1
|
Vieira Y, Fuhr ACFP, Lütke SF, Dotto GL, Oliveira MLS, Silva LFO, Amara FB, Knani S, Alruwaili A, Jemli S. Adsorptive features of cyclohexane carboxylic naphthenic acid on a novel cross-linked polymer developed from spent coffee grounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42889-42901. [PMID: 38884933 DOI: 10.1007/s11356-024-33977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
Naphthenic acids (NA) are organic compounds commonly found in crude oil and produced water, known for their recalcitrance and toxicity. This study introduces a new adsorbent, a polymer derived from spent coffee grounds (SCGs), through a straightforward cross-linking method for removing cyclohexane carboxylic acid as representative NA. The adsorption kinetics followed a pseudo-second-order model for the data (0.007 g min-1 mg-1), while the equilibrium data fitted the Sips model ( q m = 140.55 mg g-1). The process's thermodynamics indicated that the target NA's adsorption was spontaneous and exothermic. The localized sterical and energetic aspects were investigated through statistical physical modeling, which corroborated that the adsorption occurred indeed in monolayer, as suggested by the Sips model, but revealed the contribution of two energies per site (n 1 ; n 2 ). The number of molecules adsorbed per site ( n ) was highly influenced by the temperature as n 1 decreased with increasing temperature and n 2 increased. These results were experimentally demonstrated within the pH range between 4 and 6, where both C6H11COO-(aq.) and C6H11COOH(aq.) species coexisted and were adsorbed by different energy sites. The polymer produced was naturally porous and amorphous, with a low surface area of 20 to 30 m2 g-1 that presented more energetically accessible sites than other adsorbents with much higher surface areas. Thus, this study shows that the relation between surface area and high adsorption efficiency depends on the compatibility between the energetic states of the receptor sites, the speciation of the adsorbate molecules, and the temperature range studied.
Collapse
Affiliation(s)
- Yasmin Vieira
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Ana Carolina Ferreira Piazzi Fuhr
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Sabrina Frantz Lütke
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Guilherme Luiz Dotto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
| | | | | | - Fakhreddine Ben Amara
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018, Sfax, Tunisia
- Department of Biology, Faculty of Sciences of Sfax, University of Sfax, Road of Soukra Km 3.5, 3000, Sfax, Tunisia
| | - Salah Knani
- Department of Physics, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Amani Alruwaili
- Department of Physics, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018, Sfax, Tunisia
- Department of Biology, Faculty of Sciences of Sfax, University of Sfax, Road of Soukra Km 3.5, 3000, Sfax, Tunisia
| |
Collapse
|
2
|
Vander Meulen IJ, Schock DM, Akhter F, Mundy LJ, Eccles KM, Soos C, Peru KM, McMartin DW, Headley JV, Pauli BD. Site-specific spatiotemporal occurrence and molecular congener distributions of naphthenic acids in Athabasca oil sands wetlands of Alberta, Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122061. [PMID: 37330190 DOI: 10.1016/j.envpol.2023.122061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
The Athabasca oil sands region (AOSR) of Alberta, Canada is notable for its considerable unconventional petroleum extraction projects, where bitumen is extracted from naturally-occurring oil sands ore. The large scale of these heavy crude oil developments raises concerns because of their potential to distribute and/or otherwise influence the occurrence, behaviour, and fate of environmental contaminants. Naphthenic acids (NAs) are one such contaminant class of concern in the AOSR, so studies have examined the occurrence and molecular profiles of NAs in the region. We catalogued the spatiotemporal occurrence and characteristics of NAs in boreal wetlands in the AOSR over a 7-year period, using derivatized liquid chromatography-tandem mass spectrometry (LC-MS/MS). Comparing median concentrations of NAs across these wetlands revealed a pattern of NAs suggesting NAs in surface waters derived from oil sands deposits. Opportunistic wetlands that formed adjacent to reclaimed overburden and other reclamation activities had the highest concentrations of NAs and consistent patterns suggestive of bitumen-derived inputs. However, similar patterns in the occurrence of NAs were also observed in undeveloped natural wetlands located above the known surface-mineable oil sands deposit that underlies the region. Intra-annual sampling results along with inter-annual comparisons across wetlands demonstrated that differences in the spatial and temporal NA concentrations were dependent on local factors, particularly when naturally occurring oil sands ores were observed in the wetland or drainage catchment.
Collapse
Affiliation(s)
- Ian J Vander Meulen
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, SK, Canada; Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada
| | - Danna M Schock
- Keyano College, 8115 Franklin Ave, Fort McMurray, AB, T9H 2N7, Canada
| | - Fardausi Akhter
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 115 Perimeter Road, Saskatoon, SK, Canada
| | - Lukas J Mundy
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 1125 Colonel By Drive, Ottawa, ON, Canada
| | - Kristin M Eccles
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 1125 Colonel By Drive, Ottawa, ON, Canada
| | - Catherine Soos
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 115 Perimeter Road, Saskatoon, SK, Canada; Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada
| | - Kerry M Peru
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, SK, Canada
| | - Dena W McMartin
- Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada; Office of the Vice President (Research), University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada
| | - John V Headley
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, SK, Canada
| | - Bruce D Pauli
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 1125 Colonel By Drive, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Gault IG, Sun C, Martin JW. Persistent Cytotoxicity and Endocrine Activity in the First Oil Sands End-Pit Lake. ACS ES&T WATER 2023; 3:366-376. [PMID: 38894704 PMCID: PMC11181316 DOI: 10.1021/acsestwater.2c00430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/21/2024]
Abstract
Oil sands process-affected water (OSPW) is a byproduct of bitumen extraction that has persistent toxicity owing to its complex mixture of organics. A prominent remediation strategy that involves aging OSPW in end-pit lakes and Base Mine Lake (BML) is the first full-scale test. Its effectiveness over the first 5 years was investigated here using real-time cell analysis, yeast estrogenic and androgenic screens (YES/YAS), and ultra-high-resolution mass spectrometry. HepG2 cytotoxicity per volume of BML organics extracted decreased with age; however, the toxic potency (i.e., toxicity per mass of extract) was not significantly different between years. This was consistent with mass spectral evidence showing no difference in chemical profiles, yet lower total abundance of organics in field-aged samples, suggestive that dilution explains the declining cytotoxicity in BML. The IC50's of BML extracts for YES/YAS antagonism were at environmental concentrations and were similar despite differences in field-age. Persistent YES/YAS antagonism and cytotoxicity were detected in experimental pond OSPW field-aged >20 years, and while organic acids were depleted here, non-acid chemical classes were enriched compared to BML, suggesting these contribute to persistent toxicity of aged OSPW. To avoid a legacy of contaminated sites, active water treatment may be required to accelerate detoxification of end-pit lakes.
Collapse
Affiliation(s)
- Ian G.
M. Gault
- Division
of Analytical and Environmental Toxicology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Chenxing Sun
- Division
of Analytical and Environmental Toxicology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Jonathan W. Martin
- Department
of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
4
|
Robinson CE, Elvidge CK, Frank RA, Headley JV, Hewitt LM, Little AG, Robinson SA, Trudeau VL, Vander Meulen IJ, Orihel DM. Naphthenic acid fraction compounds reduce the reproductive success of wood frogs (Rana sylvatica) by affecting offspring viability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120455. [PMID: 36270565 DOI: 10.1016/j.envpol.2022.120455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Understanding the toxicity of organic compounds in oil sands process-affected water (OSPW) is necessary to inform the development of environmental guidelines related to wastewater management in Canada's oil sands region. In the present study, we investigated the effects of naphthenic acid fraction compounds (NAFCs), one of the most toxic components of OSPW, on mating behaviour, fertility, and offspring viability in the wood frog (Rana sylvatica). Wild adult wood frogs were exposed separately from the opposite sex to 0, 5, or 10 mg/L of OSPW-derived NAFCs for 24 h and then combined in outdoor lake water mesocosms containing the same NAFC concentrations (n = 2 males and 1 female per mesocosm, n = 3 mesocosms per treatment). Mating events were recorded for 48 h and egg masses were measured to determine adult fertility. NAFC exposure had no significant effect on mating behaviour (probability of amplexus and oviposition, amplexus and oviposition latency, total duration of amplexus and number of amplectic events) or fertility (fertilization success and clutch size). Tadpoles (50 individuals per mesocosm at hatching, and 15 individuals per mesocosm from 42 d post-hatch) were reared in the same mesocosms under chronic NAFC exposure until metamorphic climax (61-85 d after hatching). Offspring exposed to 10 mg/L NAFCs during development were less likely to survive and complete metamorphosis, grew at a reduced rate, and displayed more frequent morphological abnormalities. These abnormalities included limb anomalies at metamorphosis, described for the first time after NAFC exposure. The results of this study suggest that NAFCs reduce wood frog reproductive success through declines in offspring viability and therefore raise the concern that exposure to NAFCs during reproduction and development may affect the recruitment of native amphibian populations in the oil sands region.
Collapse
Affiliation(s)
- C E Robinson
- Department of Biology, Queen's University; Kingston, Ontario, K7L 3N6, Canada
| | - C K Elvidge
- Department of Biology, Queen's University; Kingston, Ontario, K7L 3N6, Canada
| | - R A Frank
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, L7S 1A1, Canada
| | - J V Headley
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, Saskatchewan, S7N 3H5, Canada
| | - L M Hewitt
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, L7S 1A1, Canada
| | - A G Little
- Department of Biology, Queen's University; Kingston, Ontario, K7L 3N6, Canada
| | - S A Robinson
- Ecotoxicoloy and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, K1A 0H3, Ontario, Canada
| | - V L Trudeau
- Department of Biology, University of Ottawa; Ottawa, Ontario, K1N 6N5, Canada
| | - I J Vander Meulen
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, Saskatchewan, S7N 3H5, Canada; Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A9, Canada
| | - D M Orihel
- Department of Biology, Queen's University; Kingston, Ontario, K7L 3N6, Canada; School of Environmental Studies, Queen's University; Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
5
|
O'Reilly KT, Sihota N, Mohler RE, Zemo DA, Ahn S, Magaw RI, Devine CE. Orbitrap ESI-MS evaluation of solvent extractable organics from a crude oil release site. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 242:103855. [PMID: 34265523 DOI: 10.1016/j.jconhyd.2021.103855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The concentrations of oxygen-containing organic compounds (OCOC), measured as dissolved organic carbon (DOC), in groundwater exceeds those of dissolved hydrocarbons, measured as total petroleum hydrocarbons (TPH), at a crude oil release site. Orbitrap mass spectrometry was used to characterize OCOC in samples of the oil, water from upgradient of the release, source area, and downgradient wells, and a local lake. Chemical characterization factors included carbon number, oxygen number, formulae similarity, double bond equivalents (DBE) and radiocarbon dating. Oil samples were dominated by formulae with less than 30 carbons, four or fewer oxygens, and a DBE of less than four. In water samples, formulae were identified with more than 30 carbons, more than 10 oxygens, and a DBE exceeding 30. These characteristics are consistent with DOC found in unimpacted water. Between 65% and 92% of the formulae found in samples collected within the elevated OCOC plume were also found in the upgradient or surface water samples. Evidence suggests that many of the OCOC are not petroleum degradation intermediates, but microbial products generated as a result of de novo synthesis by organisms growing on carbon supplied by the oil. Implications of these results for understanding the fate and managing the risk of hydrocarbons in the subsurface are discussed.
Collapse
|
6
|
Meng L, How ZT, Ganiyu SO, Gamal El-Din M. Solar photocatalytic treatment of model and real oil sands process water naphthenic acids by bismuth tungstate: Effect of catalyst morphology and cations on the degradation kinetics and pathways. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125396. [PMID: 33626477 DOI: 10.1016/j.jhazmat.2021.125396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/24/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Bitumen extraction from oil sands produces large quantities of oil sands process water (OSPW), which contains recalcitrant naphthenic acids (NAs). In this study, three different morphologies of bismuth tungstate (Bi2WO6) photocatalysts were prepared by hydrothermal method. The prepared catalyst was characterized to obtain its structural, textural and chemical properties and tested for the degradation of model NAs and real OSPW under simulated solar irradiation. Nanoplate, flower-like and swirl-like Bi2WO6 were prepared and the results showed that the flower-like structure exhibited the highest specific surface area and total pore volume. The highest photocatalytic activity for the degradation of NAs was also demonstrated by the flower-like Bi2WO6, achieving complete degradation of cyclohexanoic acid (CHA) at fluence-based rate constant of 0.0929 cm2/J. Superoxide radicals (O2•-) and holes were identified as the major reactive species generated during the photocatalytic process. The effect of metallic ions on the degradation rates of S-containing and N-containing NAs differed and the heteroatom was found to be the main reactive site. The by-products of heteroatomic NAs were identified and degradation pathways were reported for the first time. The concentration changes of each byproduct were further estimated by mass balance. This research provides valuable information for the treatment of NAs by engineered passive solar-based approaches.
Collapse
Affiliation(s)
- Lingjun Meng
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Zuo Tong How
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Soliu O Ganiyu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada.
| |
Collapse
|
7
|
Chung TH, Meshref MN, Dhar BR. Microbial electrochemical biosensor for rapid detection of naphthenic acid in aqueous solution. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Jamshed L, Raez-Villanueva S, Perono GA, Thomas PJ, Holloway AC. The effects of a technical mixture of naphthenic acids on placental trophoblast cell function. Reprod Toxicol 2020; 96:413-423. [PMID: 32871178 DOI: 10.1016/j.reprotox.2020.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 10/25/2022]
Abstract
There is considerable concern that naphthenic acids (NA) related to oil extraction can negatively impact reproduction in mammals, yet the mechanisms are unknown. Since placental dysfunction is central to many adverse pregnancy outcomes, the goal of this study was to determine the effects of NA exposure on placental trophoblast cell function. HTR-8/SVneo cells were exposed to a commercial technical NA mixture for 24 hours to assess transcriptional regulation of placentation-related pathways and functional assessment of migration, invasion, and angiogenesis. Pathway analysis suggests that NA treatment resulted in increased epithelial-to-mesenchymal transition. However, there was reduced migration and invasive potential. NA treatment increased angiogenesis-related pathways with a concomitant increase in tube formation. Since decreased trophoblast invasion/migration and aberrant angiogenesis have been associated with placental dysfunction, these findings suggest that it is biologically plausible that exposure to NA may result in altered placental development and/or function.
Collapse
Affiliation(s)
- Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON., L8S 4K1, Canada
| | - Sergio Raez-Villanueva
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON., L8S 4K1, Canada
| | - Genevieve A Perono
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON., L8S 4K1, Canada
| | - Philippe J Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa ON., Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON., L8S 4K1, Canada.
| |
Collapse
|
9
|
Phillips NA, Lillico DM, Qin R, McAllister M, El-Din MG, Belosevic M, Stafford JL. Inorganic fraction of oil sands process-affected water induces mammalian macrophage stress gene expression and acutely modulates immune cell functional markers at both the gene and protein levels. Toxicol In Vitro 2020; 66:104875. [DOI: 10.1016/j.tiv.2020.104875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022]
|
10
|
Philibert DA, Lyons DD, Qin R, Huang R, El-Din MG, Tierney KB. Persistent and transgenerational effects of raw and ozonated oil sands process-affected water exposure on a model vertebrate, the zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133611. [PMID: 31634996 DOI: 10.1016/j.scitotenv.2019.133611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Exposure to oil sands process-affected water (OSPW), a by-product of Canadian oil sands mining operations, can cause both acute and chronic adverse effects in aquatic life. Ozonation effectively degrades naphthenic acids in OSPW, mitigating some of the toxicological effects of exposure. In this study we examined the effect of developmental exposure to raw and ozonated OSPW had on the breeding success, prey capture, and alarm cue response in fish months/years after exposure and the transgenerational effect exposure had on gene expression, global DNA methylation, and larval basal activity. Exposure to raw and ozonated OSPW had no effect on breeding success, and global DNA methylation. Exposure altered the expression of vtg and nkx2.5 in the unexposed F1 generation. Exposure to both raw and ozonated OSPW had a transgenerational impact on larval activity levels, anxiety behaviors, and maximum swim speed compared to the control population. Prey capture success was unaffected, however, the variability in the behavioral responses to the introduction of prey was decreased. Fish developmentally exposed to either treatment were less active before exposure and did not have an anxiety response to the alarm cue hypoxanthine-3-n-oxide. Though ozonation was able to mitigate some of the effects of OSPW exposure, further studies are needed to understand the transgenerational effects and the implications of exposure on complex fish behaviors.
Collapse
Affiliation(s)
- Danielle A Philibert
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | - Danielle D Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rui Qin
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rongfu Huang
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Ketih B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
11
|
Lari E, Steinkey D, Razmara P, Mohaddes E, Pyle GG. Oil sands process-affected water impairs the olfactory system of rainbow trout (Oncorhynchus mykiss). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:62-67. [PMID: 30529621 DOI: 10.1016/j.ecoenv.2018.11.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Oil sands process-affected water (OSPW), a byproduct of the extraction of bitumen in the surface mining of oil sands, is currently stored in massive on-site tailings ponds. Determining the potential effects of OSPW on aquatic ecosystems is of main concern to oil sands companies and legislators concerned about the reclamation of mining sites. In the present study, the interaction of OSPW with the chemosensory system of rainbow trout was studied. Using an electro-olfactography (EOG) technique, a 24 h inhibition curve was established and concentrations that inhibit the olfactory system by 20% and 80% (IC20 and IC80) were estimated at 3% and 22% OSPW, respectively. To study the interaction of exposure time and concentration along with the mechanism of the toxic effects, rainbow trout were exposed to 3% and 22% OSPW for 2, 24, and 96 h. An EOG investigation of olfactory sensitivity demonstrated a positive interaction between exposure time and concentration of OSPW concentration, because an increase in either or both elevated the inhibitory effect. To investigate whether or not structural damage of the olfactory epithelium could account for the observed inhibitory effects of OSPW on fish olfaction, the ultrastructure of the olfactory epithelium of exposed fish was investigated using scanning electron microscopy (SEM) and light microscopy (LM). The SEM micrographs showed no changes in the structure of the olfactory epithelium. The light micrographs revealed an increase in the number of mucous cells in 22% OSPW. The results of the present study demonstrated that exposure to OSPW impairs the olfactory system of rainbow trout and its effects increase gradually with increasing exposure time. The present study demonstrated that structural epithelial damage did not contribute to the inhibitory effects of OSPW on the olfactory system.
Collapse
Affiliation(s)
- Ebrahim Lari
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB T1K 3M4, Canada.
| | - Dylan Steinkey
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Parastoo Razmara
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Effat Mohaddes
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| |
Collapse
|
12
|
He Y, Zhang Y, Martin JW, Alessi DS, Giesy JP, Goss GG. In vitro assessment of endocrine disrupting potential of organic fractions extracted from hydraulic fracturing flowback and produced water (HF-FPW). ENVIRONMENT INTERNATIONAL 2018; 121:824-831. [PMID: 30342413 DOI: 10.1016/j.envint.2018.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Potential effects of horizontal drilling combined with high-volume hydraulic fracturing (HF) have drawn significant public concern, especially on the handling, treatment, and disposal of HF flowback and produced water (HF-FPW). Previous studies indicated HF-FPW could significantly disrupt biotransformation and expressions of genes related to the endocrine system. This study focused on effects of organic extracts of HF-FPW on receptor binding activity using several transactivation assays. Six HF-FPW samples were collected from 2 wells (Well A and Well B, 3 time points at each well). These were separated by filtration into aqueous (W) and particulate (S) phases, and organics were extracted from all 12 subsamples. Of all the tested fractions, sample B1-S had the greatest Σ13PAH (11,000 ng/L) and B3-S has the greatest Σ4alkyl-PAHs (16,000 ng/L). Nuclear receptor binding activity of all the extracts on aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and androgen receptor (AR) were screened using H4IIE-luc, MVLN-luc, and MDA-kb2 cells, respectively. FPWs from various HF wells exhibited distinct nuclear receptor binding effects. The strongest AhR agonist activity was detected in B3-S, with 450 ± 20 μg BaP/L equivalency at 5 × exposure. The greatest ER agonist activity was detected in A1-W, with 5.3 ± 0.9 nM E2 equivalency at 10× exposures. There is a decreasing trend in ER agonist activity from A1 to A3 in both aqueous and particulate fractions from Well A, while there is an increasing trend in ER agonist activity from B1 to B3 in aqueous fractions from Well B. This study provides novel information on the sources of endocrine disruptive potentials in various HF-FPW considering both temporal and spatial variability. Results suggest that reclamation or remediation and risk assessment of HF-FPW spills likely requires multiple strategies including understanding the properties of each spill with respect to fractured geological formation and physiochemical properties of the injected fluid.
Collapse
Affiliation(s)
- Yuhe He
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| |
Collapse
|
13
|
Rundle KI, Sharaf MS, Stevens D, Kamunde C, van den Heuvel MR. Oil Sands Derived Naphthenic Acids Are Oxidative Uncouplers and Impair Electron Transport in Isolated Mitochondria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10803-10811. [PMID: 30102860 DOI: 10.1021/acs.est.8b02638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Naphthenic acids (NAs) are predominant compounds in oil sands influenced waters. These acids cause numerous acute and chronic effects in fishes. However, the mechanism of toxicity underlying these effects has not been fully elucidated. Due to their carboxylic acid moiety and the reported disruption of cellular bioenergetics by similar structures, we hypothesized that NAs would uncouple mitochondrial respiration with the resultant production of reactive oxygen species (ROS). Naphthenic acids were extracted and purified from 17-year-old oil sands tailings waters yielding an extract of 99% carboxylic acids with 90% fitting the classical O2-NA definition. Mitochondria were isolated from rainbow trout liver and exposed to different concentrations of NAs. Mitochondrial respiration, membrane potential, and ROS emission were measured using the Oroboros fluorespirometry system. Additionally, mitochondrial ROS emission and membrane potential were evaluated with real-time flow cytometry. Results showed NAs uncoupled oxidative phosphorylation, inhibited respiration, and increased ROS emission. The effective concentration (EC50) and inhibition concentration (IC50) values for the end points measured ranged from 21.0 to 157.8 mg/L, concentrations similar to tailings waters. For the same end points, EC10/IC10 values ranged from 11.8 to 66.7 mg/L, approaching concentrations found in the environment. These data unveil mechanisms underlying effects of NAs that may contribute to adverse effects on organisms in the environment.
Collapse
Affiliation(s)
- Kate I Rundle
- Canadian Rivers Institute, Department of Biomedical Science, Atlantic Veterinary College , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
| | - Mahmoud S Sharaf
- Department of Biomedical Science, Atlantic Veterinary College , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
| | - Don Stevens
- Department of Biomedical Science, Atlantic Veterinary College , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
| | - Collins Kamunde
- Department of Biomedical Science, Atlantic Veterinary College , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
| | - Michael R van den Heuvel
- Canadian Rivers Institute, Department of Biomedical Science, Atlantic Veterinary College , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
- Canadian Rivers Institute, Department of Biology , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
| |
Collapse
|
14
|
Li C, Fu L, Stafford J, Belosevic M, Gamal El-Din M. The toxicity of oil sands process-affected water (OSPW): A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:1785-1802. [PMID: 28618666 DOI: 10.1016/j.scitotenv.2017.06.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Large volumes of oil sands process-affected water (OSPW) are produced by the surface-mining oil sands industry in Alberta. Both laboratory and field studies have demonstrated that the exposure to OSPW leads to many physiological changes in a variety of organisms. Adverse effects include compromised immunological function, developmental delays, impaired reproduction, disrupted endocrine system, and higher prevalence of tissue-specific pathological manifestations. The composition of OSPW varies with several factors such as ore sources, mining process, and tailings management practices. Differences in water characteristics have confounded interpretation or comparison of OSPW toxicity across studies. Research on individual fractions extracted from OSPW has helped identify some target pollutants. Naphthenic acids (NAs) are considered as the major toxic components in OSPW, exhibiting toxic effects through multiple modes of action including narcosis and endocrine disruption. Other pollutants, like polycyclic aromatic hydrocarbons (PAHs), metals, and ions may also contribute to the overall OSPW toxicity. Studies have been conducted on OSPW as a whole complex effluent mixture, with consideration of the presence of unidentified components, and the interactions (potential synergistic or antagonistic reactions) among chemicals. This review summarizes the toxicological data derived from in vitro and in vivo exposure studies using different OSPW types, and different taxa of organisms. In general, toxicity of OSPW was found to be dependent on the OSPW type and concentration, duration of exposures (acute versus sub chronic), and organism studied.
Collapse
Affiliation(s)
- Chao Li
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada
| | - Li Fu
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - James Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada.
| |
Collapse
|
15
|
Lari E, Steinkey D, Mohaddes E, Pyle GG. Investigating the chronic effects of oil sands process-affected water on growth and fitness of Daphnia magna Straus 1820. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:594-600. [PMID: 28399498 DOI: 10.1016/j.scitotenv.2017.03.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/25/2017] [Accepted: 03/26/2017] [Indexed: 06/07/2023]
Abstract
The increasing amount of stored oil sands process-affected water (OSPW), a primary by-product of oil sands mining, is an environmental concern. In the present study, we investigated the chronic effects of OSPW on growth, reproduction, and macronutrient content in Daphnia magna. To do so, we exposed D. magna to 1 and 10% OSPW (a mixture of three OSPW samples provided by major oil sands mining operators in northern Alberta) for ten days. We measured the number of the neonates produced daily in each group throughout the exposure. At the end of the exposure, we measured the mass and length of the exposed daphniids and neonates. We also measured the carbohydrate, lipid, and protein content of exposed daphniids. In the 10% OSPW group, we observed a significant reduction in all of the measured endpoints except for body length and carbohydrate and protein content of exposed daphniids. In the 1% OSPW group, on the other hand, we found a reduction only in lipid content of exposed daphniids as compared to the control group. The results of the present study demonstrated that chronic exposure to 10% OSPW affects growth and fitness of D. magna, probably due to a reduction in energy intake that causes daphniids to deplete their energy reserves.
Collapse
Affiliation(s)
- Ebrahim Lari
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Dylan Steinkey
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Effat Mohaddes
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
16
|
Petersen K, Hultman MT, Rowland SJ, Tollefsen KE. Toxicity of organic compounds from unresolved complex mixtures (UCMs) to primary fish hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:150-161. [PMID: 28711771 DOI: 10.1016/j.aquatox.2017.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/06/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
Many environmental matrices contaminated with organic pollutants derived from crude oil or degraded petroleum contain mixtures so complex that they are typically unresolved by conventional analytical techniques such as gas chromatography. The resulting chromatographic features have become known as 'humps' or unresolved complex mixtures (UCMs). These UCMs often dominate the organic contaminants of polluted environmental samples: for example, in oil sands produced water up to 150mgL-1 of 'naphthenic acids' appear as UCMs when examined by gas chromatography as the esters. In oil-contaminated mussels, aromatic hydrocarbon UCMs may comprise almost all of the total toxic hydrocarbons, with over 7000μgg-1 dry weight reported in some samples. Over the last 25 years, efforts to resolve and thus identify, or at least to produce average structures, for some UCM components, have proved fruitful. Numerous non-polar UCM hydrocarbons and more polar UCM acids have been identified, then synthesised or purchased from commercial suppliers. As UCMs have been proposed to represent a risk to aquatic organisms, the need for assessment of the ecotoxicological effects and characterisation of the mode of action (MoA) of these environmental pollutants has arisen. In the present study, several chemicals with structures typical of those found in some UCMs, were assessed for their potential to disrupt membrane integrity, inhibit metabolic activity, activate the aryl hydrocarbon receptor (AhR), and activate the estrogen receptor (ER) in primary rainbow trout hepatocytes (Oncorhynchus mykiss). These endpoints were determined in order to screen for common toxic modes of action (MoA) in this diverse group of chemicals. The results from the in vitro screening indicated that of the endpoints tested, the predominant toxic MoA was cytotoxicity. EC50 values for cytotoxicity were obtained for 16 compounds and ranged from 77μM-24mM, whereof aliphatic monocyclic acids, monoaromatic acids, polycyclic monoaromatic acids and alkylnaphthalenes were the most toxic. The observed cytotoxicity of the chemicals correlated well with the hydrophobicity (LogKOW) suggesting that the toxicity was predominantly due to a non-specific MoA. Interestingly, two compounds induced the ER-mediated production of vitellogenin (Vtg) and six compounds induced the AhR-mediated Ethoxyresorufin-O-deethylase (EROD) enzymatic activity to >20% of the positive control; by doing so suggesting that they may act as ER or AhR agonists in fish. The heterogeneous group of 'UCM compounds' tested exhibited multiple MoA that may potentially cause adverse effects in fish. Additional studies to determine if these compounds may cause adverse effects in vivo at environmentally relevant concentrations, are warranted to identify if such compounds are indeed of potential environmental concern.
Collapse
Affiliation(s)
- Karina Petersen
- Norwegian Institute for Water Research, Gaustadalleen 21, N-0349 Oslo, Norway
| | - Maria T Hultman
- Norwegian Institute for Water Research, Gaustadalleen 21, N-0349 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Steven J Rowland
- Petroleum & Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Plymouth, PL4 8AA, Devon, UK
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research, Gaustadalleen 21, N-0349 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.
| |
Collapse
|
17
|
Lari E, Pyle GG. Rainbow trout (Oncorhynchus mykiss) detection, avoidance, and chemosensory effects of oil sands process-affected water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:40-46. [PMID: 28347902 DOI: 10.1016/j.envpol.2017.03.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 06/06/2023]
Abstract
Oil sands process-affected water (OSPW) - a byproduct of the oil sands industry in Northern Alberta, Canada - is currently stored in on-site tailings ponds. The goal of the present study was to investigate the interaction of OSPW with the olfactory system and olfactory-mediated behaviours of fish upon the first encounter with OSPW. The response of rainbow trout (Oncorhynchus mykiss) to different concentrations (0.1, 1, and 10%) of OSPW was studied using a choice maze and electro-olfactography (EOG), respectively. The results of the present study showed that rainbow trout are capable of detecting and avoiding OSPW at a concentration as low as 0.1%. Exposure to 1% OSPW impaired (i.e. reduced sensitivity) the olfactory response of rainbow trout to alarm and food cues within 5 min or less. The results of the present study demonstrated that fish could detect and avoid minute concentrations of OSPW. However, if fish were exposed to OSPW-contaminated water and unable to escape, their olfaction would be impaired.
Collapse
Affiliation(s)
- Ebrahim Lari
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
18
|
Truter JC, van Wyk JH, Oberholster PJ, Botha AM, Mokwena LM. An evaluation of the endocrine disruptive potential of crude oil water accommodated fractions and crude oil contaminated surface water to freshwater organisms using in vitro and in vivo approaches. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1330-1342. [PMID: 27787904 DOI: 10.1002/etc.3665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/20/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Knowledge regarding the potential impacts of crude oil on endocrine signaling in freshwater aquatic vertebrates is limited. The expression of selected genes as biomarkers for altered endocrine signaling was studied in African clawed frog, Xenopus laevis, tadpoles and juvenile Mozambique tilapia, Oreochromis mossambicus, exposed to weathered bunker and unweathered refinery crude oil water accommodated fractions (WAFs). In addition, the expression of the aforementioned genes was quantified in X. laevis tadpoles exposed to surface water collected from the proximity of an underground oil bunker. The (anti)estrogenicity and (anti)androgenicity of crude oil, crude oil WAFs, and surface water were furthermore evaluated using recombinant yeast. Thyroid hormone receptor beta expression was significantly down-regulated in X. laevis in response to both oil WAF types, whereas a further thyroid linked gene, type 2 deiodinase, was up-regulated in O. mossambicus exposed to a high concentration of bunker oil WAF. In addition, both WAFs altered the expression of the adipogenesis-linked peroxisome proliferator-activated receptor gamma in X. laevis. The crude oil and WAFs exhibited antiestrogenic and antiandrogenic activity in vitro. However, O. mossambicus androgen receptor 2 was the only gene, representing the reproductive system, significantly affected by WAF exposure. Estrogenicity, antiestrogenicity, and antiandrogenicity were detected in surface water samples; however, no significant changes were observed in the expression of any of the genes evaluated in X. laevis exposed to surface water. The responses varied among the 2 model organisms used, as well as among the 2 types of crude oil. Nonetheless, the data provide evidence that crude oil pollution may lead to adverse health effects in freshwater fish and amphibians as a result of altered endocrine signaling. Environ Toxicol Chem 2017;36:1330-1342. © 2016 SETAC.
Collapse
Affiliation(s)
- J Christoff Truter
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Johannes H van Wyk
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Paul J Oberholster
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- CSIR Natural Resources and the Environment, Stellenbosch, South Africa
| | - Anna-Maria Botha
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Lucky M Mokwena
- Central Analytical Facility, Mass Spectrometry Unit, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
19
|
He Y, Flynn SL, Folkerts EJ, Zhang Y, Ruan D, Alessi DS, Martin JW, Goss GG. Chemical and toxicological characterizations of hydraulic fracturing flowback and produced water. WATER RESEARCH 2017; 114:78-87. [PMID: 28229951 DOI: 10.1016/j.watres.2017.02.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/08/2017] [Accepted: 02/12/2017] [Indexed: 05/23/2023]
Abstract
Hydraulic fracturing (HF) has emerged as a major method of unconventional oil and gas recovery. The toxicity of hydraulic fracturing flowback and produced water (HF-FPW) has not been previously reported and is complicated by the combined complexity of organic and inorganic constituents in HF fluids and deep formation water. In this study, we characterized the solids, salts, and organic signatures in an HF-FPW sample from the Duvernay Formation, Alberta, Canada. Untargeted HPLC-Orbitrap revealed numerous unknown dissolved polar organics. Among the most prominent peaks, a substituted tri-phenyl phosphate was identified which is likely an oxidation product of a common polymer antioxidant. Acute toxicity of zebrafish embryo was attributable to high salinity and organic contaminants in HF-FPW with LC50 values ranging from 0.6% to 3.9%, depending on the HF-FPW fractions and embryo developmental stages. Induction of ethoxyresorufin-O-deethylase (EROD) activity was detected, due in part to polycyclic aromatic hydrocarbons (PAHs), and suspended solids might have a synergistic effect on EROD induction. This study demonstrates that toxicological profiling of real HF-FPW sample presents great challenges for assessing the potential risks and impacts posed by HF-FPW spills.
Collapse
Affiliation(s)
- Yuhe He
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Shannon L Flynn
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Erik J Folkerts
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Dongliang Ruan
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada.
| |
Collapse
|
20
|
Johnston CU, Clothier LN, Quesnel DM, Gieg LM, Chua G, Hermann PM, Wildering WC. Embryonic exposure to model naphthenic acids delays growth and hatching in the pond snail Lymnaea stagnalis. CHEMOSPHERE 2017; 168:1578-1588. [PMID: 27932040 DOI: 10.1016/j.chemosphere.2016.11.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
Naphthenic acids (NAs), a class of structurally diverse carboxylic acids with often complex ring structures and large aliphatic tail groups, are important by-products of many petrochemical processes including the oil sands mining activity of Northern Alberta. While it is evident that NAs have both acute and chronic harmful effects on many organisms, many aspects of their toxicity remain to be clarified. Particularly, while substantive data sets have been collected on NA toxicity in aquatic prokaryote and vertebrate model systems, to date, nothing is known about the toxic effects of these compounds on the embryonic development of aquatic invertebrate taxa, including freshwater mollusks. This study examines under laboratory conditions the toxicity of NAs extracted from oil sands process water (OSPW) and the low-molecular weight model NAs cyclohexylsuccinic acid (CHSA), cyclohexanebutyric acid (CHBA), and 4-tert-butylcyclohexane carboxylic acid (4-TBCA) on embryonic development of the snail Lymnaea stagnalis, a common freshwater gastropod with a broad Palearctic distribution. Evidence is provided for concentration-dependent teratogenic effects of both OSPW-derived and model NAs with remarkably similar nominal threshold concentrations between 15 and 20 mg/L and 28d EC50 of 31 mg/L. In addition, the data provide evidence for substantial toxicokinetic differences between CHSA, CHBA and 4-TBCA. Together, our study introduces Lymnaea stagnalis embryonic development as an effective model to assay NA-toxicity and identifies molecular architecture as a potentially important toxicokinetic parameter in the toxicity of low-molecular weight NA in embryonic development of aquatic gastropods.
Collapse
Affiliation(s)
- Christina U Johnston
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Lindsay N Clothier
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Dean M Quesnel
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Gordon Chua
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Petra M Hermann
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Willem C Wildering
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
21
|
Udoetok IA, Wilson LD, Headley JV. Self-Assembled and Cross-Linked Animal and Plant-Based Polysaccharides: Chitosan-Cellulose Composites and Their Anion Uptake Properties. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33197-33209. [PMID: 27802018 DOI: 10.1021/acsami.6b11504] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Self-assembled and cross-linked chitosan/cellulose glutaraldehyde composite materials (CGC) were prepared with enhanced surface area and variable morphology. FTIR, CHN, and 13C solid state NMR studies provided support for the cross-linking reaction between the amine groups of chitosan and glutaraldehyde; whereas, XRD and TGA studies provided evidence of cellulose-chitosan interactions for the composites. SEM, equilibrium swelling, and nitrogen adsorption studies corroborate the enhanced surface area and variable morphology of the cross-linked biopolymers. Equilibrium sorption studies at alkaline conditions with phenolic dyes, along with single component and mixed naphthenates in aqueous solution revealed variable uptake properties with the composites. The Freundlich isotherm model revealed that the composite at the highest levels of cross-linker, CGC3, had the highest sorption affinity (KF; L mmol/g) for phenolphthalein (phth) followed by ortho-nitrophenyl acetic acid (ONPAA) and para-nitrophenol (PNP), as follows: Phth (5.03 × 10-1) > ONPAA (2.28 × 10-1) > PNP (8.49 × 10-2). The Sips isotherm model provided a good description of the sorption profile of single component and naphthenate mixtures. The monolayer uptake capacity (Qm; mg g-1) is given in parentheses: 2-hexyldecanoic acid (S1; 115 mg/g) > 2-naphthoxyacetic acid (S3; 40.5 mg/g) > trans-4-pentylcyclohexylcarboxylic acid (S2; 13.7 mg/g). By comparison, the Qm values for CGC3 with naphthenate mixtures (24.1 and 27.4 mg/g) according to UV spectroscopy and electrospray ionization mass spectrometry (ESI-HRMS). The sorbent materials generally show greater uptake with naphthenates that possess lower vs higher double bond equivalence (DBE) values. Kinetic studies revealed that the sorption of phth adopted behavior described by the pseudo-second order model, while uptake for S3 and naphthenate mixtures adopted pseudo-first order behavior. This study contributes to a greater understanding of the sorption properties of the two types of abundant biopolymers and their composites by illustrating their tunable sorption properties. The key role of hydrophobic interactions for CGC materials was evidenced by the controlled sorptive uptake of carboxylate anions with variable molecular structure.
Collapse
Affiliation(s)
- Inimfon A Udoetok
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - John V Headley
- Water Science and Technology Directorate, Environment and Climate Change Canada , 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
| |
Collapse
|
22
|
Alharbi HA, Alcorn J, Al-Mousa A, Giesy JP, Wiseman SB. Toxicokinetics and toxicodynamics of chlorpyrifos is altered in embryos of Japanese medaka exposed to oil sands process-affected water: evidence for inhibition of P-glycoprotein. J Appl Toxicol 2016; 37:591-601. [DOI: 10.1002/jat.3397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 02/03/2023]
Affiliation(s)
| | - Jane Alcorn
- Toxicology Centre; University of Saskatchewan; Saskatoon SK Canada
- College of Pharmacy and Nutrition; University of Saskatchewan; Saskatoon SK Canada
| | - Ahmed Al-Mousa
- College of Pharmacy and Nutrition; University of Saskatchewan; Saskatoon SK Canada
| | - John P. Giesy
- Toxicology Centre; University of Saskatchewan; Saskatoon SK Canada
- Department of Veterinary Biomedical Sciences; University of Saskatchewan; Saskatoon SK Canada
- Zoology Department, Center for Integrative Toxicology; Michigan State University; East Lansing MI USA
- School of Biological Sciences; University of Hong Kong, Hong Kong Special Administrative Region; People's Republic of China
| | - Steve B. Wiseman
- Toxicology Centre; University of Saskatchewan; Saskatoon SK Canada
| |
Collapse
|
23
|
Hellmann-Blumberg U, Steenson RA, Brewer RC, Allen E. Toxicity of polar metabolites associated with petroleum hydrocarbon biodegradation in groundwater. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1900-1901. [PMID: 27442158 DOI: 10.1002/etc.3463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 12/22/2015] [Accepted: 01/15/2016] [Indexed: 06/06/2023]
|
24
|
Alharbi HA, Morandi G, Giesy JP, Wiseman SB. Effect of oil sands process-affected water on toxicity of retene to early life-stages of Japanese medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:1-9. [PMID: 27104238 DOI: 10.1016/j.aquatox.2016.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Toxicity of oil sands process-affected water (OSPW) to aquatic organisms has been studied, but effects of co-exposure to OSPW and polycyclic-aromatic hydrocarbons (PAHs), which are an important class of chemicals in tailings ponds used to store OSPW, has not been investigated. The goal of the current study was to determine if organic compounds extracted from the aqueous phase of relatively fresh OSPW from Base-Mine Lake (BML-OSPW) or aged OSPW from Pond 9 experimental reclamation pond (P9-OSPW) modulated toxic potency of the model alkyl-PAH, retene, to early life-stages of Japanese medaka (Oryzias latipes). Embryos were exposed to retene by use of a partition controlled delivery (PCD) system made of polydimethylsiloxane (PDMS) until day of hatch. Incidences of pericardial edema and expression of CYP1A were not significantly greater in larvae exposed only to dissolved organic compounds from either OSPW but were significantly greater in larvae exposed only to retene. Expression of CYP1A and incidences of pericardial edema were significantly greater in larvae co-exposed to retene and 5×equivalent of dissolved organic compounds from BML-OSPW compared to retene alone. However, there was no effect of co-exposure to retene and either a 1×equivalent of dissolved organic compounds from BML-OSPW or 5×equivalent of dissolved organic compounds from P9-OSPW. While there was evidence that exposure to 5×equivalent of dissolved organic compounds from BML-OSPW caused oxidative stress, there was no evidence of this effect in larvae exposed only to retene or co-exposed to retene and a 5×equivalent of dissolved organic compounds from BML-OSPW. These results suggest that oxidative stress is not a mechanism of pericardial edema in early-life stages of Japanese medaka. Relatively fresh OSPW from Base Mine Lake might influence toxicity of alkylated-PAHs to early life stages of fishes but this effect would not be expected to occur at current concentrations of OSPW and is attenuated by aging of OSPW.
Collapse
Affiliation(s)
- Hattan A Alharbi
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Garrett Morandi
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada,; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Zoology Department, Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; School of Biological Sciences, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.
| | - Steve B Wiseman
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada,.
| |
Collapse
|
25
|
Alharbi HA, Saunders DMV, Al-Mousa A, Alcorn J, Pereira AS, Martin JW, Giesy JP, Wiseman SB. Inhibition of ABC transport proteins by oil sands process affected water. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:81-88. [PMID: 26650706 DOI: 10.1016/j.aquatox.2015.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/13/2015] [Accepted: 11/14/2015] [Indexed: 06/05/2023]
Abstract
The ATP-binding cassette (ABC) superfamily of transporter proteins is important for detoxification of xenobiotics. For example, ABC transporters from the multidrug-resistance protein (MRP) subfamily are important for excretion of polycyclic aromatic hydrocarbons (PAHs) and their metabolites. Effects of chemicals in the water soluble organic fraction of relatively fresh oil sands process affected water (OSPW) from Base Mine Lake (BML-OSPW) and aged OSPW from Pond 9 (P9-OSPW) on the activity of MRP transporters were investigated in vivo by use of Japanese medaka at the fry stage of development. Activities of MRPs were monitored by use of the lipophilic dye calcein, which is transported from cells by ABC proteins, including MRPs. To begin to identify chemicals that might inhibit activity of MRPs, BML-OSPW and P9-OSPW were fractionated into acidic, basic, and neutral fractions by use of mixed-mode sorbents. Chemical compositions of fractions were determined by use of ultrahigh resolution orbitrap mass spectrometry in ESI(+) and ESI(-) mode. Greater amounts of calcein were retained in fry exposed to BML-OSPW at concentration equivalents greater than 1× (i.e., full strength). The neutral and basic fractions of BML-OSPW, but not the acidic fraction, caused greater retention of calcein. Exposure to P9-OSPW did not affect the amount of calcein in fry. Neutral and basic fractions of BML-OSPW contained relatively greater amounts of several oxygen-, sulfur, and nitrogen-containing chemical species that might inhibit MRPs, such as O(+), SO(+), and NO(+) chemical species, although secondary fractionation will be required to conclusively identify the most potent inhibitors. Naphthenic acids (O2(-)), which were dominant in the acidic fraction, did not appear to be the cause of the inhibition. This is the first study to demonstrate that chemicals in the water soluble organic fraction of OSPW inhibit activity of this important class of proteins. However, aging of OSPW attenuates this effect and inhibition of the activity of MRPs by OSPW from Base Mine Lake does not occur at environmentally relevantconcentrations.
Collapse
Affiliation(s)
- Hattan A Alharbi
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Ahmed Al-Mousa
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jane Alcorn
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alberto S Pereira
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Jonathan W Martin
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Zoology Department, Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; School of Biological Sciences, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China; Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.
| | - Steve B Wiseman
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|