1
|
Gili J, Maín A, van Drooge BL, Viana M. Source-resolved black carbon and PM 2.5 exposures during wildfires and prescribed burns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125660. [PMID: 39800148 DOI: 10.1016/j.envpol.2025.125660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Changes in climate and land-use have significantly increased both the frequency and intensity of wildland fires globally, exacerbating the potential for hazardous impacts on human health. A better understanding of particle exposure concentrations and scenarios is crucial for developing mitigation strategies to reduce the health risks. Here, PM2.5 and black carbon (BC) concentrations were monitored during wildland fires between 2022 and 2024, in fire-prone areas in Catalonia (NE Spain), by means of personal monitors (AirBeam2 and Micro-aethalometers AE51 and MA200). Results revealed that exposures to combustion aerosols (PM2.5 and BC) were significant and comparable during wildfires and prescribed burns (mean PM2.5 during wildfires = 152 μg/m3 vs. 110-145 μg/m3 for prescribed burns). Overall, BC/PM2.5 ratios showed a large variability as a function of the monitoring scenario, indicating varying contributions from mineral aerosols to the emissions mix originating from fire management and extinction tasks. Specifically, mop-up tasks (final extinction tasks involving stirring top soil using handheld tools) were identified as a significant contributor to PM2.5 exposures, with 1-min PM2.5 peak concentrations reaching up to 1190 μg/m3. These results may be especially valuable for emissions modelling. Source apportionment of multi-wavelength BC datasets provided deeper insights into emissions and their impact on exposure profiles: line operators (who control the fire perimeter) were predominantly exposed to biomass burning smoke BCbb (61%) when compared to BC from fossil-fuel combustion (BCff = 39%), while torchers (in charge of initiating technical fires using fossil-fuel drip-torches) were predominantly exposed to BCff (77% vs. 23% BCbb). These findings highlight the value of portable monitors in the assessment of wildfire emissions and impacts on human exposure and environment. The combination of these tools, reporting data in real-time and with high time-resolution, is key to the design and implementation of effective mitigation strategies for environmental and health concerns related to wildland fires.
Collapse
Affiliation(s)
- Jordina Gili
- Institute of Environmental Assessment and Water Research - Spanish Research Council (IDAEA-CSIC), Barcelona, Spain; PhD program of Analytical Chemistry and Environment, University of Barcelona, Barcelona, Spain.
| | - Aina Maín
- Institute of Environmental Assessment and Water Research - Spanish Research Council (IDAEA-CSIC), Barcelona, Spain
| | - Barend L van Drooge
- Institute of Environmental Assessment and Water Research - Spanish Research Council (IDAEA-CSIC), Barcelona, Spain
| | - Mar Viana
- Institute of Environmental Assessment and Water Research - Spanish Research Council (IDAEA-CSIC), Barcelona, Spain; Pollution Prevention Unit, Spanish Ministry for the Ecological Transition, Madrid, Spain
| |
Collapse
|
2
|
Qiu M, Kelp M, Heft-Neal S, Jin X, Gould CF, Tong DQ, Burke M. Evaluating Chemical Transport and Machine Learning Models for Wildfire Smoke PM 2.5: Implications for Assessment of Health Impacts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22880-22893. [PMID: 39694472 DOI: 10.1021/acs.est.4c05922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Growing wildfire smoke represents a substantial threat to air quality and human health. However, the impact of wildfire smoke on human health remains imprecisely understood due to uncertainties in both the measurement of exposure of population to wildfire smoke and dose-response functions linking exposure to health. Here, we compare daily wildfire smoke-related surface fine particulate matter (PM2.5) concentrations estimated using three approaches, including two chemical transport models (CTMs): GEOS-Chem and the Community Multiscale Air Quality (CMAQ) and one machine learning (ML) model over the contiguous US in 2020, a historically active fire year. In the western US, compared against surface PM2.5 measurements from the US Environmental Protection Agency (EPA) and PurpleAir sensors, we find that CTMs overestimate PM2.5 concentrations during extreme smoke episodes by up to 3-5 fold, while ML estimates are largely consistent with surface measurements. However, in the eastern US, where smoke levels were much lower in 2020, CTMs show modestly better agreement with surface measurements. We develop a calibration framework that integrates CTM- and ML-based approaches to yield estimates of smoke PM2.5 concentrations that outperform individual approach. When combining the estimated smoke PM2.5 concentrations with county-level mortality rates, we find consistent effects of low-level smoke on mortality but large discrepancies in effects of high-level smoke exposure across different methods. Our research highlights the differences across estimation methods for understanding the health impacts of wildfire smoke and demonstrates the importance of bench-marking estimates with available surface measurements.
Collapse
Affiliation(s)
- Minghao Qiu
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794, United States
- Program in Public Health, Stony Brook University, Stony Brook, New York 11794, United States
- Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
- Center for Innovation in Global Health, Stanford University, Stanford, California 94305, United States
| | - Makoto Kelp
- Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Sam Heft-Neal
- Center on Food Security and the Environment, Stanford University, Stanford, California 94305, United States
| | - Xiaomeng Jin
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Carlos F Gould
- School of Public Health, University of California San Diego, La Jolla, California 92093, United States
| | - Daniel Q Tong
- Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia 22030, United States
| | - Marshall Burke
- Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
- Center on Food Security and the Environment, Stanford University, Stanford, California 94305, United States
- National Bureau of Economic Research, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Rizzo LV, Rizzo MCFV. Wildfire smoke and health impacts: a narrative review. J Pediatr (Rio J) 2024:S0021-7557(24)00149-9. [PMID: 39681318 DOI: 10.1016/j.jped.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVE Air pollution emission associated with wildfires is a global concern, contributing to air quality deterioration and severely impacting public health. This narrative review aims to provide an overview of wildfire smoke (WFS) characteristics and associated impacts on adults' and children's health. DATA SOURCE Literature review based on a bibliographic survey in PubMed (National Library of Medicine, United States), SciELO (Scientific Electronic Library Online), and Google Scholar databases. Observational, cross-sectional, longitudinal, and review studies were considered, prioritizing peer-reviewed articles published in the last 10 years (2014-2024). DATA SYNTHESIS Wildfire smoke (WFS) contributes to the deterioration of air quality, resulting in increased exposure to air pollution especially in wildland-urban interfaces. WFS contains particulate matter (PM) in a range of sizes and chemical compositions, as well as multiple toxic gasses. The health impacts of WFS are systemic, affecting the respiratory, cardiovascular, and neurological systems. Exposure to WFS is associated with inflammatory and oxidative stress, DNA damage, epigenetic modulations, and stress-disorders in adults and children. Children may be at an increased risk of WFS respiratory impacts, due to their smaller airways and developing lungs. CONCLUSION Wildfires are increasing in frequency and intensity, resulting in thousands of premature deaths and hospitalizations worldwide, each year. Preventive measures against wildfire spread must be reinforced, considering the increasing trends of global warming and extreme weather events. Adaptation strategies should be undertaken especially in wildland-urban interface regions, including the improvement of early warning systems, improvement of health care facilities and household preparedness and promotion of risk communication campaigns.
Collapse
Affiliation(s)
- Luciana V Rizzo
- Universidade de São Paulo, Instituto de Física, Laboratório de Física Atmosférica, São Paulo, Brazil.
| | - Maria Cândida F V Rizzo
- Universidade Federal de São Paulo, Departamento de Pediatria - Disciplina de Alergia, Imunologia Clínica e Reumatologia, São Paulo, Brazil
| |
Collapse
|
4
|
Jin Z, Ferrada GA, Zhang D, Scovronick N, Fu JS, Chen K, Liu Y. Fire Smoke Elevated the Carbonaceous PM 2.5 Concentration and Mortality Burden in the Contiguous U.S. and Southern Canada. RESEARCH SQUARE 2024:rs.3.rs-5478994. [PMID: 39606454 PMCID: PMC11601856 DOI: 10.21203/rs.3.rs-5478994/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Despite emerging evidence on the health impacts of fine particulate matter (PM2.5) from wildland fire smoke, the specific effects of PM2.5 composition on health outcomes remain uncertain. We developed a three-level, chemical transport model-based framework to estimate daily full-coverage concentrations of smoke-derived carbonaceous PM2.5, specifically Organic Carbon (OC) and Elemental Carbon (EC), at a 1 km2 spatial resolution from 2002 to 2019 across the contiguous U.S. (CONUS) and Southern Canada (SC). Cross-validation demonstrated that the framework performed well at both the daily and monthly levels. Modeling results indicated that increases in wildland fire smoke have offset approximately one-third of the improvements in background air quality. In recent years, wildland fire smoke has become more frequent and carbonaceous PM2.5 concentrations have intensified, especially in the Western CONUS and Southwestern Canada. Smoke exposure is also occurring earlier throughout the year, leading to more population being exposed. We estimated that long-term exposure to fire smoke carbonaceous PM2.5 is responsible for 7,462 and 259 non-accidental deaths annually in the CONUS and SC, respectively, with associated annual monetized damage of 68.4 billion USD for the CONUS and 1.97 billion CAD for SC. The Southeastern CONUS, where prescribed fires are prevalent, contributed most to these health impacts and monetized damages. Given the challenges posed by climate change for managing prescribed and wildland fires, our findings offer critical insights to inform policy development and assess future health burdens associated with fire smoke exposure.
Collapse
Affiliation(s)
- Zhihao Jin
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University
| | | | - Danlu Zhang
- Deparent of Biostatistics, Rollins School of Public Health, Emory University
| | - Noah Scovronick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University
| | - Joshua S Fu
- Deparent of Civil and Environmental Engineering, University of Tennessee
| | - Kai Chen
- Department of Environmental Health Sciences, Yale School of Public Health
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University
| |
Collapse
|
5
|
Maji KJ, Li Z, Hu Y, Vaidyanathan A, Stowell JD, Milando C, Wellenius G, Kinney PL, Russell AG, Talat Odman M. Prescribed burn related increases of population exposure to PM 2.5 and O 3 pollution in the southeastern US over 2013-2020. ENVIRONMENT INTERNATIONAL 2024; 193:109101. [PMID: 39509841 DOI: 10.1016/j.envint.2024.109101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/23/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Ambient air quality across the southeastern US has improved substantially in recent decades. However, emissions from prescribed burns remain high, which may pose a substantial health threat. We employed a multistage modeling framework to estimate year-round, long-term effects of prescribed burns on air quality and premature deaths. The framework integrates a chemical transport model with a data-fusion approach to estimate 24-h average PM2.5 and maximum daily 8-h averaged O3 (MDA8-O3) concentrations attributable to prescribed burns for the period 2013-2020. The Global Exposure Mortality Model and a log-linear exposure-response function were used to estimate the premature deaths ascribed to long-term prescribed burn PM2.5 and MDA8-O3 exposure in ten southeastern states. Our results indicate that prescribed burns contributed on annual average 0.59 ± 0.20 µg/m3 of PM2.5 (∼10 % of ambient PM2.5) over the ten southeastern states during the study period. On average around 15 % of the state-level ambient PM2.5 concentrations were contributed by prescribed burns in Alabama (0.90 ± 0.15 µg/m3), Florida (0.65 ± 0.19 µg/m3), Georgia (0.91 ± 0.19 µg/m3), Mississippi (0.65 ± 0.10 µg/m3) and South Carolina (0.65 ± 0.09 µg/m3). In the extensive burning season (January-April), daily average contributions to ambient PM2.5 increased up to 22 % in those states. A large part of Alabama and Georgia experiences ≥3.5 µg/m3 prescribed burn PM2.5 over 30 days/year. Additionally, prescribed burns are responsible for an average increase of 0.32 ± 0.12 ppb of MDA8-O3 (0.8 % of ambient MDA8-O3) over the ten southeastern states. The combined effect of prescribed burn PM2.5 exposure, population growth, and increase of baseline mortality over time resulted in a total of 20,416 (95 % confidence interval (CI): 16,562-24,174) excess non-accidental premature deaths in the ten southeastern states, with 25 % of these deaths in Georgia. Prescribed burn MDA8-O3 was responsible for an additional 1,332 (95 % CI: 858-1,803) premature deaths in the ten southeastern states. These findings indicate significant impacts from prescribed burns, suggesting potential benefits of enhanced forest management strategies.
Collapse
Affiliation(s)
- Kamal J Maji
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zongrun Li
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yongtao Hu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ambarish Vaidyanathan
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Chad Milando
- School of Public Health, Boston University, Boston, MA 02118, USA
| | | | - Patrick L Kinney
- School of Public Health, Boston University, Boston, MA 02118, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M Talat Odman
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
6
|
Li L, Wang W, Chang HH, Alonso A, Liu Y. Wildland Fire-Related Smoke PM 2.5 and Cardiovascular Disease ED Visits in the Western United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.08.24314367. [PMID: 39484248 PMCID: PMC11527094 DOI: 10.1101/2024.10.08.24314367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background The impact of short-term exposure to fine particulate matter (PM 2.5 ) due to wildland fire smoke on the risk of cardiovascular disease (CVD) remains unclear. We investigated the association between short-term exposure to wildfire smoke PM 2.5 and Emergency Department (ED) visits for acute CVD in the Western United States from 2007 to 2018. Methods ED visits for primary or secondary diagnoses of atrial fibrillation (AF), acute myocardial infarction (AMI), heart failure (HF), stroke, and total CVD were obtained from hospital associations or state health departments in California, Arizona, Nevada, Oregon, and Utah. ED visits included those that were subsequently hospitalized. Daily smoke, non-smoke, and total PM 2.5 were estimated using a satellite-driven multi-stage model with a high resolution of 1 km. The data were aggregated to the zip code level and a case-crossover study design was employed. Temperature, relative humidity, and day of the year were included as covariates. Results We analyzed 49,759,958 ED visits for primary or secondary CVD diagnoses, which included 6,808,839 (13.7%) AFs, 1,222,053 (2.5%) AMIs, 7,194,474 (14.5%) HFs, and 808,396 (1.6%) strokes. Over the study period from 2007-01-01 to 2018-12-31, the mean smoke PM 2.5 was 1.27 (Q1: 0, Q3: 1.29) µg/m 3 . A 10 µg/m 3 increase in smoke PM 2.5 was associated with a minuscule decreased risk for AF (OR 0.994, 95% CI 0.991-0.997), HF (OR 0.995, 95% CI 0.992-0.998), and CVD (OR 0.9997, 95% CI 0.996-0.998), but not for AMI and stroke. Adjusting for non-smoke PM 2.5 did not alter these associations. A 10 µg/m 3 increase in total PM 2.5 was linked to a small increased risk for all outcomes except stroke (OR for CVD 1.006, 95% CI 1.006-1.007). Associations were similar across sex and age groups. Conclusion We identified an unexpected slight lower risk of CVD ED visits associated with short-term wildfire smoke PM 2.5 exposure. Whether these findings are due to methodological issues, behavioral changes, or other factors requires further investigation.
Collapse
|
7
|
Maji KJ, Ford B, Li Z, Hu Y, Hu L, Langer CE, Hawkinson C, Paladugu S, Moraga-McHaley S, Woods B, Vansickle M, Uejio CK, Maichak C, Sablan O, Magzamen S, Pierce JR, Russell AG. Impact of the 2022 New Mexico, US wildfires on air quality and health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174197. [PMID: 38914336 DOI: 10.1016/j.scitotenv.2024.174197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
The 2022 wildfires in New Mexico, United States, were unparalleled compared to past wildfires in the state in both their scale and intensity, resulting in poor air quality and a catastrophic loss of habitat and livelihood. Among all wildfires in New Mexico in 2022, six wildfires were selected for our study based on the size of the burn area and their proximity to populated areas. These fires accounted for approximately 90 % of the total burn area in New Mexico in 2022. We used a regional chemical transport model and data-fusion technique to quantify the contribution of these six wildfires (April 6 to August 22) on particulate matter (PM2.5: diameter ≤ 2.5 μm) and ozone (O3) concentrations, as well as the associated health impacts from short-term exposure. We estimated that these six wildfires emitted 152 thousand tons of PM2.5 and 287 thousand tons of volatile organic compounds to the atmosphere. We estimated that the average daily wildfire smoke PM2.5 across New Mexico was 0.3 μg/m3, though 1 h maximum exceeded 120 μg/m3 near Santa Fe. Average wildfire smoke maximum daily average 8-h O3 (MDA8-O3) contribution was 0.2 ppb during the study period over New Mexico. However, over the state 1 h maximum smoke O3 exceeded 60 ppb in some locations near Santa Fe. Estimated all-cause excess mortality attributable to short term exposure to wildfire PM2.5 and MDA8-O3 from these six wildfires were 18 (95 % Confidence Interval (CI), 15-21) and 4 (95 % CI: 3-6) deaths. Additionally, we estimate that wildfire PM2.5 was responsible for 171 (95 %: 124-217) excess cases of asthma emergency department visits. Our findings underscore the impact of wildfires on air quality and human health risks, which are anticipated to intensify with global warming, even as local anthropogenic emissions decline.
Collapse
Affiliation(s)
- Kamal J Maji
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bonne Ford
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - Zongrun Li
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yongtao Hu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Leiqiu Hu
- Department of Atmospheric and Earth Science, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Chelsea Eastman Langer
- New Mexico Environmental Public Health Tracking, Environmental Health Epidemiology Bureau, Epidemiology and Response Division, New Mexico Department of Health, Santa Fe, NM, USA
| | - Colin Hawkinson
- New Mexico Environmental Public Health Tracking, Environmental Health Epidemiology Bureau, Epidemiology and Response Division, New Mexico Department of Health, Santa Fe, NM, USA
| | - Srikanth Paladugu
- New Mexico Environmental Public Health Tracking, Environmental Health Epidemiology Bureau, Epidemiology and Response Division, New Mexico Department of Health, Santa Fe, NM, USA
| | - Stephanie Moraga-McHaley
- New Mexico Environmental Public Health Tracking, Environmental Health Epidemiology Bureau, Epidemiology and Response Division, New Mexico Department of Health, Santa Fe, NM, USA
| | - Brian Woods
- New Mexico Environmental Public Health Tracking, Environmental Health Epidemiology Bureau, Epidemiology and Response Division, New Mexico Department of Health, Santa Fe, NM, USA
| | - Melissa Vansickle
- Department of Geography, Florida State University, Tallahassee, FL, USA
| | | | - Courtney Maichak
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Olivia Sablan
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jeffrey R Pierce
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
8
|
Holder AL, Sullivan AP. Emissions, Chemistry, and the Environmental Impacts of Wildland Fire. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39133033 DOI: 10.1021/acs.est.4c07631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
|
9
|
Guo J, Lei L, Yang H, Zhou B, Fan D, Wu B, Wang G, Yu L, Zhang C, Zhang W, Han Q, Zhang XY, Zhao J. Effects of nasal allergens and environmental particulate matter on brainstem metabolites and the consequence of brain-spleen axis in allergic rhinitis. ENVIRONMENT INTERNATIONAL 2024; 190:108890. [PMID: 39033732 DOI: 10.1016/j.envint.2024.108890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The growing consensus links exposure to fine particulate matter (PM2.5) with an increased risk of respiratory diseases. However, little is known about the additional effects of particulate matter on brainstem function in allergic rhinitis (AR). Furthermore, it is unknown to what extent the PM2.5-induced effects in the brainstem affect the inflammatory response in AR. This study aimed to determine the effects, mechanisms and consequences of brainstem neural activity altered by allergenic stimulation and PM2.5 exposure. METHODS Using an AR model of ovalbumin (OVA) elicitation and whole-body PM2.5 exposure, the metabolic profile of the brainstem post-allergen stimulation was characterized through in vivo proton magnetic resonance imaging (1H-MRS). Then, the transient receptor potential vanilloid-1 (TRPV1) neuronal expression and sensitivity in the trigeminal nerve in AR were investigated. The link between TRPV1 expression and brainstem differential metabolites was also determined. Finally, we evaluated the mediating effects of brainstem metabolites and the consequences in the brain-spleen axis in the inflammatory response of AR. RESULTS Exposure to allergens and PM2.5 led to changes in the metabolic profiles of the brainstem, particularly affecting levels of glutamine (Gln) and glutamate (Glu). This exposure also increased the expression and sensitivity of TRPV1+ neurons in the trigeminal nerve, with the levels of TRPV1 expression closely linked to the brainstem metabolism of Glu and Gln. Moreover, allergens increased the activity of p38, while PM2.5 led to the phosphorylation of p38 and ERK, resulting in the upregulation of TRPV1 expression. The brainstem metabolites Glu and Gln were found to partially mediate the impact of TRPV1 on AR inflammation, which was supported by the presence of pro-inflammatory changes in the brain-spleen axis. CONCLUSION Brainstem metabolites are altered under allergen stimulation and additional PM2.5 exposure in AR via sensitization of the trigeminal nerve, which exacerbates the inflammatory response via the brain-splenic axis.
Collapse
Affiliation(s)
- JianShu Guo
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Lei Lei
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China; The Changning District Center for Disease Control and Prevention, Shanghai, China
| | - Haibo Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Bin Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - DongXia Fan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Biao Wu
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Ge Wang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Lu Yu
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - ChiHang Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Wenqing Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - QingJian Han
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; College of Health Science and Technology & Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - JinZhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Zhu Q, Zhang D, Wang W, D’Souza RR, Zhang H, Yang B, Steenland K, Scovronick N, Ebelt S, Chang HH, Liu Y. Wildfires are associated with increased emergency department visits for anxiety disorders in the western United States. NATURE. MENTAL HEALTH 2024; 2:379-387. [PMID: 39568497 PMCID: PMC11575985 DOI: 10.1038/s44220-024-00210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/23/2024] [Indexed: 11/22/2024]
Abstract
As wildfires increasingly impact the global economy and public health, understanding their effects is crucial. Particularly, the relationship between wildfires and anxiety disorders remains unclear. In this study, we explore this association by analyzing 1,897,865 emergency department visits for anxiety disorders in the western United States. We examined records from 2007 to 2018, using a case-crossover design and conditional logistic regression to assess the impact of wildfire-related exposures on these visits. Here we show that exposure to wildfire smokeP M 2.5 is positively linked with emergency department visits for anxiety disorders. This effect is more pronounced in women and girls and in older adults, highlighting their vulnerability. Notably, major smoke events (smokeP M 2.5 contributed ≥75% of the totalP M 2.5 ) significantly amplify this risk. These findings underscore the psychological impacts of wildfires and their smoke, suggesting a need for targeted disaster risk reduction and climate risk management strategies, especially for vulnerable groups such as older adults and women. Our results call for increased climate awareness and tailored risk communication to mitigate these emerging health challenges.
Collapse
Affiliation(s)
- Qingyang Zhu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Danlu Zhang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Wenhao Wang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Rohan Richard D’Souza
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Haisu Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Binyu Yang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Noah Scovronick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Stefanie Ebelt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Howard H. Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Lichtblau M, Reimann L, Piccari L. Pulmonary vascular disease, environmental pollution, and climate change. Pulm Circ 2024; 14:e12394. [PMID: 38933180 PMCID: PMC11205889 DOI: 10.1002/pul2.12394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Pollution and climate change constitute a combined, grave and pervasive threat to humans and to the life-support systems on which they depend. Evidence shows a strong association between pollution and climate change on cardiovascular and respiratory diseases, and pulmonary vascular disease (PVD) is no exception. An increasing number of studies has documented the impact of environmental pollution and extreme temperatures on pulmonary circulation and the right heart, on the severity and outcomes of patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension (PH), on the incidence of pulmonary embolism, and the prevalence and severity of diseases associated with PH. Furthermore, the downstream consequences of climate change impair health care systems' accessibility, which could pose unique obstacles in the case of PVD patients, who require a complex and sophisticated network of health interventions. Patients, caretakers and health care professionals should thus be included in the design of policies aimed at adaptation to and mitigation of current challenges, and prevention of further climate change. The purpose of this review is to summarize the available evidence concerning the impact of environmental pollution and climate change on the pulmonary circulation, and to propose measures at the individual, healthcare and community levels directed at protecting patients with PVD.
Collapse
Affiliation(s)
- Mona Lichtblau
- Clinic of Pulmonology, Pulmonary Hypertension UnitUniversity Hospital ZurichZurichSwitzerland
| | - Lena Reimann
- Clinic of Pulmonology, Pulmonary Hypertension UnitUniversity Hospital ZurichZurichSwitzerland
| | - Lucilla Piccari
- Department of Pulmonary MedicineHospital del MarBarcelonaSpain
| |
Collapse
|
12
|
Hang Y, Pu Q, Zhu Q, Meng X, Jin Z, Liang F, Tian H, Li T, Wang T, Cao J, Fu Q, Dey S, Li S, Huang K, Kan H, Shi X, Liu Y. Application of multi-angle spaceborne observations in characterizing the long-term particulate organic carbon pollution in China. RESEARCH SQUARE 2023:rs.3.rs-3734829. [PMID: 38168284 PMCID: PMC10760305 DOI: 10.21203/rs.3.rs-3734829/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Ambient PM2.5 pollution is recognized as a leading environmental risk factor, causing significant mortality and morbidity in China. However, the specific contributions of individual PM2.5 constituents remain unclear, primarily due to the lack of a comprehensive ground monitoring network for constituents. This issue is particularly critical for carbonaceous species such as organic carbon (OC) and elemental carbon (EC), which are known for their significant health impacts, and understanding the OC/EC ratio is crucial for identifying pollution sources. To address this, we developed a Super Learner model integrating Multi-angle Imaging SpectroRadiometer (MISR) retrievals to predict daily OC concentrations across China from 2003 to 2019 at a 10-km spatial resolution. Our model demonstrates robust predictive accuracy, as evidenced by a random cross-validation R2 of 0.84 and an RMSE of 4.9 μg/m3, at the daily level. Although MISR is a polar-orbiting instrument, its fractional aerosol data make a significant contribution to the OC exposure model. We then use the model to explore the spatiotemporal distributions of OC and further calculate the EC/OC ratio in China. We compared regional pollution discrepancies and source contributions of carbonaceous pollution over three selected regions: Beijing-Tianjin-Hebei, Fenwei Plain, and Yunnan Province. Our model observes that OC levels are elevated in Northern China due to industrial operations and central heating during the heating season, while in Yunnan, OC pollution is mainly contributed by local forest fires during fire seasons. Additionally, we found that OC pollution in China is likely influenced by climate phenomena such as the El Niño-Southern Oscillation. Considering that climate change is increasing the severity of OC concentrations with more frequent fire events, and its influence on OC formation and dispersion, we suggest emphasizing the role of climate change in future OC pollution control policies. We believe this study will contribute to future epidemiological studies on OC, aiding in refining public health guidelines and enhancing air quality management in China.
Collapse
Affiliation(s)
- Yun Hang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Qiang Pu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Qiao Zhu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Xia Meng
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhihao Jin
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hezhong Tian
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beiji ng, 100875, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Tijian Wang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingyan Fu
- State Ecologic Environmental Scientific Observation and Research Station at Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shenshen Li
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kan Huang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| |
Collapse
|