1
|
Lian G, An Y, Sun J, Yang B, Shen Z. Effects and driving mechanisms of bioremediation on groundwater after the neutral in situ leaching of uranium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174406. [PMID: 38964395 DOI: 10.1016/j.scitotenv.2024.174406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
The remediation of groundwater subject to in situ leaching (ISL) for uranium mining has raised extensive concerns in uranium mill and milling. This study conducted bioremediation through biostimulation and bioaugmentation to the groundwater in an area in northern China that was contaminated due to uranium mining using the CO2 + O2 neutral ISL (NISL) technology. It identified the dominant controlling factors and mechanisms driving bioremediation. Findings indicate that microorganisms can reduce the uranium concentration in groundwater subject to NISL uranium mining to its normal level. After 120 days of bioaugmentation, the uranium concentration in the contaminated groundwater fell to 0.36 mg/L, achieving a remediation efficiency of 91.26 %. Compared with biostimulation, bioaugmentation shortened the remediation timeframe by 30 to 60 days while maintaining roughly the same remediation efficiency. For groundwater remediation using indigenous microbial inoculants, initial uranium concentration and low temperatures (below 15 °C) emerge as the dominant factors influencing the bioremediation performance and duration. In settings with high carbonate concentrations, bioremediation involved the coupling of multiple processes including bioreduction, biotransformation, biomineralization, and biosorption, with bioreduction assuming a predominant role. Post-bioremediation, the relative abundances of reducing microbes Desulfosporosinus and Sulfurospirillum in groundwater increased significantly by 10.56 % and 6.91 %, respectively, offering a sustainable, stable biological foundation for further bioremediation of groundwater.
Collapse
Affiliation(s)
- Guoxi Lian
- State Key Laboratory of Water Environment, School of Environment, Beijing Normal University, Beijing 100875, China; Nuclear and Radiation Safety Center, Ministry of Ecology and Environment, Beijing 100082, China
| | - Yifu An
- The Fourth Research and Design Engineering Corporation of CNNC, Shijiazhuang 050021, China
| | - Juan Sun
- The Fourth Research and Design Engineering Corporation of CNNC, Shijiazhuang 050021, China
| | - Bing Yang
- The Fourth Research and Design Engineering Corporation of CNNC, Shijiazhuang 050021, China
| | - Zhenyao Shen
- State Key Laboratory of Water Environment, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Lu C, Xiu W, Yang B, Zhang H, Lian G, Zhang T, Bi E, Guo H. Natural Attenuation of Groundwater Uranium in Post-Neutral-Mining Sites Evidenced from Multiple Isotopes and Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12674-12684. [PMID: 38965983 DOI: 10.1021/acs.est.4c04498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Although natural attenuation is an economic remediation strategy for uranium (U) contamination, the role of organic molecules in driving U natural attenuation in postmining aquifers is not well-understood. Groundwaters were sampled to investigate the chemical, isotopic, and dissolved organic matter (DOM) compositions and their relationships to U natural attenuation from production wells and postmining wells in a typical U deposit (the Qianjiadian U deposit) mined by neutral in situ leaching. Results showed that Fe(II) concentrations and δ34SSO4 and δ18OSO4 values increased, but U concentrations decreased significantly from production wells to postmining wells, indicating that Fe(III) reduction and sulfate reduction were the predominant processes contributing to U natural attenuation. Microbial humic-like and protein-like components mediated the reduction of Fe(III) and sulfate, respectively. Organic molecules with H/C > 1.5 were conducive to microbe-mediated reduction of Fe(III) and sulfate and facilitated the natural attenuation of dissolved U. The average U attenuation rate was -1.07 mg/L/yr, with which the U-contaminated groundwater would be naturally attenuated in approximately 11.2 years. The study highlights the specific organic molecules regulating the natural attenuation of groundwater U via the reduction of Fe(III) and sulfate.
Collapse
Affiliation(s)
- Chongsheng Lu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
- MOE Key Laboratory of Groundwater Circulation and Environment Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
- MOE Key Laboratory of Groundwater Circulation and Environment Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bing Yang
- The Fourth Research and Design Engineering Corporation of CNNC, Shijiazhuang 050021, China
| | - Haoyan Zhang
- The Fourth Research and Design Engineering Corporation of CNNC, Shijiazhuang 050021, China
| | - Guoxi Lian
- The Fourth Research and Design Engineering Corporation of CNNC, Shijiazhuang 050021, China
| | - Tianjing Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Erping Bi
- MOE Key Laboratory of Groundwater Circulation and Environment Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
- MOE Key Laboratory of Groundwater Circulation and Environment Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
3
|
Pan Z, Loreggian L, Roebbert Y, Bartova B, Hunault MOJ, Weyer S, Bernier-Latmani R. Pentavalent U Reactivity Impacts U Isotopic Fractionation during Reduction by Magnetite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6595-6604. [PMID: 38573735 PMCID: PMC11025122 DOI: 10.1021/acs.est.3c10324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Meaningful interpretation of U isotope measurements relies on unraveling the impact of reduction mechanisms on the isotopic fractionation. Here, the isotope fractionation of hexavalent U [U(VI)] was investigated during its reductive mineralization by magnetite to intermediate pentavalent U [U(V)] and ultimately tetravalent U [U(IV)]. As the reaction proceeded, the remaining aqueous phase U [containing U(VI) and U(V)] systematically carried light isotopes, whereas in the bicarbonate-extracted solution [containing U(VI) and U(V)], the δ238U values varied, especially when C/C0 approached 0. This variation was interpreted as reflecting the variable relative contribution of unreduced U(VI) (δ238U < 0‰) and bicarbonate-extractable U(V) (δ238U > 0‰). The solid remaining after bicarbonate extraction included unextractable U(V) and U(IV), for which the δ238U values consistently followed the same trend that started at 0.3-0.5‰ and decreased to ∼0‰. The impact of PIPES buffer on isotopic fractionation was attributed to the variable abundance of U(V) in the aqueous phase. A few extremely heavy bicarbonate-extracted δ238U values were due to mass-dependent fractionation resulting from several hypothesized mechanisms. The results suggest the preferential accumulation of the heavy isotope in the reduced species and the significant influence of U(V) on the overall isotopic fractionation, providing insight into the U isotope fractionation behavior during its abiotic reduction process.
Collapse
Affiliation(s)
- Zezhen Pan
- Department
of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- EML,
École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Institute
of Eco-Chongming (IEC), Shanghai 200062, China
| | - Luca Loreggian
- EML,
École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yvonne Roebbert
- Institut
für Mineralogie, Leibniz Universität
Hannover, D-30167 Hannover, Germany
| | - Barbora Bartova
- EML,
École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Stefan Weyer
- Institut
für Mineralogie, Leibniz Universität
Hannover, D-30167 Hannover, Germany
| | | |
Collapse
|
4
|
Liu Z, Li C, Tan K, Li Y, Tan W, Li X, Zhang C, Meng S, Liu L. Study of natural attenuation after acid in situ leaching of uranium mines using isotope fractionation and geochemical data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161033. [PMID: 36574851 DOI: 10.1016/j.scitotenv.2022.161033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Acid in situ leaching (AISL) is a subsurface mining approach suitable for low-grade ores which does not generate tailings, and has been adopted widely in uranium mining. However, this technique causes an extremely high concentration of contaminants at post-mining sites and in the surroundings soon after the mining ceases. As a potential AISL remediation strategy, natural attenuation has not been studied in detail. To address this problem, groundwater collected from 26 wells located within, adjacent, upgradient, and downgradient of a post-mining site were chosen to analyze the fate of U(VI), SO42-, δ34S, and δ238U, to reveal the main mechanisms governing the migration and attenuation of the dominant contaminants and the spatio-temporal evolutions of contaminants in the confined aquifer of the post-mining site. The δ238U values vary from -0.07 ‰ to 0.09 ‰ in the post-mining site and from -1.43 ‰ to 0.03 ‰ around the post-mining site. The δ34S values were found to vary from 3.3 ‰ to 6.2 ‰ in the post-mining site and from 6.0 ‰ to 11.0 ‰ around the post-mining site. Detailed analysis suggests that there are large differences between the range of isotopic composition variation and the range of pollutants concentration distribution, and the estimated Rayleigh isotope fractionation factor is 0.9994-0.9997 for uranium and 1.0032-1.0061 for sulfur. The isotope ratio of uranium and sulfur can be used to deduce the migration history of the contaminants and the irreversibility of the natural attenuation process in the anoxic confined aquifer. Combining the isotopic fractionation data for U and S with the concentrations of uranium and sulfate improved the accuracy of understanding of reducing conditions along the flow path. The study also indicated that as long as the geological conditions are favorable for redox reactions, natural attenuation could be used as a cost-effective remediation scheme.
Collapse
Affiliation(s)
- Zhenzhong Liu
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Chunguang Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; China Institute of Atomic Energy, Beiing 102413, PR China; R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China.
| | - Kaixuan Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Yongmei Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Wanyu Tan
- Hunan City University, Yiyang 413000, PR China
| | - Xiqi Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Chong Zhang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Beijing Research Institute of Chemical Engineering Metallurgy, Beijing 101149, PR China
| | - Shuo Meng
- R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China
| | - Longcheng Liu
- China Institute of Atomic Energy, Beiing 102413, PR China; R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China; Department of Chemical Engineering, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
5
|
Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Vengosh A, Coyte RM, Podgorski J, Johnson TM. A critical review on the occurrence and distribution of the uranium- and thorium-decay nuclides and their effect on the quality of groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151914. [PMID: 34856287 DOI: 10.1016/j.scitotenv.2021.151914] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
This critical review presents the key factors that control the occurrence of natural elements from the uranium- and thorium-decay series, also known as naturally occurring radioactive materials (NORM), including uranium, radium, radon, lead, polonium, and their isotopes in groundwater resources. Given their toxicity and radiation, elevated levels of these nuclides in drinking water pose human health risks, and therefore understanding the occurrence, sources, and factors that control the mobilization of these nuclides from aquifer rocks is critical for better groundwater management and human health protection. The concentrations of these nuclides in groundwater are a function of the groundwater residence time relative to the decay rates of the nuclides, as well as the net balance between nuclides mobilization (dissolution, desorption, recoil) and retention (adsorption, precipitation). This paper explores the factors that control this balance, including the relationships between the elemental chemistry (e.g., solubility and speciation), lithological and hydrogeological factors, groundwater geochemistry (e.g., redox state, pH, ionic strength, ion-pairs availability), and their combined effects and interactions. The various chemical properties of each of the nuclides results in different likelihoods for co-occurrence. For example, the primordial 238U, 222Rn, and, in cases of high colloid concentrations also 210Po, are all more likely to be found in oxic groundwater. In contrast, in reducing aquifers, Ra nuclides, 210Pb, and in absence of high colloid concentrations, 210Po, are more mobile and frequently occur in groundwater. In highly permeable sandstone aquifers that lack sufficient adsorption sites, Ra is often enriched, even in low salinity and oxic groundwater. This paper also highlights the isotope distributions, including those of relatively long-lived nuclides (238U/235U) with abundances that depend on geochemical conditions (e.g., fractionation induced from redox processes), as well as shorter-lived nuclides (234U/238U, 228Ra/226Ra, 224Ra/228Ra, 210Pb/222Rn, 210Po/210Pb) that are strongly influenced by physical (recoil), lithological, and geochemical factors. Special attention is paid in evaluating the ability to use these isotope variations to elucidate the sources of these nuclides in groundwater, mechanisms of their mobilization from the rock matrix (e.g., recoil, ion-exchange), and retention into secondary mineral phases and ion-exchange sites.
Collapse
Affiliation(s)
| | | | - Joel Podgorski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | |
Collapse
|
7
|
Pan Z, Roebbert Y, Beck A, Bartova B, Vitova T, Weyer S, Bernier-Latmani R. Persistence of the Isotopic Signature of Pentavalent Uranium in Magnetite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1753-1762. [PMID: 35061941 PMCID: PMC8811959 DOI: 10.1021/acs.est.1c06865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Uranium isotopic signatures can be harnessed to monitor the reductive remediation of subsurface contamination or to reconstruct paleo-redox environments. However, the mechanistic underpinnings of the isotope fractionation associated with U reduction remain poorly understood. Here, we present a coprecipitation study, in which hexavalent U (U(VI)) was reduced during the synthesis of magnetite and pentavalent U (U(V)) was the dominant species. The measured δ238U values for unreduced U(VI) (∼-1.0‰), incorporated U (96 ± 2% U(V), ∼-0.1‰), and extracted surface U (mostly U(IV), ∼0.3‰) suggested the preferential accumulation of the heavy isotope in reduced species. Upon exposure of the U-magnetite coprecipitate to air, U(V) was partially reoxidized to U(VI) with no significant change in the δ238U value. In contrast, anoxic amendment of a heavy isotope-doped U(VI) solution resulted in an increase in the δ238U of the incorporated U species over time, suggesting an exchange between incorporated and surface/aqueous U. Overall, the results support the presence of persistent U(V) with a light isotope signature and suggest that the mineral dynamics of iron oxides may allow overprinting of the isotopic signature of incorporated U species. This work furthers the understanding of the isotope fractionation of U associated with iron oxides in both modern and paleo-environments.
Collapse
Affiliation(s)
- Zezhen Pan
- Department
of Environmental Science and Engineering, Cluster of Interfacial Processes
Against Pollution (CIPAP), Fudan University, Shanghai 200438, China
- Environmental
Microbiology Laboratory, École Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Yvonne Roebbert
- Leibniz,
Universität Hannover, Institut für
Mineralogie, D-30167 Hannover, Germany
| | - Aaron Beck
- Institute
for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
| | - Barbora Bartova
- Environmental
Microbiology Laboratory, École Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Tonya Vitova
- Institute
for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
| | - Stefan Weyer
- Leibniz,
Universität Hannover, Institut für
Mineralogie, D-30167 Hannover, Germany
| | - Rizlan Bernier-Latmani
- Environmental
Microbiology Laboratory, École Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
8
|
Wang J, Yin M, Liu J, Shen CC, Yu TL, Li HC, Zhong Q, Sheng G, Lin K, Jiang X, Dong H, Liu S, Xiao T. Geochemical and U-Th isotopic insights on uranium enrichment in reservoir sediments. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125466. [PMID: 33657470 DOI: 10.1016/j.jhazmat.2021.125466] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Uranium (U) geochemistry and its isotopic compositions of reservoir sediments in U mine area were poorly understood. Herein, U and Th isotopic compositions were employed to investigate source apportionment and geochemical behavior of U in 41 reservoir sediments from a U mining area, Guangdong, China. The remarkably high contents of both total U (207.3-1117.7 mg/kg) and acid-leachable U (90.3-638.5 mg/kg) in the sediments exhibit a severe U contamination and mobilization-release risk. The U/Th activity ratios (ARs) indicate that all sediments have been contaminated apparently by U as a result of discharge of U containing wastewater, especially uranium mill tailings (UMT) leachate, while the variations of U/Th ARs are dominated by U geochemical behaviors (mainly redox process and adsorption). The U isotopic compositions (δ238U) showed a large variance through the sediment profile, varying from - 0.62 to - 0.04‰. The relation between δ238U and acid-leachable U fraction demonstrates that the U isotopic fractionation in sediments can be controlled by bedrock weathering (natural activity), UMT leachate (anthropogenic activity) and subsequent biogeochemical processes. The findings suggest that U-Th isotopes are a powerful tool to better understand U geochemical processes and enrichment mechanism in sediments that were affected by combined sources and driving forces.
Collapse
Affiliation(s)
- Jin Wang
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| | - Meiling Yin
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Chuan-Chou Shen
- High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan; Research Center for Future Earth, National Taiwan University, Taipei 10617, Taiwan
| | - Tsai-Luen Yu
- High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan; Research Center for Future Earth, National Taiwan University, Taipei 10617, Taiwan; Marine Industry and Engineering Research Center, National Academy of Marine Research, Kaohsiung 80661, Taiwan
| | - Hong-Chun Li
- High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan
| | - Qiaohui Zhong
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Guodong Sheng
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Ke Lin
- High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan
| | - Xiuyang Jiang
- Key Laboratory for Humid Subtropical Eco-geographical Process of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Pudong, Shanghai 201203, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Siyu Liu
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| |
Collapse
|
9
|
Roebbert Y, Rosendahl CD, Brown A, Schippers A, Bernier-Latmani R, Weyer S. Uranium Isotope Fractionation during the Anoxic Mobilization of Noncrystalline U(IV) by Ligand Complexation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7959-7969. [PMID: 34038128 DOI: 10.1021/acs.est.0c08623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Uranium (U) isotopes are suggested as a tool to trace U reduction. However, noncrystalline U(IV), formed predominantly in near-surface environments, may be complexed and remobilized using ligands under anoxic conditions. This may cause additional U isotope fractionation and alter the signatures generated by U reduction. Here, we investigate the efficacy of noncrystalline U(IV) mobilization by ligand complexation and the associated U isotope fractionation. Noncrystalline U(IV) was produced via the reduction of U(VI) (400 μM) by Shewanella oneidensis MR-1 and was subsequently mobilized with EDTA (1 mM), citrate (1 mM), or bicarbonate (500 mM) in batch experiments. Complexation with all investigated ligands resulted in significant mobilization of U(IV) and led to an enrichment of 238U in the mobilized fraction (δ238U = 0.4-0.7 ‰ for EDTA; 0.3 ‰ for citrate; 0.2-0.3 ‰ for bicarbonate). For mobilization with bicarbonate, a Rayleigh approach was the most suitable isotope fractionation model, yielding a fractionation factor α of 1.00026-1.00036. Mobilization with EDTA could be modeled with equilibrium isotope fractionation (α: 1.00039-1.00049). The results show that U isotope fractionation associated with U(IV) mobilization under anoxic conditions is significant and needs to be considered when applying U isotopes in remediation monitoring or as a paleo-redox proxy.
Collapse
Affiliation(s)
- Yvonne Roebbert
- Leibniz Universität Hannover, Institut für Mineralogie, Hannover D-30167, Germany
| | | | - Ashley Brown
- École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources, Hannover D-30655, Germany
| | | | - Stefan Weyer
- Leibniz Universität Hannover, Institut für Mineralogie, Hannover D-30167, Germany
| |
Collapse
|
10
|
Chen X, Zheng W, Anbar AD. Uranium Isotope Fractionation ( 238U/ 235U) during U(VI) Uptake by Freshwater Plankton. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2744-2752. [PMID: 31995356 DOI: 10.1021/acs.est.9b06421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Uranium contamination in the environment is a serious public health concern. Biotic U(VI) reduction and nonreductive U(VI) uptake by microorganisms (e.g., U(VI) biosorption by cyanobacteria) are effective U remediation techniques. Variations of 238U/235U have been extensively explored to track biotic U(VI) reduction in laboratory experiments and field applications. However, U isotope fractionation during nonreductive U(VI) uptake by microorganisms is poorly constrained. To investigate U isotope fractionation in this process, we cultured freshwater plankton in the presence of U(VI) and measured 238U/235U in the culture media and biomass. We found that nonreductive U(VI) uptake by freshwater plankton fractionated U isotopes in the opposite direction compared to biotic U(VI) reduction. δ238U values in freshwater plankton were consistently ∼0.23 ± 0.06‰ lighter than those in dissolved U in the culture medium at various fractions of U removal (12-30%), consistent with equilibrium isotope fractionation in a closed system. The equilibrium isotope fractionation observed in our experiments possibly results from changes in coordination geometry between dissolved U(VI) in the culture media and adsorbed U(VI) on cell surfaces. Our experimental results highlight the need to consider U isotope fractionation during nonredox U(VI) uptake by microorganisms and organic matter when applying variations of 238U/235U to track biogeochemical processes and evaluate U remediation.
Collapse
Affiliation(s)
- Xinming Chen
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, United States
- Department of Earth, Ocean and Atmospheric Sciences and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States
| | - Wang Zheng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Ariel D Anbar
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
11
|
Basu A, Wanner C, Johnson TM, Lundstrom CC, Sanford RA, Sonnenthal EL, Boyanov MI, Kemner KM. Microbial U Isotope Fractionation Depends on the U(VI) Reduction Rate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2295-2303. [PMID: 31909614 DOI: 10.1021/acs.est.9b05935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
U isotope fractionation may serve as an accurate proxy for U(VI) reduction in both modern and ancient environments, if the systematic controls on the magnitude of fractionation (ε) are known. We model the effect of U(VI) reduction kinetics on U isotopic fractionation during U(VI) reduction by a novel Shewanella isolate, Shewanella sp. (NR), in batch incubations. The measured ε values range from 0.96 ± 0.16 to 0.36 ± 0.07‰ and are strongly dependent on the U(VI) reduction rate. The ε decreases with increasing reduction rate constants normalized by cell density and initial U(VI). Reactive transport simulations suggest that the rate dependence of ε is due to a two-step process, where diffusive transport of U(VI) from the bulk solution across a boundary layer is followed by enzymatic reduction. Our results imply that the spatial decoupling of bulk U(VI) solution and enzymatic reduction should be taken into account for interpreting U isotope data from the environment.
Collapse
Affiliation(s)
- Anirban Basu
- Department of Earth Sciences, Royal Holloway , University of London , Egham TW20 0EX , U.K
| | - Christoph Wanner
- Institute of Geological Sciences , University of Bern , Baltzerstrasse 3 , Bern CH-3012 , Switzerland
| | - Thomas M Johnson
- Department of Geology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Craig C Lundstrom
- Department of Geology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Robert A Sanford
- Department of Geology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Eric L Sonnenthal
- Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Maxim I Boyanov
- Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
- Institute of Chemical Engineering , Bulgarian Academy of Sciences , Sofia 1113 , Bulgaria
| | - Kenneth M Kemner
- Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| |
Collapse
|
12
|
High efficiency biosorption of Uranium (VI) ions from solution by using hemp fibers functionalized with imidazole-4,5-dicarboxylic. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111739] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
|
14
|
Reimus PW, Dangelmayr MA, Clay JT, Chamberlain KR. Uranium Natural Attenuation Downgradient of an in Situ Recovery Mine Inferred from a Cross-Hole Field Test. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7483-7493. [PMID: 31132251 DOI: 10.1021/acs.est.9b01572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A field test was conducted at a uranium in situ recovery (solution mining) site to evaluate postmining uranium natural attenuation downgradient of an ore zone. Approximately 1 million liters of water from a previously mined ore zone was injected into an unmined ore zone that served as a proxy for a downgradient aquifer, while a well located approximately 23 m away was pumped. After 1 year of pumping, only about 39% of the injected U(VI) was recovered, whereas essentially 100% of coinjected chloride was recovered. A geochemical/transport model was used to simultaneously match the chloride and uranium concentrations at the pumping well while also qualitatively matching aqueous 238U/235U ratios, which reflect uranium removal from solution by reduction. It was concluded that ∼50% of the injected U(VI) was reduced to U(IV), although the reduction capacity in the flow pathways between the injection and production wells was estimated to be nearly exhausted by the end of the test. Estimating the reduction capacity of the downgradient aquifer can inform restoration strategy and offer a useful metric for regulatory decisions concerning the adequacy of restoration. U(VI) reduction should be effectively irreversible in these anoxic environments, which differ greatly from shallow oxic environments where U(IV) is readily reoxidized.
Collapse
Affiliation(s)
- Paul W Reimus
- Los Alamos National Laboratory , P.O. Box 1663, Los Alamos , New Mexico 87545 , United States
| | - Martin A Dangelmayr
- Los Alamos National Laboratory , P.O. Box 1663, Los Alamos , New Mexico 87545 , United States
| | - James T Clay
- Cameco Resources, Inc. , 762 Ross Road , Douglas , Wyoming 82633 , United States
| | - Kevin R Chamberlain
- University of Wyoming , Department of Geology and Geophysics , 1000 East University Avenue , Dept. 3006, Laramie , Wyoming 82071 , United States
| |
Collapse
|
15
|
Skierszkan EK, Robertson JM, Lindsay MBJ, Stockwell JS, Dockrey JW, Das S, Weis D, Beckie RD, Mayer KU. Tracing Molybdenum Attenuation in Mining Environments Using Molybdenum Stable Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5678-5686. [PMID: 30998001 DOI: 10.1021/acs.est.9b00766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Molybdenum contamination is a concern in mining regions worldwide. Better understanding of processes controlling Mo mobility in mine wastes is critical for assessing potential impacts and developing water-quality management strategies associated with this element. Here, we used Mo stable isotope (δ98/95Mo) analyses to investigate geochemical controls on Mo mobility within a tailings management facility (TMF) featuring oxic and anoxic environments. These isotopic analyses were integrated with X-ray absorption spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and aqueous chemical data. Dissolved Mo concentrations were inversely correlated with δ98/95Mo values such that enrichment of heavy Mo isotopes in solution reflected attenuation processes. Inner-sphere complexation of Mo(VI) with ferrihydrite was the primary driver of Mo removal and was accompanied by a ca. 1‰ isotope fractionation. Limited Mo attenuation and isotope fractionation were observed in Fe(II)- and Mo-rich anoxic TMF seepage, while attenuation and isotope fractionation were greatest during discharge and oxidation of this seepage after discharge into a pond where Fe-(oxyhydr)oxide precipitation promoted Mo sorption. Overall, this study highlights the role of sorption onto Fe-(oxyhydr)oxides in attenuating Mo in oxic environments, a process which can be traced by Mo isotope analyses.
Collapse
Affiliation(s)
- Elliott K Skierszkan
- Lorax Environmental Services Ltd. , 2289 Burrard Street , Vancouver , BC Canada , V6J 3H9
| | - Jared M Robertson
- Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , SK Canada , S7N 5E2
- O'Kane Consultants Inc. , 112 Research Drive , Saskatoon , SK Canada , S7N 3R3
| | - Matthew B J Lindsay
- Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , SK Canada , S7N 5E2
| | - Justin S Stockwell
- Lorax Environmental Services Ltd. , 2289 Burrard Street , Vancouver , BC Canada , V6J 3H9
| | - John W Dockrey
- Lorax Environmental Services Ltd. , 2289 Burrard Street , Vancouver , BC Canada , V6J 3H9
| | - Soumya Das
- Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , SK Canada , S7N 5E2
| | | | | | | |
Collapse
|
16
|
Lefebvre P, Noël V, Lau KV, Jemison NE, Weaver KL, Williams KH, Bargar JR, Maher K. Isotopic Fingerprint of Uranium Accumulation and Redox Cycling in Floodplains of the Upper Colorado River Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3399-3409. [PMID: 30807121 DOI: 10.1021/acs.est.8b05593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Uranium (U) groundwater contamination is a major concern at numerous former mining and milling sites across the Upper Colorado River Basin (UCRB), USA, where U(IV)-bearing solids have accumulated within naturally reduced zones (NRZs). Understanding the processes governing U reduction and oxidation within NRZs is critical for assessing the persistence of U in groundwater. To evaluate the redox cycling of uranium, we measured the U concentrations and isotopic compositions (δ238U) of sediments and pore waters from four study sites across the UCRB that span a gradient in sediment texture and composition. We observe that U accumulation occurs primarily within fine-grained (low-permeability) NRZs that show active redox variations. Low-permeability NRZs display high accumulation and low export of U, with internal redox cycling of U. In contrast, within high-permeability NRZs, U is remobilized under oxidative conditions, possibly without any fractionation, and transported outside the NRZs. The low δ238U of sediments outside of defined NRZs suggests that these reduced zones act as additional U sources. Collectively, our results indicate that fine-grained NRZs have a greater potential to retain uranium, whereas NRZs with higher permeability may constitute a more-persistent but dilute U source.
Collapse
Affiliation(s)
- Pierre Lefebvre
- Department of Earth System Science , Stanford University , Stanford , California 94305 , United States
- Département de Géosciences , Ecole Normale Supérieure , Paris 75005 , France
| | - Vincent Noël
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Kimberly V Lau
- Department of Geological Sciences , Stanford University , Stanford , California 94305 , United States
| | - Noah E Jemison
- Department of Geology , University of Illinois at Urbana-Champaign , Champaign , Illinois 61820 , United States
| | - Karrie L Weaver
- Department of Earth System Science , Stanford University , Stanford , California 94305 , United States
| | - Kenneth H Williams
- Earth Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - John R Bargar
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Kate Maher
- Department of Earth System Science , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
17
|
Wu Y, Wang Y, Guo W. Behavior and fate of geogenic uranium in a shallow groundwater system. JOURNAL OF CONTAMINANT HYDROLOGY 2019; 222:41-55. [PMID: 30827739 DOI: 10.1016/j.jconhyd.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/09/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
To unveil behavior and fate of uranium (U) in the Quaternary aquifer system of Datong basin (China), we analyzed sediment and groundwater samples, and performed geochemical modeling. The analyses for sediments were implemented by a sequential extraction procedure and measurements including X-ray power diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Concentrations of main elements and U, and 234U/238U activity ratios for groundwater were determined. Results show that sediment U contents range from 1.93 to 8.80 (average 3.00 ± 1.69) mg/kg. In relation to the total U, average fractions of residual U (probably as betafite) and U(VI) bound to carbonates and FeMn oxides are 74.4 ± 18.7%, 17.2 ± 13.3%, and 4.3 ± 2.9%, respectively. Lower average fractions were determined for both organic matter- and sulfide-bound U (mainly as U(IV), e.g., brannerite) (2.0 ± 0.7%) and exchangeable U(VI) (2.0 ± 2.8%). For the groundwater (pH 7.36-8.86), Ca2UO2(CO3)30, CaUO2(CO3)32-, and UO2(CO3)34- constitute >99.5% of the total dissolved U; and elevated U concentrations occur mainly in shallow aquifers (3-40 m deep below land surface) of the west flow-through and discharge areas, with 50% of the sampled points exceeding 30 μg/L. We argue that betafite and carbonate weathering and U(VI) desorption from ferrihydrite are the primary geochemical processes responsible for U mobilization, with a minor contrition from U(IV) oxidation. Abiotic U(IV) oxidation may be induced mainly by dissolved oxygen under oxic/suboxic conditions (e.g., in the recharge and flow-through areas), but significantly linked to amorphous ferrihydrite under Fe(III)- and sulfate-reducing conditions. Abiotic U(VI) reduction could be caused principally by siderite and mackinawite. Under alkaline conditions, higher HCO3- concentrations and lower Ca2+/HCO3- molar ratios (<~0.2) cause formation of CaUO2(CO3)32- and UO2(CO3)34-, and U(VI) desorption. With increases in concentrations of Ca2+ and Ca2+/HCO3- ratios (>~0.2), these anionic forms may shift to neutral Ca2UO2(CO3)30, which can facilitate further desorption of U(VI). Our results improve the understanding of U environmental geochemistry and are important for groundwater resources management in this and similar other Quaternary aquifer systems.
Collapse
Affiliation(s)
- Ya Wu
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China.
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China.
| | - Wei Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| |
Collapse
|
18
|
Abstract
Significant uranium (U) isotope fractionation has been observed during abiotic reduction of aqueous U, counter to the expectation that uranium isotopes are only fractionated by bioassociated enzymatic reduction. In our experiments, aqueous U is removed from solution by reductive precipitation onto the surfaces of synthetic iron monosulfide. The magnitude of uranium isotopic fractionation increases with decreasing aqueous U removal rate and with increasing amounts of neutrally charged aqueous Ca-U-CO3 species. Our discovery means that abiotic U isotope fractionation likely occurs in any reducing environment with aqueous Ca ≥ 1 mM, and that the magnitude of isotopic fractionation changes in response to changes in aqueous major ion concentrations that affect U speciation. Our results have implications for the study of anoxia in the ancient oceans and other environments.
Collapse
|
19
|
Sun Z, Chen D, Chen B, Kong L, Su M. Enhanced uranium(VI) adsorption by chitosan modified phosphate rock. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.02.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Ghosh S, Kurapati SK, Ghosh A, Srivastava AK, Pal S. Di-μ-acetato Diuranyl(VI) Complexes withN-(2-pyridyl)-N′-(5-R-salicylidene)hydrazines: Syntheses, Structures, Properties and Extraction Studies. ChemistrySelect 2018. [DOI: 10.1002/slct.201800940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sabari Ghosh
- School of Chemistry; University of Hyderabad; Hyderabad 500 046 India
| | | | - Arpita Ghosh
- School of Chemistry; University of Hyderabad; Hyderabad 500 046 India
| | | | - Samudranil Pal
- School of Chemistry; University of Hyderabad; Hyderabad 500 046 India
| |
Collapse
|
21
|
Tarhan LG, Planavsky NJ, Wang X, Bellefroid EJ, Droser ML, Gehling JG. The late-stage "ferruginization" of the Ediacara Member (Rawnsley Quartzite, South Australia): Insights from uranium isotopes. GEOBIOLOGY 2018; 16:35-48. [PMID: 29105940 DOI: 10.1111/gbi.12262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
The paleoenvironmental setting in which the Ediacara Biota lived, died, and was preserved in the eponymous Ediacara Member of the Rawnsley Quartzite of South Australia is an issue of long-standing interest and recent debate. Over the past few decades, interpretations have ranged from deep marine to shallow marine to terrestrial. One of the key features invoked by adherents of the terrestrial paleoenvironment hypothesis is the presence of iron oxide coatings, inferred to represent the upper horizons of paleosols, along fossiliferous sandstone beds of the Ediacara Member. We find that these surficial oxides are characterized by (234 U/238 U) values which are not in secular equilibrium, indicating extensive fluid-rich alteration of these surfaces within the past approximately 2 million years. Specifically, the oxide coatings are characterized by (234 U/238 U) values >1, indicating interaction with high-(234 U/238 U) fluids derived from alpha-recoil discharge. These oxides are also characterized by light "stable" δ238/235 U values, consistent with a groundwater U source. These U isotope data thus corroborate sedimentological observations that ferric oxides along fossiliferous surfaces of the Ediacara Member consist of surficial, non-bedform-parallel staining, and sharply irregular patches, strongly reflecting post-depositional, late-stage processes. Therefore, both sedimentological and geochemical evidence indicate that Ediacara iron oxides do not reflect synsedimentary ferruginization and that the presence of iron oxides cannot be used to either invoke a terrestrial paleoenvironmental setting for or reconstruct the taphonomic pathways responsible for preservation of the Ediacara Biota. These findings demonstrate that careful assessment of paleoenvironmental parameters is essential to the reconstruction of the habitat of the Ediacara Biota and the factors that led to the fossilization of these early complex ecosystems.
Collapse
Affiliation(s)
- L G Tarhan
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | - N J Planavsky
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | - X Wang
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | - E J Bellefroid
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | - M L Droser
- Department of Earth Sciences, University of California, Riverside, Riverside, CA, USA
| | - J G Gehling
- South Australian Museum and University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
22
|
Linghu W, Sun Y, Yang H, Chang K, Ma J, Huang Y, Dong W, Alsaedi A, Hayat T. Sorption of U(VI) on magnetic sepiolite investigated by batch and XANES techniques. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5531-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Saunders JA, Pivetz BE, Voorhies N, Wilkin RT. Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 183:67-83. [PMID: 27576149 PMCID: PMC7316075 DOI: 10.1016/j.jenvman.2016.08.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 05/17/2023]
Abstract
Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are important in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of uranium ores is a process of contacting the uranium mineral deposit with leaching and oxidizing (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality degradation from: 1) potential excursions of leaching solutions away from the injection zone into down-gradient, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential mobilization and migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies data gaps in mitigating these vulnerabilities, and discusses the hydrogeological characterization involved in developing a monitoring program.
Collapse
Affiliation(s)
- James A Saunders
- Department of Geosciences, 210 Petrie Hall, Auburn University, AL 36849, United States
| | - Bruce E Pivetz
- CSS-Dynamac, 10301 Democracy Lane Suite 300, Fairfax, VA 22030, United States
| | - Nathan Voorhies
- Environmental Solutions and Services, Battelle, 1300 Clay St., Suite 600, Oakland, CA 94612, United States
| | - Richard T Wilkin
- U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Ground Water and Ecosystems Restoration Division, 919 Kerr Research Dr., Ada, OK 74820, United States.
| |
Collapse
|
24
|
Jemison NE, Johnson TM, Shiel AE, Lundstrom CC. Uranium Isotopic Fractionation Induced by U(VI) Adsorption onto Common Aquifer Minerals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12232-12240. [PMID: 27758097 DOI: 10.1021/acs.est.6b03488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Uranium groundwater contamination due to U mining and processing affects numerous sites globally. Bioreduction of soluble, mobile U(VI) to U(IV)-bearing solids is potentially a very effective remediation strategy. Uranium isotopes (238U/235U) have been utilized to track the progress of microbial reduction, with laboratory and field studies finding a ∼1‰ isotopic fractionation, with the U(IV) product enriched in 238U. However, the isotopic fractionation produced by adsorption may complicate the use of 238U/235U to trace microbial reduction. A previous study found that adsorption of U(VI) onto Mn oxides produced a -0.2‰ fractionation with the adsorbed U(VI) depleted in 238U. In this study, adsorption to quartz, goethite, birnessite, illite, and aquifer sediments induced an average isotopic fractionation of -0.15‰ with the adsorbed U(VI) isotopically lighter than coexisting aqueous U(VI). In bicarbonate-bearing matrices, the fractionation depended little on the nature of the sorbent, with only birnessite producing an atypically large fractionation. In the case of solutions with ionic strengths much lower than those of typical groundwater, less isotopic fractionation was produced than U(VI) solutions with greater ionic strength. Studies using U isotope data to assess U(VI) reduction must consider adsorption as a lesser, but significant isotope fractionation process.
Collapse
Affiliation(s)
- N E Jemison
- Department of Geology, University of Illinois at Urbana-Champaign , 156 Computing Applications Building, 605 E. Springfield Avenue, Champaign, Illinois 61820, United States
| | - T M Johnson
- Department of Geology, University of Illinois at Urbana-Champaign , 156 Computing Applications Building, 605 E. Springfield Avenue, Champaign, Illinois 61820, United States
| | - A E Shiel
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University , 104 CEOAS Administration Building, 101 26th Street, Corvallis, Oregon 97322, United States
| | - C C Lundstrom
- Department of Geology, University of Illinois at Urbana-Champaign , 156 Computing Applications Building, 605 E. Springfield Avenue, Champaign, Illinois 61820, United States
| |
Collapse
|
25
|
Basu A, Schilling K, Brown ST, Johnson TM, Christensen JN, Hartmann M, Reimus PW, Heikoop JM, Woldegabriel G, DePaolo DJ. Se Isotopes as Groundwater Redox Indicators: Detecting Natural Attenuation of Se at an in Situ Recovery U Mine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10833-10842. [PMID: 27547844 DOI: 10.1021/acs.est.6b01464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of the major ecological concerns associated with the in situ recovery (ISR) of uranium (U) is the environmental release of soluble, toxic selenium (Se) oxyanions generated by mining. Post-mining natural attenuation by the residual reductants in the ore body and reduced down-gradient sediments should mitigate the risk of Se contamination in groundwater. In this work, we investigate the Se concentrations and Se isotope systematics of groundwater and of U ore bearing sediments from an ISR site at Rosita, TX, USA. Our results show that selenate (Se(VI)) is the dominant Se species in Rosita groundwater, and while several up-gradient wells have elevated Se(VI), the majority of the ore zone and down-gradient wells have little or no Se oxyanions. In addition, the δ82SeVI of Rosita groundwater is generally elevated relative to the U ore up to +6.14‰, with the most enriched values observed in the ore-zone wells. Increasing δ82Se with decreasing Se(VI) conforms to a Rayleigh type distillation model with an ε of -2.25‰ ± 0.61‰, suggesting natural Se(VI) reduction occurring along the hydraulic gradient at the Rosita ISR site. Furthermore, our results show that Se isotopes are excellent sensors for detecting and monitoring post-mining natural attenuation of Se oxyanions at ISR sites.
Collapse
Affiliation(s)
- Anirban Basu
- Department of Earth and Planetary Science, University of California , 307 McCone Hall, Berkeley, California 94720, United States
| | - Kathrin Schilling
- Department of Environmental Science, Policy and Management, University of California , 130 Mulford Hall, Berkeley, California 94720, United States
| | - Shaun T Brown
- Department of Earth and Planetary Science, University of California , 307 McCone Hall, Berkeley, California 94720, United States
- Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Thomas M Johnson
- Department of Geology, University of Illinois at Urbana-Champaign , 605 East Springfield Avenue, Champaign, Illinois 61820, United States
| | - John N Christensen
- Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Matt Hartmann
- Uranium Resources, Inc. , 6950 South Potomac Street, Suite 300, Centennial, Colorado 80112, United States
| | - Paul W Reimus
- Earth and Environmental Sciences Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Jeffrey M Heikoop
- Earth and Environmental Sciences Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Giday Woldegabriel
- Earth and Environmental Sciences Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Donald J DePaolo
- Department of Earth and Planetary Science, University of California , 307 McCone Hall, Berkeley, California 94720, United States
- Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Brown ST, Basu A, Christensen JN, Reimus P, Heikoop J, Simmons A, Woldegabriel G, Maher K, Weaver K, Clay J, DePaolo DJ. Isotopic Evidence for Reductive Immobilization of Uranium Across a Roll-Front Mineral Deposit. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6189-6198. [PMID: 27203292 DOI: 10.1021/acs.est.6b00626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We use uranium (U) isotope ratios to detect and quantify the extent of natural U reduction in groundwater across a roll front redox gradient. Our study was conducted at the Smith Ranch-Highland in situ recovery (ISR) U mine in eastern Wyoming, USA, where economic U deposits occur in the Paleocene Fort Union formation. To evaluate the fate of aqueous U in and adjacent to the ore body, we investigated the chemical composition and isotope ratios of groundwater samples from the roll-front type ore body and surrounding monitoring wells of a previously mined area. The (238)U/(235)U of groundwater varies by approximately 3‰ and is correlated with U concentrations. Fluid samples down-gradient of the ore zone are the most depleted in (238)U and have the lowest U concentrations. Activity ratios of (234)U/(238)U are ∼5.5 up-gradient of the ore zone, ∼1.0 in the ore zone, and between 2.3 and 3.7 in the down-gradient monitoring wells. High-precision measurements of (234)U/(238)U and (238)U/(235)U allow for development of a conceptual model that evaluates both the migration of U from the ore body and the extent of natural attenuation due to reduction. We find that the premining migration of U down-gradient of the delineated ore body is minimal along eight transects due to reduction in or adjacent to the ore body, whereas two other transects show little or no sign of reduction in the down-gradient region. These results suggest that characterization of U isotopic ratios at the mine planning stage, in conjunction with routine geochemical analyses, can be used to identify where more or less postmining remediation will be necessary.
Collapse
Affiliation(s)
- Shaun T Brown
- Department of Earth and Planetary Science University of California , Berkeley, California 94709, United States
- Energy Geosciences Division, E.O. Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Anirban Basu
- Department of Earth and Planetary Science University of California , Berkeley, California 94709, United States
- Energy Geosciences Division, E.O. Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - John N Christensen
- Energy Geosciences Division, E.O. Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Paul Reimus
- Earth and Environmental Sciences Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87454, United States
| | - Jeffrey Heikoop
- Earth and Environmental Sciences Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87454, United States
| | - Ardyth Simmons
- Earth and Environmental Sciences Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87454, United States
| | - Giday Woldegabriel
- Earth and Environmental Sciences Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87454, United States
| | - Kate Maher
- Department of Geological Sciences, Stanford University , Stanford, California 94305, United States
| | - Karrie Weaver
- Department of Geological Sciences, Stanford University , Stanford, California 94305, United States
| | - James Clay
- Power Resources Inc. , Smith Ranch-Highland Operation, 762 Ross Road, Douglas, Wyoming 82633, United States
| | - Donald J DePaolo
- Department of Earth and Planetary Science University of California , Berkeley, California 94709, United States
- Energy Geosciences Division, E.O. Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
27
|
Schilling K, Johnson TM, Dhillon KS, Mason PRD. Fate of Selenium in Soils at a Seleniferous Site Recorded by High Precision Se Isotope Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9690-9698. [PMID: 26177307 DOI: 10.1021/acs.est.5b00477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Selenium poisoning is a significant health problem in parts of Punjab, India, which is an area of intense agricultural productivity. To determine the complex soil dynamics that control distribution of Se in this area, we measured concentrations and δ(82/76)Se of bulk Se and individual Se pools in four soil profiles. This was compared against δ(82/76)Se of crops and groundwater used for irrigation. The isotopic composition of bulk Se and component Se pools reveal spatial heterogeneity. The bulk δ(82/76)Se show progressively lower values with increasing soil depth indicating the preferential migration of isotopically lighter Se downward through the soil profile. The δ(82/76)Se of water-soluble Se is isotopically heavier than δ(82/76)Se of adsorbed Se, suggesting Se isotope fractionation by reduction prior to scavenging by reactive minerals in the soil. The organically bound Se is isotopically lighter than water-soluble Se and correlates with the C/N ratio at different soil depths. Thus, Se immobilization by redox cycling controls the biogeochemical Se cycle in the soil. Se isotope ratios help to trace biochemical processes of Se in agricultural seleniferous soils and provide an important assessment for better soil management mitigating Se concentrations of ecotoxicological levels.
Collapse
Affiliation(s)
- Kathrin Schilling
- †Department of Environmental Science, Policy and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, California 94720, United States
| | - Thomas M Johnson
- ‡Department of Geology, University of Illinois at Urbana-Champaign, 152 Computer Applications Building, 605 E. Springfield Avenue, Champaign, Illinois 61820, United States
| | - Karaj S Dhillon
- §Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141 004, India
| | - Paul R D Mason
- ⊥Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands
| |
Collapse
|