1
|
Quan F, Zhan G, Xu P, Chen X, Shen W, Jia F, He Y, Li J. Electrochemical removal of nitrate in high-salt wastewater with low-cost iron electrode modified by phosphate. J Environ Sci (China) 2025; 148:38-45. [PMID: 39095173 DOI: 10.1016/j.jes.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 08/04/2024]
Abstract
Nitrate (NO3-) is a widespread pollutant in high-salt wastewater and causes serious harm to human health. Although electrochemical removal of nitrate has been demonstrated to be a promising treatment method, the development of low-cost electro-catalysts is still challenging. In this work, a phosphate modified iron (P-Fe) cathode was prepared for electrochemical removal of nitrate in high-salt wastewater. The phosphate modification greatly improved the activity of iron, and the removal rate of nitrate on P-Fe was three times higher than that on Fe electrode. Further experiments and density functional theory (DFT) calculations demonstrated that the modification of phosphoric acid improved the stability and the activity of the zero-valent iron electrode effectively for NO3- removal. The nitrate was firstly electrochemically reduced to ammonium, and then reacted with the anodic generated hypochlorite to N2. In this study, a strategy was developed to improve the activity and stability of metal electrode for NO3- removal, which opened up a new field for the efficient reduction of NO3- removal by metal electrode materials.
Collapse
Affiliation(s)
- Fengjiao Quan
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guangming Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengfei Xu
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaolan Chen
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenjuan Shen
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Falong Jia
- College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yun He
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jianfen Li
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
2
|
Chen Y, Luo J, Ling L, Zhan Z, Liu J, Gao Z, Lam JCH, Feng C, Lei Y. In situ evolution of electrocatalysts for enhanced electrochemical nitrate reduction under realistic conditions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 23:100492. [PMID: 39398413 PMCID: PMC11470436 DOI: 10.1016/j.ese.2024.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Electrochemical nitrate reduction to ammonia (ENRA) is gaining attention for its potential in water remediation and sustainable ammonia production, offering a greener alternative to the energy-intensive Haber-Bosch process. Current research on ENRA is dedicated to enhancing ammonia selectively and productivity with sophisticated catalysts. However, the performance of ENRA and the change of catalytic activity in more complicated solutions (i.e., nitrate-polluted groundwater) are poorly understood. Here we first explored the influence of Ca2+ and bicarbonate on ENRA using commercial cathodes. We found that the catalytic activity of used Ni or Cu foam cathodes significantly outperforms their pristine ones due to the in situ evolution of new catalytic species on used cathodes during ENRA. In contrast, the nitrate conversion performance with nonactive Ti or Sn cathode is less affected by Ca2+ or bicarbonate because of their original poor activity. In addition, the coexistence of Ca2+ and bicarbonate inhibits nitrate conversion by forming scales (CaCO3) on the in situ-formed active sites. Likewise, ENRA is prone to fast performance deterioration in treating actual groundwater over continuous flow operation due to the presence of hardness ions and possible organic substances that quickly block the active sites toward nitrate reduction. Our work suggests that more work is required to ensure the long-term stability of ENRA in treating natural nitrate-polluted water bodies and to leverage the environmental relevance of ENRA in more realistic conditions.
Collapse
Affiliation(s)
- Yingkai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiayu Luo
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Ling
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhengshuo Zhan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiutan Liu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Zongjun Gao
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Jason Chun-Ho Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, Hong Kong, China
| | - Chunhua Feng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yang Lei
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Zhou B, Tong Y, Yao Y, Zhang W, Zhan G, Zheng Q, Hou W, Gu XK, Zhang L. Reversed I 1Cu 4 single-atom sites for superior neutral ammonia electrosynthesis with nitrate. Proc Natl Acad Sci U S A 2024; 121:e2405236121. [PMID: 39226362 PMCID: PMC11406288 DOI: 10.1073/pnas.2405236121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024] Open
Abstract
Electrochemical ammonia (NH3) synthesis from nitrate reduction (NITRR) offers an appealing solution for addressing environmental concerns and the energy crisis. However, most of the developed electrocatalysts reduce NO3- to NH3 via a hydrogen (H*)-mediated reduction mechanism, which suffers from undesired H*-H* dimerization to H2, resulting in unsatisfactory NH3 yields. Herein, we demonstrate that reversed I1Cu4 single-atom sites, prepared by anchoring iodine single atoms on the Cu surface, realized superior NITRR with a superior ammonia yield rate of 4.36 mg h-1 cm-2 and a Faradaic efficiency of 98.5% under neutral conditions via a proton-coupled electron transfer (PCET) mechanism, far beyond those of traditional Cu sites (NH3 yield rate of 0.082 mg h-1 cm-2 and Faradaic efficiency of 36.5%) and most of H*-mediated NITRR electrocatalysts. Theoretical calculations revealed that I single atoms can regulate the local electronic structures of adjacent Cu sites in favor of stronger O-end-bidentate NO3- adsorption with dual electron transfer channels and suppress the H* formation from the H2O dissociation, thus switching the NITRR mechanism from H*-mediated reduction to PCET. By integrating the monolithic I1Cu4 single-atom electrode into a flow-through device for continuous NITRR and in situ ammonia recovery, an industrial-level current density of 1 A cm-2 was achieved along with a NH3 yield rate of 69.4 mg h-1 cm-2. This study offers reversed single-atom sites for electrochemical ammonia synthesis with nitrate wastewater and sheds light on the importance of switching catalytic mechanisms in improving the performance of electrochemical reactions.
Collapse
Affiliation(s)
- Bing Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yawen Tong
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Weixing Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guangming Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Qian Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wei Hou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, People's Republic of China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
4
|
Xue Y, Yu Q, Fang J, Jia Y, Wang R, Fan J. A Wetting and Capture Strategy Overcoming Electrostatic Repulsion for Electroreduction of Nitrate to Ammonia from Low-Concentration Sewage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400505. [PMID: 38477685 DOI: 10.1002/smll.202400505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Ammonia production by electrocatalytic nitrate reduction reaction (NO3RR) in water streams is anticipated as a zero-carbon route. Limited by dilute nitrate in natural sewage and the electrostatic repulsion between NO3 - and cathode, NO3RR can hardly be achieved energy-efficiently. The hydrophilic Cu@CuCoO2 nano-island dispersed on support can enrich NO3 - and produce a sensitive current response, followed by electrosynthesis of ammonia through atomic hydrogen (*H) is reported. The accumulated NO3 - can be partially converted to NO2 - without external electric field input, confirming that the Cu@CuCoO2 nano-island can strongly bind NO3 - and then trigger the reduction via dynamic evolution between Cu-Co redox sites. Through the identification of intermediates and theoretical computation. it is found that the N-side hydrogenation of *NO is the optimal reaction step, and the formation of N─N dimer may be prevented. An NH3 product selectivity of 93.5%, a nitrate conversion of 96.1%, and an energy consumption of 0.079 kWh gNH3 -1 is obtained in 48.9 mg-N L-1 naturally nitrate-polluted streams, which outperforms many works using such dilute nitrate influent. Conclusively, the electrocatalytic system provides a platform to guarantee the self-sufficiency of dispersed ammonia production in agricultural regions.
Collapse
Affiliation(s)
- Yinghao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qihui Yu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Junhua Fang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yan Jia
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Rongchang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Jianwei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
5
|
Zhou B, Yu L, Zhang W, Liu X, Zhang H, Cheng J, Chen Z, Zhang H, Li M, Shi Y, Jia F, Huang Y, Zhang L, Ai Z. Cu 1-Fe Dual Sites for Superior Neutral Ammonia Electrosynthesis from Nitrate. Angew Chem Int Ed Engl 2024; 63:e202406046. [PMID: 38771293 DOI: 10.1002/anie.202406046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
The electrochemical nitrate reduction reaction (NO3RR) is able to convert nitrate (NO3 -) into reusable ammonia (NH3), offering a green treatment and resource utilization strategy of nitrate wastewater and ammonia synthesis. The conversion of NO3 - to NH3 undergoes water dissociation to generate active hydrogen atoms and nitrogen-containing intermediates hydrogenation tandemly. The two relay processes compete for the same active sites, especially under pH-neutral condition, resulting in the suboptimal efficiency and selectivity in the electrosynthesis of NH3 from NO3 -. Herein, we constructed a Cu1-Fe dual-site catalyst by anchoring Cu single atoms on amorphous iron oxide shell of nanoscale zero-valent iron (nZVI) for the electrochemical NO3RR, achieving an impressive NO3 - removal efficiency of 94.8 % and NH3 selectivity of 99.2 % under neutral pH and nitrate concentration of 50 mg L-1 NO3 --N conditions, greatly surpassing the performance of nZVI counterpart. This superior performance can be attributed to the synergistic effect of enhanced NO3 - adsorption on Fe sites and strengthened water activation on single-atom Cu sites, decreasing the energy barrier for the rate-determining step of *NO-to-*NOH. This work develops a novel strategy of fabricating dual-site catalysts to enhance the electrosynthesis of NH3 from NO3 -, and presents an environmentally sustainable approach for neutral nitrate wastewater treatment.
Collapse
Affiliation(s)
- Biao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Linghao Yu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Weixing Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xupeng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hao Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jundi Cheng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ziyue Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hao Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Meiqi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yi Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
6
|
Sun J, Garg S, Waite TD. Utilizing an Integrated Flow Cathode-Membrane Filtration System for Effective and Continuous Electrochemical Hydrodechlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13131-13144. [PMID: 38986049 DOI: 10.1021/acs.est.4c03842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Pd-based electrodes are recognized to facilitate effective electrochemical hydrodechlorination (EHDC) as a result of their superior capacity for atomic hydrogen (H*) generation. However, challenges such as electrode stability, feasibility of treating complex matrices, and high cost associated with electrode synthesis hinder the application of Pd-based electrodes for EHDC. In this work, we investigated the feasibility of degrading 2,4-dichlorophenol (2,4-DCP) by EHDC employing Pd-loaded activated carbon particles, prepared via a simple wet-impregnation method, as a flow cathode (FC) suspension. Compared to other Pd-based EHDC studies, a much lower Pd loading (0.02-0.08 mg cm-2) was used. Because of the excellent mass transfer in the FC system, almost 100% 2,4-DCP was hydrodechlorinated to phenol within 1 h. The FC system also showed excellent performance in treating complex water matrices (including hardness ion-containing wastewater and various other chlorinated organics such as 2,4-dichlorobenzoic acid and trichloroacetic acid) with a relatively low energy consumption (0.26-1.56 kW h m-3 mg-1 of 2,4-DCP compared to 0.32-7.61 kW h m-3 mg-1 of 2,4-DCP reported by other studies). The FC synthesized here was stable over 36 h of continuous operation, indicating its potential suitability for real-world applications. Employing experimental investigations and mathematical modeling, we further show that hydrodechlorination of 2,4-DCP occurs via interaction with H*, with no role of direct electron transfer and/or HO•-mediated processes in the removal of 2,4-DCP.
Collapse
Affiliation(s)
- Jingyi Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, NSW, Australia
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, NSW, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, NSW, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing 214206, Jiangsu Province, P. R. China
| |
Collapse
|
7
|
Cao M, Zhang H, Wei X, Tian Y. Ultrafine CuO/graphene oxide cellulose nanocomposites with complementary framework for polycyclic aromatic hydrocarbon pollutants removal. WATER RESEARCH 2024; 258:121816. [PMID: 38823284 DOI: 10.1016/j.watres.2024.121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
Efficient and sustainable methods for eliminating polycyclic aromatic hydrocarbon pollutants (PAHPs) are in highly desired. Proven technologies involve physical and chemical reactions that absorb PAHPs, however they encounter formidable challenges. Here, a bottom-up refining-grain strategy is proposed to rationally design ultrafine CuO/graphene oxide-cellulose nanocomposites (LCelCCu) with a mirror-like for tetracycline (TC) to substantially improve the efficient of the purification process by active integrated-sorption. The LCelCCu captures TC with a higher affinity and lower energy demand, as determined by sorption kinetic, isotherms, thermodynamics, and infrared and X-ray Photoelectron Spectroscopy. The resulting material could achieve ultra-high sorption capacity (2775.23 mg/g), kinetic (1.2499 L g-1 h-1) and high selectivity (up to 99.9 %) for TC, nearly surpassing all recent adsorbents. This study simultaneously unveils the pioneering role of simultaneous multi-site match sorption and subsequent advanced oxidation synergistically, fundamentally enhancing understanding of the structure-activity-selectivity relationship and inspires more sustainable water purification applications and broader material design considerations.
Collapse
Affiliation(s)
- Mengbo Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xingyue Wei
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Zhou S, Dai Y, Song Q, Lu L, Yu X. Efficient Electrochemical Nitrate Removal by Ordered Ultrasmall Intermetallic AuCu 3 via Enhancing Nitrate Adsorption. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38605516 DOI: 10.1021/acsami.4c01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Developing a high-performance electrocatalyst for synthesizing ammonia from nitrate represents a promising solution for addressing wastewater pollution and achieving sustainable ammonia production. However, it remains a formidable challenge. Herein, an intermetallic AuCu3 electrocatalyst with high-density active sites is designed and prepared for an efficient nitrate electroreduction to generate ammonia. Remarkably, the Faraday efficiency and yield rate of ammonia at -0.9 V are 97.6% and 75.9 mg h-1 cm-2, respectively. More importantly, after 10 cycles of testing, the removal rate of nitrate can still reach 95.2%. Electrochemical in situ Fourier transform infrared analysis indicates that AuCu3 IM can promote the adsorption of nitrate and enhance ammonia production from nitrate. *NH3, *NO, and *NO2 have been proven to be active intermediates. Theoretical and experimental studies show that the Au site can provide a large amount of *H for nitrate reduction, and the Cu site is conducive to the reduction of nitrate to produce nitrogen-containing products. Meanwhile, AuCu3 intermetallic compounds (AuCu3 IM) can inhibit the dimerization of *H. The power density and ammonia yield of the assembled Zn-nitrate battery reached 2.17 mW cm-2 and 71.2 mg h-1 cm-2, respectively.
Collapse
Affiliation(s)
- Shuanglong Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China
| | - Yu Dai
- School of Foreign Languages, Qingdao City University, Qingdao 266042, China
| | - Qiang Song
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Lina Lu
- School of Business, Shandong University of Technology, Zibo 255000, China
| | - Xiao Yu
- School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
9
|
Xiong Y, Wang Y, Zhou J, Liu F, Hao F, Fan Z. Electrochemical Nitrate Reduction: Ammonia Synthesis and the Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304021. [PMID: 37294062 DOI: 10.1002/adma.202304021] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Natural nitrogen cycle has been severely disrupted by anthropogenic activities. The overuse of N-containing fertilizers induces the increase of nitrate level in surface and ground waters, and substantial emission of nitrogen oxides causes heavy air pollution. Nitrogen gas, as the main component of air, has been used for mass ammonia production for over a century, providing enough nutrition for agriculture to support world population increase. In the last decade, researchers have made great efforts to develop ammonia processes under ambient conditions to combat the intensive energy consumption and high carbon emission associated with the Haber-Bosch process. Among different techniques, electrochemical nitrate reduction reaction (NO3RR) can achieve nitrate removal and ammonia generation simultaneously using renewable electricity as the power, and there is an exponential growth of studies in this research direction. Here, a timely and comprehensive review on the important progresses of electrochemical NO3RR, covering the rational design of electrocatalysts, emerging CN coupling reactions, and advanced energy conversion and storage systems is provided. Moreover, future perspectives are proposed to accelerate the industrialized NH3 production and green synthesis of chemicals, leading to a sustainable nitrogen cycle via prosperous N-based electrochemistry.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
10
|
Zhou J, Zhu Y, Wen K, Pan F, Ma H, Niu J, Wang C, Zhao J. Efficient and Selective Electrochemical Nitrate Reduction to N 2 Using a Flow-Through Zero-Gap Electrochemical Reactor with a Reconstructed Cu(OH) 2 Cathode: Insights into the Importance of Inter-Electrode Distance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4824-4836. [PMID: 38408018 DOI: 10.1021/acs.est.3c10936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Electrochemically converting nitrate, a widely distributed nitrogen contaminant, into harmless N2 is a feasible and environmentally friendly route to close the anthropogenic nitrogen-based cycle. However, it is currently hindered by sluggish kinetics and low N2 selectivity, as well as scarce attention to reactor configuration. Here, we report a flow-through zero-gap electrochemical reactor that shows a high performance of nitrate reduction with 100% conversion and 80.36% selectivity of desired N2 in the chlorine-free system at 100 mg-N·L-1 NO3- while maintaining a rapid reduction kinetics of 0.07676 min-1. More importantly, the mass transport and current utilization efficiency are significantly improved by shortening the inter-electrode distance, especially in the zero-gap electrocatalytic system where the current efficiency reached 50.15% at 5 mA·cm-2. Detailed characterizations demonstrated that during the electroreduction process, partial Cu(OH)2 on the cathode surface was reconstructed into stable Cu/Cu2O as the active phase for efficient nitrate reduction. In situ characterizations revealed that the highly selective *NO to *N conversion and the N-N coupling step played crucial roles during the selective reduction of NO3- to N2 in the zero-gap electrochemical system. In addition, theoretical calculations demonstrated that improving the key intermediate *N coverage could effectively facilitate the N-N coupling step, thereby promoting N2 selectivity. Moreover, the environmental and economic benefits and long-term stability shown by the treatment of real nitrate-containing wastewater make our proposed electrocatalytic system more attractive for practical applications.
Collapse
Affiliation(s)
- Jianjun Zhou
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, China
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, China
| | - Kaiyue Wen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, China
| | - Fan Pan
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, China
| | - Hongrui Ma
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Wang Y, Ji Z, Pei Y. Highly selective electrochemical reduction of nitrate via CoO/Ir-nickel foam cathode to treat wastewater with a low C/N ratio. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132813. [PMID: 37918076 DOI: 10.1016/j.jhazmat.2023.132813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Thorough nitrate removal from reclaimed water by biological techniques without carbon sources is difficult. Flexible, controllable electrochemical nitrate reduction is widely researched. Herein, ultrathin CoO nanosheets were constructed through amino group induction and orientation. The interfacial electron transfer resistance of two-dimensional CoO was 43.4% lower than that of one-dimensional nanoparticles, resulting in higher current density and improved nitrate reduction efficiency. Nickel foam and IrO2-nickel foam electrodes have almost no effect on nitrate reduction. It is worth noting that iridium loading on CoO (nanosheet) regulated the electronic band structure and generated active atomic H* . The nitrate removal rate increased from 45.1% (CoO (nanoparticle)-nickle foam) and 63.8% (CoO (nanosheet)-nickle foam) to 94.64% (CoO/Ir10 wt%-nickle foam). The proton enhancement effect improved indirect nitrate reduction by atomic H* and increased the NO3--N removal rate to 99.8%. Active chlorine species generated by Cl- in the wastewater selectively converted more than 99% of nitrate to N2, exceeding previous Co-based cathode results. In situ DEMS indicated that electrochemical reduction of nitrate included deoxidation (NO3-→*NO2-→*NO→*N/*N2O→N2) and hydrogenation (*NH2→*NH3→NH4+). The NO3--N removal rate of CoO/Ir10 wt% exceeded 65% during treatment of wastewater treatment plant effluents, verifying the feasibility of electrochemical nitrate reduction with the CoO/Ir10 wt% cathode. A strategy for designing electrochemical nitrate reduction electrocatalysts with excellent potential for full-scale application to treat wastewater treatment plant effluent is provided.
Collapse
Affiliation(s)
- Youke Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Zehua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuansheng Pei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China.
| |
Collapse
|
12
|
Chen Y, He J, Pang H, Yu D, Jiang P, Hao X, Zhang J. Electrochemical denitrification by a recyclable cobalt oxide cathode: Rapid recovery and selective catalysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132870. [PMID: 37924706 DOI: 10.1016/j.jhazmat.2023.132870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Cathodic aging and fouling have presented significant challenges in the realm of electrochemical denitrification for engineering applications. This study focused on the development of an economical and recyclable nanoporous Co3O4/Co cathode through anodization for nitrate reduction. What distinguished our cathode was its exceptional sustainability. Cobalt from the inactive catalyst could be reclaimed onto the substrate, enabling the regeneration of a new Co3O4 layer. This innovative approach resulted in an exceptionally low Co catalyst consumption, a mere 1.936 g/1 kg N, making it the most cost-effective choice among all Co-based cathodes. The Co3O4 catalyst exhibited a truncated octahedron structure, primarily composed of surface Co2+ ions. Density functional theory calculations confirmed that the bonding between the O atom in NO3- ions and the Co atom in Co3O4 was thermodynamically favorable, with a free energy of - 0.89 eV. Co2+ ions acted as "electron porters" facilitating electron transfer through a redox circle Co2+-Co3+-Co2+. However, the presence of two energy barriers (*NH2NO to *N2 and *N2 to N2) with respective heights of 0.83 eV and 1.17 eV resulted in a N2 selectivity of 9.84% and an NH3 selectivity of 90.02%. In actual wastewater treatment, approximately 78% of TN and 93% of NO3- were successfully removed after 3 h, consistent with the prediction kinetic model. This anodization-based strategy offers a significant advantage in terms of long-term cost and presents a new paradigm for electrode sustainability.
Collapse
Affiliation(s)
- Yiwen Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Heliang Pang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Dehai Yu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Peigeng Jiang
- North China Municipal Engineering Design & Research Institute Co., Ltd, Tianjin 300202, China Guangzhou University, Guangzhou 510006, PR China
| | - Xiujuan Hao
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
13
|
Yin H, Liu L, Ma J, Zhang C, Qiu G. Efficient removal of As(III) from groundwaters through self-alkalization in an asymmetric flow-electrode electrochemical separation system. WATER RESEARCH 2023; 246:120734. [PMID: 37862875 DOI: 10.1016/j.watres.2023.120734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
It remains a great challenge to efficiently remove As(III) from groundwater using traditional technologies due to its stable electroneutral form. This study constructed an asymmetric flow-electrode electrochemical separation (AFES) system, which overcomes the drawback of H+ release from anodic carbon oxidation and achieves continuous self-alkalization function and highly efficient removal of As(III) from groundwater. At the applied voltage of 1.2 V and initial pH 7.5, the system could rapidly decrease the total As (T-As) concentration from 150.0 to 8.9 μg L-1 within 90 min, with an energy consumption of 0.04 kWh m-3. The self-alkalization was triggered by the generation of H2O2 from dissolved oxygen reduction and the adsorption of H+ on the cathode in the feed chamber, which significantly promoted the dissociation and oxidation of As(III), resulting in the removal of T-As predominantly in the form of As(V). The removal performance of T-As was slightly affected by the initial pH and coexisting ions in the feed chamber. The AFES system also exhibited considerable stability after 20 cycles of continuous experiments and superior performance in treating As-containing real groundwater. Moreover, the pH of the alkalized solution can be restored to the initial level by standing or aeration operation. This work offers a novel and efficient pathway for the detoxication of As(III)-contaminated groundwaters.
Collapse
Affiliation(s)
- Haoyu Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Changyong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen 518000, China.
| |
Collapse
|
14
|
Sun J, Garg S, Waite TD. A Novel Integrated Flow-Electrode Capacitive Deionization and Flow Cathode System for Nitrate Removal and Ammonia Generation from Simulated Groundwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14726-14736. [PMID: 37721968 DOI: 10.1021/acs.est.3c03922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Electrochemical reduction of nitrate is a promising method for the removal of nitrate from contaminated groundwater. However, the presence of hardness cations (Ca2+ and Mg2+) in groundwaters hampers the electroreduction of nitrate as a result of the precipitation of carbonate-containing solids of these elements on the cathode surface. Thus, some pretreatment process is required to remove unwanted hardness cations. Herein, we present a proof-of-concept of a novel three-chambered flow electrode unit, constituting a flow electrode capacitive deionization (FCDI) unit and a flow cathode (FC) unit, which achieves cation removal, nitrate capture and reduction, and ammonia generation in a single cell without the need for any additional chemicals/electrolyte. The addition of the FCDI unit not only achieves removal of hardness cations but also concentrates the nitrate ions and other anions, which facilitates nitrate reduction in the subsequent FC unit. Results show that the FCDI cell voltage influences electrode stability but has a minimal impact on the overall nitrate removal performance. The concentration of coexisting anions influences the nitrate removal due to competitive sorption of anions on the electrode surface. Our results further show that stable electrochemical performance was obtained over 26 h of operation. Overall, this study provides a scalable strategy for continuous nitrate electroreduction and ammonia generation from nitrate contaminated groundwaters containing hardness ions.
Collapse
Affiliation(s)
- Jingyi Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China
| |
Collapse
|
15
|
Zhou B, Zhan G, Yao Y, Zhang W, Zhao S, Quan F, Fang C, Shi Y, Huang Y, Jia F, Zhang L. Renewable energy driven electroreduction nitrate to ammonia and in-situ ammonia recovery via a flow-through coupled device. WATER RESEARCH 2023; 242:120256. [PMID: 37354842 DOI: 10.1016/j.watres.2023.120256] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Green ammonia production from wastewater via electrochemical nitrate reduction contributes substantially to the realization of carbon neutrality. Nonetheless, the current electrochemical technology is largely limited by the lack of suitable device for efficient and continuous electroreduction nitrate into ammonia and in-situ ammonia recovery. Here, we report a flow-through coupled device composed of a compact electrocatalytic cell for efficient nitrate reduction and a unit to separate the produced ammonia without any pH adjustment and additional energy-input from the circulating nitrate-containing wastewater. Using an efficient and selective Cl-modified Cu foam electrode, nearly 100% NO3- electroreduction efficiency and over 82.5% NH3 Faradaic efficiency was realized for a wide range of nitrate-containing wastewater from 50 to 200 mg NO3--N L-1. Moreover, this flow-through coupled device can continuingly operate at a large current of 800 mA over 100 h with a sustained NH3 yield rate of 420 μg h-1 cm-2 for nitrate-containing wastewater treatment (50 mg NO3--N L-1). When driven by solar energy, the flow-through coupled device can also exhibit exceptional real wastewater treatment performance, delivering great potential for practical application. This work paves a new avenue for clean energy production and environmental sustainability as well as carbon neutrality.
Collapse
Affiliation(s)
- Bing Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guangming Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Weixing Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shengxi Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Fengjiao Quan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chuyang Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
16
|
Liu Z, Shen F, Shi L, Tong Q, Tang M, Li Y, Peng M, Jiao Z, Jiang Y, Ao L, Fu W, Lv X, Jiang G, Hou L. Electronic Structure Optimization and Proton-Transfer Enhancement on Titanium Oxide-Supported Copper Nanoparticles for Enhanced Nitrogen Recycling from Nitrate-Contaminated Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37364020 DOI: 10.1021/acs.est.3c03431] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Electrocatalytic reduction of nitrate to NH3 (NO3RR) on Cu offers sustainable NH3 production and nitrogen recycling from nitrate-contaminated water. However, Cu affords limited NO3RR activity owing to its unfavorable electronic state and the slow proton transfer on its surface, especially in neutral/alkaline media. Furthermore, although a synchronous "NO3RR and NH3 collection" system has been developed for nitrogen recycling from nitrate-laden water, no system is designed for natural water that generally contains low-concentration nitrate. Herein, we demonstrate that depositing Cu nanoparticles on a TiO2 support enables the formation of electron-deficient Cuδ+ species (0 < δ ≤ 2), which are more active than Cu0 in NO3RR. Furthermore, TiO2-Cu coupling induces local electric-field enhancement that intensifies water adsorption/dissociation at the interface, accelerating proton transfer for NO3RR on Cu. With the dual enhancements, TiO2-Cu delivers an NH3-N selectivity of 90.5%, mass activity of 41.4 mg-N h gCu-1, specific activity of 377.8 mg-N h-1 m-2, and minimal Cu leaching (<25.4 μg L-1) when treating 22.5 mg L-1 of NO3--N at -0.40 V, outperforming most of the reported Cu-based catalysts. A sequential NO3RR and NH3 collection system based on TiO2-Cu was then proposed, which could recycle nitrogen from nitrate-contaminated water under a wide concentration window of 22.5-112.5 mg L-1 at a rate of 209-630 mgN m-2 h-1. We also demonstrated this system could collect 83.9% of nitrogen from NO3--N (19.3 mg L-1) in natural lake water.
Collapse
Affiliation(s)
- Zixun Liu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Fei Shen
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Li Shi
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Qiuwen Tong
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Mu'e Tang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yiming Li
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Min Peng
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zhaojie Jiao
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yan Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Liang Ao
- Chongqing Academy of Eco-Environmental Science, Chongqing 400700, China
- Chongqing Institute of Geology and Mineral Resources, Chongqing 400700, China
| | - Wenyang Fu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xiaoshu Lv
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Guangming Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
- Chongqing Academy of Eco-Environmental Science, Chongqing 400700, China
- Chongqing Institute of Geology and Mineral Resources, Chongqing 400700, China
| | - Li'an Hou
- High Tech Inst Beijing, Beijing 100000, China
| |
Collapse
|
17
|
Zhu D, Li G, Yan X, Geng C, Gao L. Electrochemical nitrate reduction to high-value ammonia on two-dimensional molybdenum carbide nanosheets for nitrate-containing wastewater upcycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163145. [PMID: 37001674 DOI: 10.1016/j.scitotenv.2023.163145] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
Electrochemical conversion of nitrate wastewater into high-value ammonia fertilizer has attracted extensive attention in wastewater treatment and resource recovery, but presents great challenges due to complicated reaction pathways and competing side reactions. Herein, we report a feasible method for the successful fabrication of Mo2C nanosheets (Mo2C NSs) as electrocatalyst for the electroreduction of nitrate to ammonia. Compared to Mo2C nanoparticles, the Mo2C NSs exhibited superior activity and selectivity in NH3 electrosynthesis with an NH3 yield rate of 25.2 mg·h-1·mg-1cat. at -0.4 V and a Faradaic efficiency of 81.4 % at -0.3 V versus reversible hydrogen electrode. The X-ray diffraction and transmission electron microscopy characterization verifted the controllable conversion of 2D MoO2 NSs into 2D Mo2C NSs. In situ spectroscopic studies and on-line differential electrochemical mass spectrometry revealed the proposed reaction pathway of NO3- to NH3 conversion, *NO3- → *NO2- → *NO→*NOH → *NH2OH → *NH3. Density functional theory calculations further verified the effective N-end NOH pathway with the conversion of *NH2OH to *NH2 as the rate-determining step requiring a low energy barrier of 0.58 eV. Importantly, the key hydrogenation of *NO to form *NOH species underwent a lower energy barrier of 0.39 eV compared with the formation of *ONH species (1.06 eV).
Collapse
Affiliation(s)
- Donglin Zhu
- School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Guoguang Li
- School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xu Yan
- Huizhou Innovation Research Institute of Next Generation Industrial Internet, Huizhou 516006, PR China
| | - Chunxia Geng
- Beijing Water Planning Institute, Beijing 100089, PR China
| | - Li Gao
- Institute for Sustainable Industries and Liveable Cities, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia.
| |
Collapse
|