1
|
Bugher NA, Xiong B, Gentles RI, Glist LD, Siegel HG, Johnson NP, Clark CJ, Deziel NC, Saiers JE, Plata DL. Domestic groundwater wells in Appalachia show evidence of low-dose, complex mixtures of legacy pollutants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2250-2263. [PMID: 39501836 DOI: 10.1039/d4em00364k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Lack of water quality data for private drinking water sources prevents robust evaluation of exposure risk for communities co-located with historically contaminated sites and ongoing industrial activity. Areas of the Appalachian region of the United States (i.e., Pennsylvania, Ohio and West Virginia) contain extensive hydraulic fracturing activity, as well as other extractive and industrial technologies, in close proximity to communities reliant on private drinking water sources, creating concern over potential groundwater contamination. In this study, we characterized volatile organic compound (VOC) occurrence at 307 private groundwater well sites within Pennsylvania, Ohio, and West Virginia. The majority (97%) of water samples contained at least one VOC, while the average number of VOCs detected at a given site was 5 ± 3. The majority of individual VOC concentrations fell below applicable U.S. Environmental Protection Agency (EPA) Maximum Contamination Levels (MCLs), except for chloroform (MCL of 80 μg L-1; n = 1 at 98 μg L-1), 1,2-dibromoethane (MCL of 0.05 μg L-1; n = 3 ranging from 0.05 to 0.35 μg L-1), and 1,2-dibromo-3-chloropropane (MCL of 0.2 μg L-1; n = 7 ranging from 0.20 to 0.58 μg L-1). To evaluate well susceptibility to VOCs from industrial activity, distance to hydraulic fracturing site was used to assess correlations with contaminant occurrences. Proximity to closest hydraulic fracturing well-site revealed no statistically significant linear relationships with either individual VOC concentrations, or frequency of VOC detections. Evaluation of other known industrial contamination sites (e.g., US EPA Superfund sites) revealed elevated levels of three VOCs (chloroform, toluene, benzene) in groundwaters within 10 km of those Superfund sites in West Virginia and Ohio, illuminating possible point source influence. Lack of correlation between VOC concentrations and proximity to specific point sources indicates complex geochemical processes governing trace VOC contamination of private drinking water sources. While individual concentrations of VOCs fell well below recommended human health levels, the low dose exposure to multiple VOCs occurring in drinking supplies for Appalachian communities was noted, highlighting the importance of groundwater well monitoring.
Collapse
Affiliation(s)
- Nicolette A Bugher
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
| | - Boya Xiong
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
- University of Minnesota, Department of Civil, Environmental, and Geo-Engineering, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
| | - Runako I Gentles
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
| | - Lukas D Glist
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
| | - Helen G Siegel
- Yale School of the Environment, Environmental Science Center, 21 Sachem Street, New Haven, Connecticut 06511, USA
| | - Nicholaus P Johnson
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College St., New Haven, Connecticut 06510, USA
| | - Cassandra J Clark
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College St., New Haven, Connecticut 06510, USA
| | - Nicole C Deziel
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College St., New Haven, Connecticut 06510, USA
| | - James E Saiers
- Yale School of the Environment, Environmental Science Center, 21 Sachem Street, New Haven, Connecticut 06511, USA
| | - Desiree L Plata
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
2
|
Lu M, Liu Y, Liu G, Li Y. Seasonal dynamics of dissolved inorganic nitrogen in groundwater: Tracing environmental controls and land use impact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176144. [PMID: 39250980 DOI: 10.1016/j.scitotenv.2024.176144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
High levels of dissolved inorganic nitrogen (DIN) in groundwater pose challenges for regions like northern Anhui Province, China, where groundwater is a crucial domestic resource. This study utilized modern geostatistics to explore the spatial and temporal dynamics of DIN in groundwater. Significant seasonal influences on DIN concentrations were identified: ammonium peaks during wet season driven by agricultural activities, while nitrate peaks during the dry season primarily influenced by municipal inputs. This study established a Bayesian Maximum Entropy - Random Forest (BME-RF) model based on Land Use/Land Cover data to infer the spatio-temporal performance of DIN, achieving an interpretation rate above 90 %. It also highlighted the role of hydrogeological conditions and aquifer types in the evolution of DIN. By employing a DIN environmental interaction model, it further analyzed the eco-hydrological drivers and seasonal trends affecting DIN variability, enhancing the understanding of groundwater nitrogen dynamics and their link to environmental factors with low consumption. SYNOPSIS: This study reveals seasonal shifts in groundwater DIN, links them to human activity, and uses the BME model to guide targeted nitrogen fluctuation.
Collapse
Affiliation(s)
- Muyuan Lu
- School of Earth and Space Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Yuan Liu
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States
| | - Guijian Liu
- School of Earth and Space Sciences, University of Science & Technology of China, Hefei 230026, China.
| | - Yongli Li
- School of Earth and Space Sciences, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Shaheen SW, Wen T, Zheng Z, Xue L, Baka J, Brantley SL. Wastewaters Coproduced with Shale Gas Drive Slight Regional Salinization of Groundwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17862-17873. [PMID: 39321415 PMCID: PMC11466308 DOI: 10.1021/acs.est.4c03371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
While unconventional oil and gas (UOG) development is changing the world economy, processes that are used during UOG development such as high-volume hydraulic fracturing ("fracking") have been linked with water contamination. Water quality risks include leaks of gas and salty fluids (brines) that are coproduced at wellpads. Identifying the cause of contamination is difficult, however, because UOG wells are often colocated with other contaminant sources. We investigated the world's largest shale gas play with publicly accessible groundwater data (Marcellus Shale in Pennsylvania, U.S.A. with ∼29,000 analyses) and discovered that concentrations of brine-associated barium ([Ba]) and strontium ([Sr]) show small regional increases within 1 km of UOG development. Higher concentrations in groundwaters are associated with greater proximity to and density of UOG wells. Concentration increases are even larger when considering associations with the locations of (i) spill-related violations and (ii) some wastewater impoundments. These statistically significant relationships persist even after correcting for other natural and anthropogenic sources of salts. The most likely explanation is that UOG development slightly increases salt concentrations in regional groundwaters not because of fracking but because of the ubiquity of wastewater management issues. These results emphasize the need for stringent wastewater management practices across oil and gas operations.
Collapse
Affiliation(s)
- Samuel W. Shaheen
- Department
of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tao Wen
- Department
of Earth and Environmental Sciences, Syracuse
University, Syracuse, New York 13244, United States
| | - Zhong Zheng
- Department
of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lingzhou Xue
- Department
of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jennifer Baka
- Department
of Geography, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Earth
and Environmental Systems Institute, Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Susan L. Brantley
- Department
of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Earth
and Environmental Systems Institute, Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Tang L, Gao W, Lu Y, Tabelin CB, Liu J, Li H, Yang W, Tang C, Feng X, Jiang J, Xue S. The formation of multi-metal(loid)s contaminated groundwater at smelting site: Critical role of natural colloids. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134408. [PMID: 38678716 DOI: 10.1016/j.jhazmat.2024.134408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The occurrence and migration of colloids at smelting sites are crucial for the formation of multi-metal(loid)s pollution in groundwater. In this study, the behavior of natural colloids (1 nm-0.45 µm) at an abandoned smelting site was investigated by analyzing groundwater samples filtered through progressively decreasing pore sizes. Smelting activities in this site had negatively impacted the groundwater quality, leading to elevated concentrations of zinc (Zn), lead (Pb), arsenic (As), and cadmium (Cd). The results showed that heavy metal(loid)-bearing colloids were ubiquitous in the groundwater with the larger colloidal fractions (∼75 -450 nm) containing higher abundances of pollutants. It was also observed that the predominant colloids consisted of Zn-Al layered double hydroxide (LDH), sphalerite, kaolinite, and hematite. By employing multiple analytical techniques, including leaching experiments, soil colloid characterization, and Pb stable isotope measurements, the origin of groundwater colloids was successfully traced to the topsoil colloids. Most notably, our findings highlighted the increased risk of heavy metal(loid)s migration from polluted soils into adjacent sites through the groundwater because of colloid-mediated transport of contaminants. This field-scale investigation provides valuable insights into the geochemical processes governing heavy metal(loid) behavior as well as offering pollution remediation strategies specifically tailored for contaminated groundwater.
Collapse
Affiliation(s)
- Lu Tang
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Wenyan Gao
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Yongping Lu
- China Railway Seventh Bureau Group Nanjing Engineering Co. Ltd., Nanjing 210012, China
| | - Carlito Baltazar Tabelin
- Department of Materials and Resources Engineering and Technology, College of Engineering, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Jie Liu
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Haifeng Li
- China Railway Seventh Bureau Group Nanjing Engineering Co. Ltd., Nanjing 210012, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Chongjian Tang
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Xiang Feng
- Henan Academy of Geology, Henan 450001, China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Hunan 410083, China.
| |
Collapse
|
5
|
Hinkle MAG, Ziegler B, Culbertson H, Goldmann C, Croy ME, Willis N, Ling E, Reinhart B, Lyon EC. Manganese exposure from spring and well waters in the Shenandoah Valley: interplay of aquifer lithology, soil composition, and redox conditions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:203. [PMID: 38695991 PMCID: PMC11065944 DOI: 10.1007/s10653-024-01987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/06/2024] [Indexed: 05/05/2024]
Abstract
Manganese (Mn) is of particular concern in groundwater, as low-level chronic exposure to aqueous Mn concentrations in drinking water can result in a variety of health and neurodevelopmental effects. Much of the global population relies on drinking water sourced from karst aquifers. Thus, we seek to assess the relative risk of Mn contamination in karst by investigating the Shenandoah Valley, VA region, as it is underlain by both karst and non-karst aquifers and much of the population relies on water wells and spring water. Water and soil samples were collected throughout the Shenandoah Valley, to supplement pre-existing well water and spring data from the National Water Information System and the Virginia Household Water Quality Program, totaling 1815 wells and 119 springs. Soils were analyzed using X-ray fluorescence and Mn K-Edge X-ray absorption near-edge structure spectroscopy. Factors such as soil type, soil geochemistry, and aquifer lithology were linked with each location to determine if correlations exist with aqueous Mn concentrations. Analyzing the distribution of Mn in drinking water sources suggests that water wells and springs within karst aquifers are preferable with respect to chronic Mn exposure, with < 4.9% of wells and springs in dolostone and limestone aquifers exceeding 100 ppb Mn, while sandstone and shale aquifers have a heightened risk, with > 20% of wells exceeding 100 ppb Mn. The geochemistry of associated soils and spatial relationships to various hydrologic and geologic features indicates that water interactions with aquifer lithology and soils contribute to aqueous Mn concentrations. Relationships between aqueous Mn in spring waters and Mn in soils indicate that increasing aqueous Mn is correlated with decreasing soil Mn(IV). These results point to redox conditions exerting a dominant control on Mn in this region.
Collapse
Affiliation(s)
- Margaret A G Hinkle
- Department of Earth and Environmental Geoscience, Washington and Lee University, 204 W. Washington Street, Lexington, VA, 24450, USA.
| | - Brady Ziegler
- Department of Geosciences, Trinity University, 1 Trinity Pl, San Antonio, TX, 78212, USA
| | - Haley Culbertson
- Department of Earth and Environmental Geoscience, Washington and Lee University, 204 W. Washington Street, Lexington, VA, 24450, USA
| | - Christopher Goldmann
- Department of Geosciences, Trinity University, 1 Trinity Pl, San Antonio, TX, 78212, USA
| | - Marina E Croy
- Department of Earth and Environmental Geoscience, Washington and Lee University, 204 W. Washington Street, Lexington, VA, 24450, USA
| | - Noah Willis
- Geology Department, Whitman College, 345 Boyer Ave, Walla Walla, WA, 99362, USA
| | - Erin Ling
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Eva C Lyon
- Department of Earth and Environmental Geoscience, Washington and Lee University, 204 W. Washington Street, Lexington, VA, 24450, USA
- Department of Geological Sciences, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
6
|
Tesoriero AJ, Wherry SA, Dupuy DI, Johnson TD. Predicting Redox Conditions in Groundwater at a National Scale Using Random Forest Classification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5079-5092. [PMID: 38451152 PMCID: PMC10956438 DOI: 10.1021/acs.est.3c07576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Redox conditions in groundwater may markedly affect the fate and transport of nutrients, volatile organic compounds, and trace metals, with significant implications for human health. While many local assessments of redox conditions have been made, the spatial variability of redox reaction rates makes the determination of redox conditions at regional or national scales problematic. In this study, redox conditions in groundwater were predicted for the contiguous United States using random forest classification by relating measured water quality data from over 30,000 wells to natural and anthropogenic factors. The model correctly predicted the oxic/suboxic classification for 78 and 79% of the samples in the out-of-bag and hold-out data sets, respectively. Variables describing geology, hydrology, soil properties, and hydrologic position were among the most important factors affecting the likelihood of oxic conditions in groundwater. Important model variables tended to relate to aquifer recharge, groundwater travel time, or prevalence of electron donors, which are key drivers of redox conditions in groundwater. Partial dependence plots suggested that the likelihood of oxic conditions in groundwater decreased sharply as streams were approached and gradually as the depth below the water table increased. The probability of oxic groundwater increased as base flow index values increased, likely due to the prevalence of well-drained soils and geologic materials in high base flow index areas. The likelihood of oxic conditions increased as topographic wetness index (TWI) values decreased. High topographic wetness index values occur in areas with a propensity for standing water and overland flow, conditions that limit the delivery of dissolved oxygen to groundwater by recharge; higher TWI values also tend to occur in discharge areas, which may contain groundwater with long travel times. A second model was developed to predict the probability of elevated manganese (Mn) concentrations in groundwater (i.e., ≥50 μg/L). The Mn model relied on many of the same variables as the oxic/suboxic model and may be used to identify areas where Mn-reducing conditions occur and where there is an increased risk to domestic water supplies due to high Mn concentrations. Model predictions of redox conditions in groundwater produced in this study may help identify regions of the country with elevated groundwater vulnerability and stream vulnerability to groundwater-derived contaminants.
Collapse
Affiliation(s)
- Anthony J. Tesoriero
- U.S.
Geological Survey, 601 SW Second Avenue, Suite 1950, Portland, Oregon 97204, United States
| | - Susan A. Wherry
- U.S.
Geological Survey, 601 SW Second Avenue, Suite 1950, Portland, Oregon 97204, United States
| | - Danielle I. Dupuy
- U.S.
Geological Survey, 6000
J Street, Placer Hall, Sacramento, California 95819, United States
| | - Tyler D. Johnson
- U.S.
Geological Survey, 4165
Spruance Road, Suite 200, San Diego, California 92101, United States
| |
Collapse
|
7
|
Li Y, Siegel HG, Thelemaque NA, Bailey KR, Moncrieffe P, Nguyen T, Clark CJ, Johnson NP, Soriano MA, Deziel NC, Saiers JE, Plata DL. Conventional Fossil Fuel Extraction, Associated Biogeochemical Processes, and Topography Influence Methane Groundwater Concentrations in Appalachia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19702-19712. [PMID: 37982799 DOI: 10.1021/acs.est.3c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The production of fossil fuels, including oil, gas, and coal, retains a dominant share in US energy production and serves as a major anthropogenic source of methane, a greenhouse gas with a high warming potential. In addition to directly emitting methane into the air, fossil fuel production can release methane into groundwater, and that methane may eventually reach the atmosphere. In this study, we collected 311 water samples from an unconventional oil and gas (UOG) production region in Pennsylvania and an oil and gas (O&G) and coal production region across Ohio and West Virginia. Methane concentration was negatively correlated to distance to the nearest O&G well in the second region, but such a correlation was shown to be driven by topography as a confounding variable. Furthermore, sulfate concentration was negatively correlated with methane concentration and with distance to coal mining in the second region, and these correlations were robust even when considering topography. We hypothesized that coal mining enriched sulfate in groundwater, which in turn inhibited methanogenesis and enhanced microbial methane oxidation. Thus, this study highlights the complex interplay of multiple factors in shaping groundwater methane concentrations, including biogeochemical conversion, topography, and conventional fossil extraction.
Collapse
Affiliation(s)
- Yunpo Li
- Department of Civil and Environmental Engineering, Parsons Laboratory, Massachusetts Institute of Technology, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Helen G Siegel
- The School of the Environment, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Nathalie A Thelemaque
- Department of Civil and Environmental Engineering, Parsons Laboratory, Massachusetts Institute of Technology, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Kathleen R Bailey
- Department of Civil and Environmental Engineering, Parsons Laboratory, Massachusetts Institute of Technology, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Priya Moncrieffe
- Department of Civil and Environmental Engineering, Parsons Laboratory, Massachusetts Institute of Technology, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Timothy Nguyen
- Department of Civil and Environmental Engineering, Parsons Laboratory, Massachusetts Institute of Technology, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Cassandra J Clark
- Yale School of Public Health, Department of Environmental Health Sciences, Yale University, 60 College Street, New Haven, Connecticut 06512, United States
| | - Nicholaus P Johnson
- Yale School of Public Health, Department of Environmental Health Sciences, Yale University, 60 College Street, New Haven, Connecticut 06512, United States
| | - Mario A Soriano
- The School of the Environment, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Nicole C Deziel
- Yale School of Public Health, Department of Environmental Health Sciences, Yale University, 60 College Street, New Haven, Connecticut 06512, United States
| | - James E Saiers
- The School of the Environment, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Desiree L Plata
- Department of Civil and Environmental Engineering, Parsons Laboratory, Massachusetts Institute of Technology, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Siegel HG, Nason SL, Warren JL, Prunas O, Deziel NC, Saiers JE. Investigation of Sources of Fluorinated Compounds in Private Water Supplies in an Oil and Gas-Producing Region of Northern West Virginia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17452-17464. [PMID: 37923386 PMCID: PMC10653085 DOI: 10.1021/acs.est.3c05192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of toxic organic compounds that have been widely used in consumer applications and industrial activities, including oil and gas production. We measured PFAS concentrations in 45 private wells and 8 surface water sources in the oil and gas-producing Doddridge, Marshall, Ritchie, Tyler, and Wetzel Counties of northern West Virginia and investigated relationships between potential PFAS sources and drinking water receptors. All surface water samples and 60% of the water wells sampled contained quantifiable levels of at least one targeted PFAS compound, and four wells (8%) had concentrations above the proposed maximum contaminant level (MCL) for perfluorooctanoic acid (PFOA). Individual concentrations of PFOA and perfluorobutanesulfonic acid exceeded those measured in finished public water supplies. Total targeted PFAS concentrations ranged from nondetect to 36.8 ng/L, with surface water concentrations averaging 4-fold greater than groundwater. Semiquantitative, nontargeted analysis showed concentrations of emergent PFAS that were potentially higher than targeted PFAS. Results from a multivariate latent variable hierarchical Bayesian model were combined with insights from analyses of groundwater chemistry, topographic characteristics, and proximity to potential PFAS point sources to elucidate predictors of PFAS concentrations in private wells. Model results reveal (i) an increased vulnerability to contamination in upland recharge zones, (ii) geochemical controls on PFAS transport likely driven by adsorption, and (iii) possible influence from nearby point sources.
Collapse
Affiliation(s)
- Helen G. Siegel
- School
of the Environment, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Sara L. Nason
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06504, United States
| | - Joshua L. Warren
- School
of Public Health, Yale University, 60 College Street, New Haven, Connecticut 06510, United States
| | - Ottavia Prunas
- Swiss
Tropical and Public Health Institute, 2 Kreuzstrasse, Allschwill, Basel 4123, Switzerland
| | - Nicole C. Deziel
- School
of Public Health, Yale University, 60 College Street, New Haven, Connecticut 06510, United States
| | - James E. Saiers
- School
of the Environment, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
9
|
Tang L, Chen W, Luo X, Zhang G, Feng X, Guo L, Gao W, He J, Zhao G, Jiang J, Xue S. Multi-technological integration in a smelting site: Visualizing pollution characteristics and migration pattern. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132135. [PMID: 37506644 DOI: 10.1016/j.jhazmat.2023.132135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Heavy metal(loid)s pollution of industrial legacies has become a severe environmental issue worldwide. Linking soil pollution to groundwater contaminant plumes would make invisible pollution features visible across the site, but related studies are lacking and require the convergence of multiple technologies. This study uniformly managed the soil and groundwater data in a 3D visualization model to pellucidly assess the spatial distribution of critical contaminants beyond simple drilling information. The distribution of Pb, Zn, As, and Cd in soil-groundwater system has a strong correlation to historical production, substance type, soil property, and groundwater flow direction. Over 2600 measurements of High-density electrical resistivity tomography (ERT) data were used to guarantee the exactness of soil structures. Hydraulic conductivity showed a strongest correlation (R2 = 0.86), yielding a calibrated model to reveal the anisotropic and contaminant transport in the region, with the consequent minimize the drilling tests. This study provides a template for the description of a verifiable scenario of hydrogeological conditions and pollution characteristics at smelting sites, coupled with traditional exploration and non-invasive techniques. The findings highlight the significance of visualizing the internal state of the soil-groundwater system under consideration, thus providing a basis for targeted control measures against site contamination.
Collapse
Affiliation(s)
- Lu Tang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Wenwan Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xinghua Luo
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Gubin Zhang
- Henan Academy of Geology, Zhengzhou, Zhengzhou 450001, PR China
| | - Xiang Feng
- Henan Academy of Geology, Zhengzhou, Zhengzhou 450001, PR China
| | - Lin Guo
- Henan Academy of Geology, Zhengzhou, Zhengzhou 450001, PR China
| | - Wenyan Gao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jin He
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Guizhang Zhao
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, PR China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| |
Collapse
|
10
|
Soriano MA, Warren JL, Clark CJ, Johnson NP, Siegel HG, Deziel NC, Saiers JE. Social Vulnerability and Groundwater Vulnerability to Contamination From Unconventional Hydrocarbon Extraction in the Appalachian Basin. GEOHEALTH 2023; 7:e2022GH000758. [PMID: 37064218 PMCID: PMC10100439 DOI: 10.1029/2022gh000758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Unconventional oil and gas (UOG) development, made possible by horizontal drilling and high-volume hydraulic fracturing, has been fraught with controversy since the industry's rapid expansion in the early 2000's. Concerns about environmental contamination and public health risks persist in many rural communities that depend on groundwater resources for drinking and other daily needs. Spatial disparities in UOG risks can pose distributive environmental injustice if such risks are disproportionately borne by marginalized communities. In this paper, we analyzed groundwater vulnerability to contamination from UOG as a physically based measure of risk in conjunction with census tract level sociodemographic characteristics describing social vulnerability in the northern Appalachian Basin. We found significant associations between elevated groundwater vulnerability and lower population density, consistent with UOG development occurring in less densely populated rural areas. We also found associations between elevated groundwater vulnerability and lower income, higher proportions of elderly populations, and higher proportion of mobile homes, suggesting a disproportionate risk burden on these socially vulnerable groups. We did not find a statistically significant association between elevated groundwater vulnerability and populations of racial/ethnic minorities in our study region. Household surveys provided empirical support for a relationship between sociodemographic characteristics and capacity to assess and mitigate exposures to potentially contaminated water. Further research is needed to probe if the observed disparities translate to differences in chemical exposure and adverse health outcomes.
Collapse
Affiliation(s)
- Mario A. Soriano
- School of the EnvironmentYale UniversityNew HavenCTUSA
- Integrated GroundWater Modeling CenterHigh Meadows Environmental InstitutePrinceton UniversityPrincetonNJUSA
| | - Joshua L. Warren
- Department of BiostatisticsSchool of Public HealthYale UniversityNew HavenCTUSA
| | - Cassandra J. Clark
- Department of Environmental Health SciencesSchool of Public HealthYale UniversityNew HavenCTUSA
| | - Nicholaus P. Johnson
- Department of Environmental Health SciencesSchool of Public HealthYale UniversityNew HavenCTUSA
| | | | - Nicole C. Deziel
- Department of Environmental Health SciencesSchool of Public HealthYale UniversityNew HavenCTUSA
| | | |
Collapse
|