPs. In the future, selectively adopting wastewater treatment technology according to structures is conductive for eliminating recalcitrant ECs in WWTPs.
Collapse
Affiliation(s)
- Yuli Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Linchang Guan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Yunhao Ke
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Liye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Qingmiao Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China.
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
11
|
Selak A, Reberski JL, Klobučar G. Assessing the persistence, mobility and toxicity of emerging organic contaminants in Croatian karst springs used for drinking water supply. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166240. [PMID: 37572907 DOI: 10.1016/j.scitotenv.2023.166240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Emerging organic contaminants (EOCs) are a vast group of often (very)persistent, (very)mobile and toxic (PMT/vPvM) substances that are continuously released worldwide, posing environmental and human health risks. Research on occurrence and behavior of EOCs in karst is in its infancy, thus policy measures and legislative control of these compounds in groundwater are still lacking. The Dinaric karst aquifers are an essential source of drinking water for almost half of Croatia's territory. Intense karstification, complex heterogeneous characteristics, and high fracture-cavernous porosity result in rapid, far-reaching groundwater flow and large karst springs, but also high intrinsic vulnerability due to low contaminant attenuation. To prioritize future monitoring and establish appropriate thresholds for EOCs detected in Croatian karst drinking water resources, in silico tools based on quantitative structure-activity relationships were used in PBT (persistence, bioaccumulation, and toxicity) and PMT/vPvM analyzes, while toxicological assessment helped identify potential threats to human health. In 33 samples collected during two sampling campaigns in 2019 at 16 karst springs and one lake used for water supply, we detected 65 compounds (EOCs and some legacy chemicals), of which 7 were classified as potentially PBT or vPvB compounds (PFOS, PFHxS, PFHpA, PFOA, PFNA, boscalid, and azoxystrobin), while only 2 compounds were assessed as not PMT/vPvM. This finding underlines that most of detected EOCs potentially endanger karst (ground)water ecosystems and important drinking water sources in Croatia. Comparison of maximum concentrations with existing or derived drinking water guideline values revealed how 2 of 65 detected compounds represent a potential risk to human health at lifelong exposure (sulfadiazine and hydrochlorothiazide), while 5 chemicals warrant additional human health impacts studies and groundwater monitoring. Although most compounds do not individually pose a significant risk to human health at current environmental levels, their potential synergistic and long-term effects remain unknown.
Collapse
Affiliation(s)
- Ana Selak
- HGI-CGS - Croatian Geological Survey, Department of Hydrogeology and Engineering Geology, Sachsova 2, 10 000 Zagreb, Croatia
| | - Jasmina Lukač Reberski
- HGI-CGS - Croatian Geological Survey, Department of Hydrogeology and Engineering Geology, Sachsova 2, 10 000 Zagreb, Croatia.
| | - Göran Klobučar
- PMF - Faculty of Science, Department of Biology, Division of Zoology, Rooseveltov trg 6, 10 000 Zagreb, Croatia
| |
Collapse
|
12
|
Zeeshan M, Ruhl AS. Fates of potentially persistent and mobile organic substances in embedded outdoor columns for artificial groundwater recharge simulation. WATER RESEARCH 2023; 245:120615. [PMID: 37713798 DOI: 10.1016/j.watres.2023.120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/12/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Persistent and mobile organic micropollutants (OMP) are ubiquitously found in the aquatic environment and have a high propensity to distribute in water resources and are difficult to remediate. Managed aquifer recharge systems such as artificial groundwater recharge, produce high-quality drinking water by removing numerous OMP from the source water. In this study, the fates of selected emerging and potentially persistent and mobile OMP were investigated in outdoor columns for artificial groundwater recharge simulation. Breakthrough curves of OMP were modeled to differentiate between sorption and bio-transformation. The study showed that selected OMP were persistent in the surface water and no photo-degradation was observed, except for diclofenac. The trends of dissolved organic carbon concentrations and UV light absorption at 254 nm wavelength suggest elevated biological activity in the first 0.3 m of the columns. The study revealed that the bio-transformation of cyanoguanidine, valsartan acid and diclofenac correlated with the biological activity in the sand columns. Benzyltrimethylammonium, n-(3-(dimethylamino)-propyl)methacrylamide, 1,3-di-o-tolylguanidine, 1,3-diphenylguanidine and melamine were completely eliminated within the first 0.3 m, likely due to sorption. Less mobile compounds such as carbamazepine and adamantan-1-amine also showed sorption. Sorption was also observed for diclofenac, likely due to decreased pH along the column depth. Retardation factors of several OMP were higher in the first 0.3 m of the columns, likely due to higher organic carbon contents compared to the remaining depth. Six organic substances (for example 2-acrylamido-2-methylpropane sulfonate and dimethylbenzene sulfonate) were persistent and mobile throughout the experiment. Overall, this study reveals the vital role of pH and sand organic carbon for sorption and residence time and biological activity for OMP elimination.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany; Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, 10623, Berlin, Germany.
| | - Aki Sebastian Ruhl
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany; Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
13
|
Zhang Z, Sangion A, Wang S, Gouin T, Brown T, Arnot JA, Li L. Hazard vs. exposure: Does it make a difference in identifying chemicals with persistence and mobility concerns? WATER RESEARCH 2023; 245:120610. [PMID: 37717328 DOI: 10.1016/j.watres.2023.120610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Persistent and mobile (PM) chemicals are considered emerging threats to the environment and drinking water because they can be transported over long distances, penetrate natural and artificial barriers, and resist removal by traditional water treatment procedures. Current chemical regulatory frameworks raise concerns over PM chemicals due to their potential to cause high human exposure through drinking water contamination. However, the criteria used to screen and identify these chemicals often rely on hazard properties related to stability and sorption, such as biodegradation half-lives and organic-carbon-normalized sorption coefficients as respective measures of P and M. Here, we conduct a model-based assessment to examine the consistency between hazard-based and exposure-based approaches in assessing PM chemicals, by evaluating whether chemicals identified as highly P and M are consistently associated with high drinking water exposure potential (DWEP). We discover that chemicals with the top DWEPs tend to be PM chemicals, but the reverse is not always true, because DWEPs are also impacted by volatilization for air-distributed chemicals and advective particle-bound transport for particle-bound chemicals. Our findings suggest that the hazard metrics are better suited for de-prioritizing, as opposed to prioritizing, chemicals that are unlikely to result in significant human exposure through drinking water, as unfavorable values of hazard metrics are a necessary but not sufficient condition for a high DWEP. We also find that distinct mechanisms determine the DWEP in different sources of drinking water: Sorption and stability are more influential on the DWEP of chemicals in groundwater and surface water, respectively, whereas both sorption and stability equally impact water undergoing riverbank filtration. Future studies should focus on optimizing the identification of persistent and mobile chemicals to ensure that exposure potential is taken into consideration.
Collapse
Affiliation(s)
- Zhizhen Zhang
- School of Public Health, University of Nevada, Reno, 1664, N. Virginia Street, Reno, Nevada 89557-274, United States
| | | | - Shenghong Wang
- School of Public Health, University of Nevada, Reno, 1664, N. Virginia Street, Reno, Nevada 89557-274, United States
| | - Todd Gouin
- TG Environmental Research, Sharnbrook, Bedford MK44 1PL, United Kingdom
| | - Trevor Brown
- ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
| | - Jon A Arnot
- ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada; Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Li Li
- School of Public Health, University of Nevada, Reno, 1664, N. Virginia Street, Reno, Nevada 89557-274, United States.
| |
Collapse
|
14
|
Zhang S, Chen J, Wang Z, Chen C, Chen A, Jing Q, Liu J. Dynamic Source Distribution and Emission Inventory of a Persistent, Mobile, and Toxic (PMT) Substance, Melamine, in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14694-14706. [PMID: 37734035 PMCID: PMC11017250 DOI: 10.1021/acs.est.3c02945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Persistent, mobile, and toxic (PMT) substances are affecting the safety of drinking water and are threatening the environment and human health. Many PMT substances are used in industrial processing or consumer products, but their sources and emissions mostly remain unclear. This study presents a long-term source distribution and emission estimation of melamine, a high-production-volume PMT substance of emerging global concern. The results indicate that in China, approximately 1858.7 kilotonnes (kt) of melamine were released into the water (∼58.9%), air (∼27.0%), and soil systems (∼14.1%) between 1995 and 2020, mainly from its production and use in the decorative panels, textiles, and paper industries. The textile and paper industries have the highest emission-to-consumption ratios, with more than 90% emissions per unit consumption. Sewage treatment plants are the largest source of melamine in the environment for the time being, but in-use products and their wastes will serve as significant melamine sources in the future. The study prompts priority action to control the risk of PMT substances internationally.
Collapse
Affiliation(s)
- Shaoxuan Zhang
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jiazhe Chen
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhanyun Wang
- Empa
− Swiss Federal Laboratories for Materials Science and Technology,
Technology and Society Laboratory, 9014 St. Gallen, Switzerland
| | - Chengkang Chen
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Anna Chen
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qiaonan Jing
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianguo Liu
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Han M, Jin B, Liang J, Huang C, Arp HPH. Developing machine learning approaches to identify candidate persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvM) substances based on molecular structure. WATER RESEARCH 2023; 244:120470. [PMID: 37595327 DOI: 10.1016/j.watres.2023.120470] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
Determining which substances on the global market could be classified as persistent, mobile and toxic (PMT) substances or very persistent, very mobile (vPvM) substances is essential to prevent or reduce drinking water contamination from them. This study developed machine learning models based on different molecular descriptors (MDs) and defined applicability domains for the screening of PMT/vPvM substances. The models were trained with 3111 substances with expert weight-of-evidence based PMT/vPvM hazard classifications that considered the highest quality data available. The model was based on the hypothesis that PMT/vPvM substances contain similar MDs, representative of chemical structures resistant to degradation, be associated with low sorption (or high-water solubility) and in some cases be associated with known toxic mechanisms. All possible model combinations were tested by integrating different molecular description methods, data balancing strategies and machine learning algorithms. Our model allows one-step prediction of candidate PMT/vPvM substances, and our method was compared with the approach predicting P, M and T separately (i.e. three-step prediction). The results showed that the one-step model achieved a higher accuracy of 92% for PMT/vPvM identification (i.e. positive samples) for an internal test set, and also resulted in a higher accuracy of 90% for an external test set of chemical pollutants detected in Taihu Lake, China. Furthermore, prediction mechanism of the model was interpreted by Shapley additive explanations (SHAP). This work presents an advance of big data in silico screening models for the identification of substances that potentially meet the PMT/vPvM criteria.
Collapse
Affiliation(s)
- Min Han
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 10069, China
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 10069, China.
| | - Jun Liang
- School of Software, South China Normal University, Foshan, 528225, China
| | - Chen Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 10069, China
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevaal Stadion, Oslo, N-0806, Norway; Norwegian University of Science and Technology (NTNU), Trondheim, NO-7491, Norway
| |
Collapse
|
16
|
Huang Y, You Y, Wu M, Han M, Zhang J, Gao W, Xie D, Chen H, Ou H, Song N, Cheng C, Zhuang W, Li J, Lei Z, Jin B, Zhou Z, Li M. Chemical characterization and source attribution of organic pollutants in industrial wastewaters from a Chinese chemical industrial park. ENVIRONMENTAL RESEARCH 2023; 229:115980. [PMID: 37098386 DOI: 10.1016/j.envres.2023.115980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/23/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023]
Abstract
Accelerated urbanization and industrialization have led to an alarming increase in the generation of wastewater with complex chemical contents. Industrial wastewaters are often a primary source of water contamination. The chemical characterization of different industrial wastewater types is an essential task to interpret the chemical fingerprints of wastewater to identify pollution sources and develop efficient water treatment strategies. In this study, we conduct a non-target chemical analysis for the source characterization of different industrial wastewater samples collected from a chemical industrial park (CIP) located in southeast China. The chemical screening identified volatile and semi-volatile organic compounds that included dibutyl phthalate at a maximum concentration of 13.4 μg/L and phthalic anhydride at 35.9 μg/L. Persistent, mobile, and toxic (PMT) substances among the detected organic compounds were identified and prioritized as high-concern contaminants given their impact on drinking water resources. Moreover, a source analysis of the wastewater collected from the wastewater outlet station indicated that the dye production industry contributed the largest quantities of toxic contaminates (62.6%), and this result was consistent with the ordinary least squares and heatmap results. Thus, our study utilized a combined approach of a non-target chemical analysis, a pollution source identification method, and a PMT assessment of different industrial wastewater samples collected from the CIP. The results of the chemical fingerprints of different industrial wastewater types as well as the results of the PMT assessment benefit risk-based wastewater management and source reduction strategies.
Collapse
Affiliation(s)
- Yihua Huang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China
| | - Yinong You
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China
| | - Manman Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
| | - Min Han
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 10069, China
| | - Jin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China
| | - Wei Gao
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China
| | - Danping Xie
- South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangzhou, PR China
| | - Hongzhan Chen
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou, PR China
| | - Hui Ou
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou, PR China
| | - Ninghui Song
- Nanjing Institute of Environmental Science, MEE, Nanjing, PR China
| | - Chunlei Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China
| | - Wen Zhuang
- Guangzhou Hexin Instrument Co., Ltd, Guangzhou, PR China
| | - Jiaqi Li
- Guangzhou Hexin Instrument Co., Ltd, Guangzhou, PR China
| | - Zhipeng Lei
- Guangzhou Hexin Instrument Co., Ltd, Guangzhou, PR China
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 10069, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China
| | - Mei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, PR China.
| |
Collapse
|
17
|
Sørmo E, Castro G, Hubert M, Licul-Kucera V, Quintanilla M, Asimakopoulos AG, Cornelissen G, Arp HPH. The decomposition and emission factors of a wide range of PFAS in diverse, contaminated organic waste fractions undergoing dry pyrolysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131447. [PMID: 37121036 DOI: 10.1016/j.jhazmat.2023.131447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023]
Abstract
Current treatment options for organic waste contaminated with per- and polyfluoroalkyl substances (PFAS) are generally limited to incineration, composting or landfilling, all resulting in emissions. Dry pyrolysis is a promising emerging alternative to these practices, but there is uncertainty related to the fate of PFAS during this process. The present work first developed a robust method for the determination of PFAS in complex matrices, such as sewage sludge and biochar. Then, a mass balance was established for 56 different PFAS during full-scale pyrolysis (2-10 kg biochar hr-1, 500-800 °C) of sewage sludges, food waste reject, garden waste and waste timber. PFAS were found in all wastes (56-3651 ng g-1), but pyrolysis resulted in a ≥ 96.9% removal. Residual PFAS (0.1-3.4 ng g-1) were detected in biochars obtained at temperatures up to 750 °C and were dominated by long chain PFAS. Emitted PFAS loads ranged from 0.01 to 3.1 mg tonne-1 of biochar produced and were dominated by short chain PFAS. Emissions made up < 3% of total PFAS-mass in the wastes. Remaining uncertainties are mainly related to the presence of thermal degradation products in flue gas and condensation oils.
Collapse
Affiliation(s)
- Erlend Sørmo
- Geotechnics and Environment, Norwegian Geotechnical Institute (NGI), Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Gabriela Castro
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Michel Hubert
- Geotechnics and Environment, Norwegian Geotechnical Institute (NGI), Oslo, Norway; Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Viktória Licul-Kucera
- Institute for Analytical Research, Hochschulen Fresenius gem. Trägesellschaft mbH, Idstein, Germany; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Marjorie Quintanilla
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Gerard Cornelissen
- Geotechnics and Environment, Norwegian Geotechnical Institute (NGI), Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Hans Peter H Arp
- Geotechnics and Environment, Norwegian Geotechnical Institute (NGI), Oslo, Norway; Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
18
|
Pelch KE, McKnight T, Reade A. 70 analyte PFAS test method highlights need for expanded testing of PFAS in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162978. [PMID: 37059129 DOI: 10.1016/j.scitotenv.2023.162978] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
In this community-led pilot study we sought to investigate the utility of expanded per- and polyfluoroalkyl substances (PFAS) testing for drinking water, using a targeted analysis for 70 PFAS and the Total Oxidizable Precursor (TOP) Assay which can indicate the presence of precursor PFAS. PFAS were detected in 30 out of 44 drinking water samples across 16 states; 15 samples would exceed US EPA's proposed maximum contaminant levels for six PFAS. Twenty-six unique PFAS were identified, including 12 not covered by either US EPA Methods 537.1 or 533. An ultrashort chain PFAS, PFPrA, had the highest frequency of detection, occurring in 24 of 30 samples. It was also the PFAS reported at the highest concentration in 15 of these samples. We created a data filter to model how these samples would be reported under the upcoming fifth Unregulated Contaminant Monitoring Rule (UCMR5) requirements. All of the 30 samples with PFAS quantified by the 70 PFAS test had one or more PFAS present that would not be captured if the UCMR5 reporting requirements were followed. Our analysis suggests the upcoming UCMR5 will likely underreport PFAS in drinking water, due to limited coverage and higher minimum reporting limits. Results were inconclusive on the utility of the TOP Assay for monitoring drinking water. The results from this study provide important information to community participants regarding their current PFAS drinking water exposure. In addition, these results suggest gaps that need to be addressed by regulatory and scientific communities, in particular, the need for expanded targeted analysis of PFAS, the development of a sensitive, broad spectrum PFAS test, and further investigation into ultrashort chain PFAS.
Collapse
Affiliation(s)
- Katherine E Pelch
- Natural Resources Defense Council, 111 Sutter St. Floor 20, San Francisco, CA 94104, USA
| | - Taryn McKnight
- Eurofins Environment Testing, 880 Riverside Parkway, West Sacramento, CA 95605, USA
| | - Anna Reade
- Natural Resources Defense Council, 111 Sutter St. Floor 20, San Francisco, CA 94104, USA.
| |
Collapse
|
19
|
Yu N, Deng Y, Wang X, Shi W, Zhou D, Pan B, Yu H, Wei S. Nontarget Discovery of Antimicrobial Transformation Products in Wastewater Based on Molecular Networks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37211672 DOI: 10.1021/acs.est.2c07774] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Antimicrobial transformation products (ATPs) in the environment have raised extensive concerns in recent years due to their potential health risks. However, only a few ATPs have been investigated, and most of the transformation pathways of antimicrobials have not been completely elucidated. In this study, we developed a nontarget screening strategy based on molecular networks to detect and identify ATPs in pharmaceutical wastewater. We identified 52 antimicrobials and 49 transformation products (TPs) with a confidence level of three or above. Thirty of the TPs had not been previously reported in the environment. We assessed whether TPs could be classified as persistent, mobile, and toxic (PMT) substances based on recent European criteria for industrial substances. Owing to poor experimental data, definitive PMT classifications could not be established for novel ATPs. PMT assessment based on structurally predictive physicochemical properties revealed that 47 TPs were potential PMT substances. These results provide evidence that novel ATPs should be the focus of future research.
Collapse
Affiliation(s)
- Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing, Jiangsu 210023, China
| | - Yiyan Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing, Jiangsu 210023, China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing, Jiangsu 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing, Jiangsu 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing, Jiangsu 210023, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing, Jiangsu 210023, China
| |
Collapse
|
20
|
Zeeshan M, Schumann P, Pabst S, Ruhl AS. Transformation of potentially persistent and mobile organic micropollutants in column experiments. Heliyon 2023; 9:e15822. [PMID: 37159681 PMCID: PMC10163653 DOI: 10.1016/j.heliyon.2023.e15822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023] Open
Abstract
The occurrence of potentially persistent and mobile (PM) organic micropollutants (OMP) in the aquatic environment is recognized as a severe threat to water resources and drinking water suppliers. The current study investigated long-term fate (persistency and bio-transformation) of several emerging contaminants in a simulated bank filtration (BF) for the first time. In parallel, four sand column systems were operated with groundwater and continuously spiked with an average concentration of 1 μg/L for 24 OMP. Each column system consisted of two sand columns connected in series. Presumably, biological activities in the first column were higher than in the second column, as dissolved oxygen utilization, dissolved organic matter (DOM) and UV absorbance at 254 nm (UV254) reduction rates were high in the first column. This study revealed that 9 out of 24 OMP were persistent and mobile throughout the study under oxic conditions and within a hydraulic retention time (HRT) of 12 days. However, 2 (out of 9) OMP were persistent but showed sorption behavior. 15 (out of 24) OMP displayed bio-transformation, 4 were eliminated entirely within 4.5 days of HRT. Others showed constant or improved degradation with the adaptation (or operation) time. Improved degradation with adaption was high in the bioactive sand columns. However, 8 OMP showed improved elimination at high HRT, even in low biologically active columns. In addition, no significant effect of the DOM on the eliminations of OMP was found except for 4-hydroxy-1-(2-hydroxyethyl)-2,2,6,6,-tetramethylpiperidine (HHTMP), 2-methyl-2-propene-1-sulfonic acid (MPSA) and sulfamethoxazole (SMX). The eliminations of HHTMP (Pearson's r > 0.80, p < 0.05), MPSA (Pearson's r > 0.70) and SMX (Pearson's r > 0.80) correlated with the removals of humic substances in the sand columns. Overall, adaptation time and HRT play a crucial role in the elimination of emerging OMP through BF, yet at the same time several OMP exhibit persistent behavior.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany
- Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, 10623, Berlin, Germany
| | - Pia Schumann
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany
- Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, 10623, Berlin, Germany
| | - Silke Pabst
- German Environment Agency, Section II 3.1, Schichauweg 58, 12307, Berlin, Germany
| | - Aki Sebastian Ruhl
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany
- Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
21
|
Schumann P, Müller D, Eckardt P, Muschket M, Dittmann D, Rabe L, Kerst K, Lerch A, Reemtsma T, Jekel M, Ruhl AS. Pilot-scale removal of persistent and mobile organic substances in granular activated carbon filters and experimental predictability at lab-scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163738. [PMID: 37116805 DOI: 10.1016/j.scitotenv.2023.163738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Present knowledge about the fate of persistent and mobile (PM) substances in drinking water treatment is limited. Hence, this study assesses the potential of fixed-bed granular activated carbon (GAC) filters to fill the treatment gap for PM substances and the elimination predictability from lab-scale experiments. Two parallel pilot filters (GAC bed height 2 m, diameter 15 cm) with different GAC were operated for 1.5 years (ca. 47,000 BV throughput) alongside rapid small-scale column tests (RSSCT) designed based on the proportional diffusivity (PD) and the constant diffusivity (CD) approaches. Background dissolved organic matter (DOM) and a set of 17 target substances were investigated, among them 2-acrylamido-2-methylpropane sulfonate (AAMPS), adamantan-1-amine (ATA), melamine (MEL) and trifluoromethanesulfonic acid (TFMSA). Nine substances were predominantly present in the drinking water used as pilot filter influent (frequencies of detection above 80 %, median concentrations 0.003-1.868 μg/L) and their breakthrough behaviors could be observed: TFMSA was not retained at all, four substances including AAMPS and ATA reached complete breakthrough below 20,000 BV, three compounds were partially retained until the end of operation and oxypurinol was retained completely. The comparable PM candidate and DOM removal performances of both GAC aligns with their very similar surface characteristics and elemental compositions. The agreement of results between RSSCT with the pilot-scale filters were substance specific and no superior RSSCT design could be identified. However, CD-RSSCT provide a conservative removal prediction for most studied compounds. MEL adsorption was significantly underestimated by both RSSCT designs. Using the criterion of a carbon usage rate (with respect to 50 % breakthrough) below 25 mgGAC/Lwater for an economic retention by fixed-bed GAC filters, five (out of nine) substances met the requirement.
Collapse
Affiliation(s)
- Pia Schumann
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Dario Müller
- Technische Universität Dresden, Institute of Urban and Industrial Water Management, 01062 Dresden, Germany; Kommunale Wasserwerke Leipzig, Johannisgasse 7/9, 04103 Leipzig, Germany
| | - Paulina Eckardt
- Technische Universität Berlin, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Matthias Muschket
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Daniel Dittmann
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany
| | - Luisa Rabe
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Kristin Kerst
- Technische Universität Dresden, Institute of Urban and Industrial Water Management, 01062 Dresden, Germany
| | - André Lerch
- Technische Universität Dresden, Institute of Urban and Industrial Water Management, 01062 Dresden, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin Jekel
- Technische Universität Berlin, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Aki Sebastian Ruhl
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
22
|
Mohan B, Singh G, Pombeiro AJL, Solovev AA, Sharma PK, Chen Q. Metal-organic frameworks (MOFs) for milk safety and contaminants monitoring. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|