1
|
Andrade VS, Ale A, Antezana PE, Desimone MF, Cazenave J, Gutierrez MF. Environmental factors modify silver nanoparticles ecotoxicity in Chydorus eurynotus (Cladocera). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:683-696. [PMID: 38861073 DOI: 10.1007/s10646-024-02766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Silver nanoparticles (AgNPs) are among the most produced nanomaterials in the world and are incorporated into several products due to their biocide and physicochemical properties. Since freshwater bodies are AgNPs main final sink, several consequences for biota are expected to occur. With the hypothesis that AgNPs can interact with environmental factors, we analyzed their ecotoxicity in combination with humic acids and algae. In addition to the specific AgNPs behavior in the media, we analyzed the mortality, growth, and phototactic behavior of Chydorus eurynotus (Cladocera) as response variables. While algae promoted Ag+ release, humic acids reduced it by adsorption, and their combination resulted in an intermediated Ag+ release. AgNPs affected C. eurynotus survival and growth, but algae and humic acids reduced AgNPs lethality, especially when combined. The humic acids mitigated AgNP effects in C. eurynotus growth, and both factors improved its phototactic behavior. It is essential to deepen the study of the isolated and combined influences of environmental factors on the ecotoxicity of nanoparticles to achieve accurate predictions under realistic exposure scenarios.
Collapse
Affiliation(s)
| | - Analía Ale
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
| | - Pablo Edmundo Antezana
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Federico Desimone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Cazenave
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
- Departamento de Ciencias Naturales, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (FHUC-UNL), Santa Fe, Argentina
| | - María Florencia Gutierrez
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
- Escuela Superior de Sanidad "Dr. Ramon Carrillo", Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL), Santa Fe, Argentina
| |
Collapse
|
2
|
Zhang X, Zhang Y, Chen Z, Gu P, Li X, Wang G. Exploring cell aggregation as a defense strategy against perchlorate stress in Chlamydomonas reinhardtii through multi-omics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167045. [PMID: 37709088 DOI: 10.1016/j.scitotenv.2023.167045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Perchlorate (ClO4-) is a type of novel, widely distributed, and persistent inorganic pollutant. However, the impacts of perchlorate on freshwater algae remain unclear. In this study, the response and defense mechanisms of microalgae (Chlamydomonas reinhardtii) under perchlorate stress were investigated by integrating physiological and biochemical monitoring, transcriptomics, and metabolomics. Weighted gene co-expression network analysis (WGCNA) of transcriptome data was used to analyze the relationship between genes and phenotype and screen the key pathways. C. reinhardtii exhibited aggregate behavior when exposed to 100- and 200-mM perchlorate but was restored to its unicellular lifestyle when transferred to fresh medium. WGCNA results found that the "carbohydrate metabolism" and "lipid metabolism" pathways were closely related to cell aggregation phenotype. The differential expression genes (DEGs) and differentially accumulated metabolites (DAMs) of these pathways were upregulated, indicating that the lipid and carbohydrate metabolisms were enhanced in aggregated cells. Additionally, most genes and metabolites related to phytohormone abscisic acid (ABA) biosynthesis and the mitogen-activated protein kinase (MAPK) signaling pathway were significantly upregulated, indicating their crucial roles in the signal transmission of aggregated cells. Meanwhile, in aggregated cells, extracellular polymeric substances (EPS) and lipid contents increased, photosynthesis activity decreased, and the antioxidant system was activated. These characteristics contributed to C. reinhardtii's improved resistance to perchlorate stress. Above results demonstrated that cell aggregation behavior was the principal defense strategy of C. reinhardtii against perchlorate. Overall, this study sheds new light on the impact mechanisms of perchlorate to aquatic microalgae and provides multi-omics insights into the research of multicellular-like aggregation as an adaptation strategy to abiotic stress. These results are beneficial for assessing the risk of perchlorate in aquatic environments.
Collapse
Affiliation(s)
- Xianyuan Zhang
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixiao Zhang
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Science, Tibet University, Lasha 850000, China
| | - Zixu Chen
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peifan Gu
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Li
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Gaohong Wang
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Li F, Li R, Lu F, Xu L, Gan L, Chu W, Yan M, Gong H. Adverse effects of silver nanoparticles on aquatic plants and zooplankton: A review. CHEMOSPHERE 2023; 338:139459. [PMID: 37437614 DOI: 10.1016/j.chemosphere.2023.139459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
With the rapid development of nanotechnology in the past decades, AgNPs are widely used in various fields and have become one of the most widely used nanomaterials, which leads to the inevitable release of AgNPs to the aquatic environment through various pathways. It is important to understand the effects of AgNPs on aquatic plants and zooplankton, which are widely distributed and diverse, and are important components of the aquatic biota. This paper reviews the effects of AgNPs on aquatic plants and zooplankton at the individual, cellular and molecular levels. In addition, the internal and external factors affecting the toxicity of AgNPs to aquatic plants and zooplankton are discussed. In general, AgNPs can inhibit growth and development, cause tissue damage, induce oxidative stress, and produce genotoxicity and reproductive toxicity. Moreover, the toxicity of AgNPs is influenced by the size, concentration, and surface coating of AgNPs, environmental factors including pH, salinity, temperature, light and co-contaminants such as NaOCl, glyphosate, As(V), Cu and Cd, sensitivity of test organisms, experimental conditions and so on. In order to investigate the toxicity of AgNPs in the natural environment, it is recommended to conduct toxicity evaluation studies of AgNPs under the coexistence of multiple environmental factors and pollutants, especially at natural environmental concentrations.
Collapse
Affiliation(s)
- Feng Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ruixue Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Fengru Lu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Muting Yan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Han Gong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
4
|
Komazec B, Cvjetko P, Balen B, Letofsky-Papst I, Lyons DM, Peharec Štefanić P. The Occurrence of Oxidative Stress Induced by Silver Nanoparticles in Chlorella vulgaris Depends on the Surface-Stabilizing Agent. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1967. [PMID: 37446486 DOI: 10.3390/nano13131967] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Silver nanoparticles (AgNPs) are of great interest due to their antimicrobial properties, but their reactivity and toxicity pose a significant risk to aquatic ecosystems. In biological systems, AgNPs tend to aggregate and dissolve, so they are often stabilized by agents that affect their physicochemical properties. In this study, microalga Chlorella vulgaris was used as a model organism to evaluate the effects of AgNPs in aquatic habitats. Algae were exposed to AgNPs stabilized with citrate and cetyltrimethylammonium bromide (CTAB) agents and to AgNO3 at concentrations that allowed 75% cell survival after 72 h. To investigate algal response, silver accumulation, ROS content, damage to biomolecules (lipids, proteins, and DNA), activity of antioxidant enzymes (APX, PPX, CAT, SOD), content of non-enzymatic antioxidants (proline and GSH), and changes in ultrastructure were analyzed. The results showed that all treatments induced oxidative stress and adversely affected algal cells. AgNO3 resulted in the fastest death of algae compared to both AgNPs, but the extent of oxidative damage and antioxidant enzymatic defense was similar to AgNP-citrate. Furthermore, AgNP-CTAB showed the least toxic effect and caused the least oxidative damage. These results highlight the importance of surface-stabilizing agents in determining the phytotoxicity of AgNPs and the underlying mechanisms affecting aquatic organisms.
Collapse
Affiliation(s)
- Bruno Komazec
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Petra Cvjetko
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ilse Letofsky-Papst
- Institute of Electron Microscopy and Nanoanalysis (FELMI), Graz Centre for Electron Microscopy (ZFE), Austrian Cooperative Research (ACR), Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Petra Peharec Štefanić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Wei M, Xiang Q, Wang P, Chen L, Ren M. Ambivalent effects of dissolved organic matter on silver nanoparticles/silver ions transformation: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130533. [PMID: 37055958 DOI: 10.1016/j.jhazmat.2022.130533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/05/2022] [Accepted: 11/29/2022] [Indexed: 06/19/2023]
Abstract
The numerous applications of silver nanoparticles (AgNPs) lead to their spread in aquatic systems and the release of silver ions (Ag+), which brings potential risks to environment and human health. Owing to the different toxicity, the mutual transformations between AgNPs and Ag+ has been a hot topic of research. Dissolved organic matter (DOM) is ubiquitous on the earth and almost participates in all the reactions in the nature. The previous studies have reported the roles of DOM played in the transformation between AgNPs and Ag+. However, different experiment conditions commonly caused contradictory results, leading to the difficulty to predict the fate of AgNPs in specific reactions. Here we summarized mechanisms of DOM-mediated AgNPs oxidation and Ag+ reduction, and analyzed the effects of environmental parameters. Moreover, the knowledge gaps, challenges, and new opportunities for research in this field are discussed. This review will promote the understanding of the fate and risk assessments of AgNPs in natural water systems.
Collapse
Affiliation(s)
- Minxiang Wei
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Qianqian Xiang
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China; College of Agronomy and Life Sciences, Kunming University, Kunming 650214, PR China
| | - Peng Wang
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China
| | - Liqiang Chen
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China.
| | - Meijie Ren
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| |
Collapse
|
6
|
Andrade VS, Ale A, Antezana PE, Desimone MF, Cazenave J, Gutierrez MF. Ecotoxicity of nanosilver on cladocerans and the role of algae provision. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27137-27149. [PMID: 36378381 DOI: 10.1007/s11356-022-24154-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Silver nanoparticles (AgNPs) are applied in diverse industries due to their biocide and physicochemical properties; therefore, they can be released into aquatic systems, interact with environmental factors, and ultimately exert adverse effects on the biota. We analyzed AgNPs effects on Ceriodaphnia reticulata (Cladocera) through mortality and life-history traits, considering the influence of food (Tetradesmus obliquus, Chlorophyceae) presence and concentration. C. reticulata was exposed to AgNPs in acute (absence and two algae concentrations plus five AgNPs treatments) and chronic assays (two algae concentrations plus three AgNPs treatments). AgNPs did not affect algae flocculation but increased Ag+ release, being these ions less toxic than AgNPs (as proved by the exposure to AgNO3). A reduction in AgNPs acute toxicity was observed when algae concentration increased. Acute AgNP exposure decreased C. reticulata body size and heart rate. The chronic AgNP exposure reduced C. reticulata molt number, growth, heart rate, and neonate size:number ratio, being these effects mitigated at the highest algae concentration. Increases in relative size and number of neonates were observed in AgNP treatments suggesting energy trade off. The increased Ag+ release with food presence suggests that the AgNP-algae interaction might be responsible of the decreased toxicity. Although algae reduced AgNP toxicity, they still exerted adverse effects on C. reticulata below predicted environmental concentrations. Since algae presence reduces AgNP effects but increases Ag+ release, studies should be continued to provide evidence on their toxicity to other organisms.
Collapse
Affiliation(s)
| | - Analía Ale
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
| | - Pablo Edmundo Antezana
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Instituto de La Química Y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia Y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Federico Desimone
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Instituto de La Química Y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia Y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Cazenave
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
- Departamento de Ciencias Naturales, Facultad de Humanidades Y Ciencias, Universidad Nacional del Litoral (FHUC-UNL), Santa Fe, Argentina
| | - María Florencia Gutierrez
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
- Escuela Superior de Sanidad "Dr. Ramon Carrillo" Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL), Santa Fe, Argentina
| |
Collapse
|
7
|
Silver Nanoparticle Effects on Antioxidant Response in Tobacco Are Modulated by Surface Coating. PLANTS 2022; 11:plants11182402. [PMID: 36145803 PMCID: PMC9504990 DOI: 10.3390/plants11182402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
The antimicrobial properties of silver and enhanced reactivity when applied in a nanoparticle form (AgNPs) led to their growing utilization in industry and various consumer products, which raises concerns about their environmental impact. Since AgNPs are prone to transformation, surface coatings are added to enhance their stability. AgNP phytotoxicity has been mainly attributed to the excess generation of reactive oxygen species (ROS), leading to the induction of oxidative stress. Herein, in vitro-grown tobacco (Nicotiana tabacum) plants were exposed to AgNPs stabilized with either polyvinylpyrrolidone (PVP) or cetyltrimethylammonium bromide (CTAB) as well as to ionic silver (AgNO3), applied in the same concentrations, either alone or in combination with cysteine, a strong silver ligand. The results show a higher accumulation of Ag in roots and leaves after exposure to AgNPs compared to AgNO3. This was correlated with a predominantly higher impact of nanoparticle than ionic silver form on parameters of oxidative stress, although no severe damage to important biomolecules was observed. Nevertheless, all types of treatments caused mobilization of antioxidant machinery, especially in leaves, although surface coatings modulated the activation of its specific components. Most effects induced by AgNPs or AgNO3 were alleviated with addition of cysteine.
Collapse
|
8
|
Bellingeri A, Scattoni M, Venditti I, Battocchio C, Protano G, Corsi I. Ecologically based methods for promoting safer nanosilver for environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129523. [PMID: 35820334 DOI: 10.1016/j.jhazmat.2022.129523] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Nanosilver, widely employed in consumer products as biocide, has been recently proposed as sensor, adsorbent and photocatalyst for water pollution monitoring and remediation. Since nanosilver ecotoxicity still pose limitations to its environmental application, a more ecological exposure testing strategy should be coupled to the development of safer formulations. Here, we tested the environmental safety of novel bifunctionalized nanosilver capped with citrate and L-cysteine (AgNPcitLcys) as sensor/sorbent of Hg2+ in terms of behaviour and ecotoxicity on microalgae (1-1000 µg/L) and microcrustaceans (0.001-100 mg/L), from the freshwater and marine environment, in acute and chronic scenarios. Acute toxicity resulted poorly descriptive of nanosilver safety while chronic exposure revealed stronger effects up to lethality. Low dissolution of silver ions from AgNPcitLcys was observed, however a nano-related ecotoxicity is hypothesized. Double coating of AgNPcitLcys succeeded in mitigating ecotoxicity to tested organisms, hence encouraging further research on safer nanosilver formulations. Environmentally safe applications of nanosilver should focus on ecologically relevant exposure scenarios rather than relying only on acute exposure data.
Collapse
Affiliation(s)
- Arianna Bellingeri
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Mattia Scattoni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Giuseppe Protano
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| |
Collapse
|
9
|
Iannelli MA, Bellini A, Venditti I, Casentini B, Battocchio C, Scalici M, Ceschin S. Differential phytotoxic effect of silver nitrate (AgNO 3) and bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) on Lemna plants (duckweeds). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106260. [PMID: 35933908 DOI: 10.1016/j.aquatox.2022.106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Duckweeds are aquatic plants often used in phytotoxic studies for their small size, simple structure, rapid growth, high sensitivity to pollutants and facility of maintaining under laboratory conditions. In this paper, induced phytotoxic effects were investigated in Lemna minor and Lemna minuta after exposition to silver nitrate (AgNO3) and silver nanoparticles stabilized with sodium citrate and L-Cysteine (AgNPs-Cit-L-Cys) at different concentrations (0, 20 and 50 mg/L) and times (7 and 14 days). Lemna species responses were evaluated analyzing plant growth (mat thickness, fresh and dry biomass, relative growth rate - RGR) and physiological parameters (chlorophyll - Chl, malondialdehyde - MDA, ascorbate peroxidase - APX and catalase - CAT). Ag content was measured in the fronds of the two Lemna species by inductively coupled plasma optical emission spectrometry. AgNO3 and AgNPs-Cit-L-CYs produced phytotoxic effects on both duckweed species (plant growth and Chl reduction, MDA increase) that enhanced in response to increasing concentrations and exposure times. AgNPs-Cit-L-Cys caused much less alteration in the plants compared to AgNO3 suggesting that the presence of bifunctionalized AgNPs-Cit-L-Cys have a reduced phytotoxic effect as compared to Ag+ released in water. Based on the physiological performance, L. minuta plants showed a large growth reduction and higher levels of chlorosis and stress in respect to L. minor plants, probably due to greater Ag+ ions accumulation in the fronds. Albeit with some differences, both Lemna species were able to uptake Ag+ ions from the aqueous medium, especially over a period of 14 days, and could be considered adapt as phytoremediation agents for decontaminating silver ion-polluted water.
Collapse
Affiliation(s)
- M A Iannelli
- Institute of Agricultural Biology and Biotechnology - National Research Council (IBBA-CNR), Via Salaria Km 29.300, 00015 Monterotondo Scalo, Rome, Italy.
| | - A Bellini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - I Venditti
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - B Casentini
- Water Research Institute - National Research Council (IRSA-CNR), Via Salaria Km 29.300, 00015 Monterotondo Scalo, Rome, Italy.
| | - C Battocchio
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - M Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - S Ceschin
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| |
Collapse
|
10
|
Corsi I, Desimone MF, Cazenave J. Building the Bridge From Aquatic Nanotoxicology to Safety by Design Silver Nanoparticles. Front Bioeng Biotechnol 2022; 10:836742. [PMID: 35350188 PMCID: PMC8957934 DOI: 10.3389/fbioe.2022.836742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 01/13/2023] Open
Abstract
Nanotechnologies have rapidly grown, and they are considered the new industrial revolution. However, the augmented production and wide applications of engineered nanomaterials (ENMs) and nanoparticles (NPs) inevitably lead to environmental exposure with consequences on human and environmental health. Engineered nanomaterial and nanoparticle (ENM/P) effects on humans and the environment are complex and largely depend on the interplay between their peculiar properties such as size, shape, coating, surface charge, and degree of agglomeration or aggregation and those of the receiving media/body. These rebounds on ENM/P safety and newly developed concepts such as the safety by design are gaining importance in the field of sustainable nanotechnologies. This article aims to review the critical characteristics of the ENM/Ps that need to be addressed in the safe by design process to develop ENM/Ps with the ablility to reduce/minimize any potential toxicological risks for living beings associated with their exposure. Specifically, we focused on silver nanoparticles (AgNPs) due to an increasing number of nanoproducts containing AgNPs, as well as an increasing knowledge about these nanomaterials (NMs) and their effects. We review the ecotoxicological effects documented on freshwater and marine species that demonstrate the importance of the relationship between the ENM/P design and their biological outcomes in terms of environmental safety.
Collapse
Affiliation(s)
- Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jimena Cazenave
- Laboratorio de Ictiología, Instituto Nacional de Limnología (INALI), CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
- *Correspondence: Jimena Cazenave,
| |
Collapse
|
11
|
Biba R, Košpić K, Komazec B, Markulin D, Cvjetko P, Pavoković D, Peharec Štefanić P, Tkalec M, Balen B. Surface Coating-Modulated Phytotoxic Responses of Silver Nanoparticles in Plants and Freshwater Green Algae. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:24. [PMID: 35009971 PMCID: PMC8746378 DOI: 10.3390/nano12010024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 01/03/2023]
Abstract
Silver nanoparticles (AgNPs) have been implemented in a wide range of commercial products, resulting in their unregulated release into aquatic as well as terrestrial systems. This raises concerns over their impending environmental effects. Once released into the environment, they are prone to various transformation processes that modify their reactivity. In order to increase AgNP stability, different stabilizing coatings are applied during their synthesis. However, coating agents determine particle size and shape and influence their solubility, reactivity, and overall stability as well as their behavior and transformations in the biological medium. In this review, we attempt to give an overview on how the employment of different stabilizing coatings can modulate AgNP-induced phytotoxicity with respect to growth, physiology, and gene and protein expression in terrestrial and aquatic plants and freshwater algae.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia; (R.B.); (K.K.); (B.K.); (D.M.); (P.C.); (D.P.); (P.P.Š.); (M.T.)
| |
Collapse
|
12
|
Singh A, Hou WC, Lin TF. Combined impact of silver nanoparticles and chlorine on the cell integrity and toxin release of Microcystis aeruginosa. CHEMOSPHERE 2021; 272:129825. [PMID: 35534960 DOI: 10.1016/j.chemosphere.2021.129825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (AgNPs) have shown to be toxic to freshwater cyanobacterial species, and sodium hypochlorite (NaOCl) is a common oxidant for the treatment of cyanobacterial cells. AgNPs have a high possibility of co-existing with the cyanobacterial cells in the aqueous environments leading to its exposure to NaOCl during water treatment; however, their combined effects on the cyanobacterial cells are largely undocumented. This work compares the individual and combined effect of AgNP and NaOCl on the integrity and toxin (microcystins) release of Microcystis aeruginosa at varying levels. The results show that the AgNP (0.2-0.6 mg/L) alone has negligible effects on the cell lysis, while NaOCl alone shows concentration-dependent (0.2 < 0.4 < 0.6 mg/L) rupturing of cells. In contrast, the AgNP + NaOCl (0.2-0.6 mg/L) samples show increasing loss in cell integrity at higher AgNP (0.4 and 0.6 mg/L) levels than the NaOCl only samples. NaOCl exposure results in increasing dissolution of AgNPs with time, releasing silver ions (Ag+), affecting its size and morphology. The cell-associated total Ag declines over time with an increase in NaOCl levels, maybe due to increasing cell-lysis or NaOCl induced oxidative dissolution of AgNPs. The cell-associated total Ag and released Ag+ possibly weaken the cellular membrane, thus assisting NaOCl in faster cell-lysis. The combined exposure of AgNP and NaOCl also results in a higher release of toxin from the cells. This work collectively reveals that the AgNPs combined with NaOCl can enhance the cell lysis and release of toxins.
Collapse
Affiliation(s)
- Abhishek Singh
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan, ROC
| | - Wen-Che Hou
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan, ROC
| | - Tsair-Fuh Lin
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan, ROC.
| |
Collapse
|
13
|
Peharec Štefanić P, Košpić K, Lyons DM, Jurković L, Balen B, Tkalec M. Phytotoxicity of Silver Nanoparticles on Tobacco Plants: Evaluation of Coating Effects on Photosynthetic Performance and Chloroplast Ultrastructure. NANOMATERIALS 2021; 11:nano11030744. [PMID: 33809644 PMCID: PMC8002358 DOI: 10.3390/nano11030744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (AgNPs) are the most exploited nanomaterial in agriculture and food production, and their release into the environment raises concern about their impact on plants. Since AgNPs are prone to biotransformation, various surface coatings are used to enhance their stability, which may modulate AgNP-imposed toxic effects. In this study, the impact of AgNPs stabilized with different coatings (citrate, polyvinylpyrrolidone (PVP), and cetyltrimethylammonium bromide (CTAB)) and AgNO3 on photosynthesis of tobacco plants as well as AgNP stability in exposure medium have been investigated. Obtained results revealed that AgNP-citrate induced the least effects on chlorophyll a fluorescence parameters and pigment content, which could be ascribed to their fast agglomeration in the exposure medium and consequently weak uptake. The impact of AgNP-PVP and AgNP-CTAB was more severe, inducing a deterioration of photosynthetic activity along with reduced pigment content and alterations in chloroplast ultrastructure, which could be correlated to their higher stability, elevated Ag accumulation, and surface charge. In conclusion, intrinsic properties of AgNP coatings affect their stability and bioavailability in the biological medium, thereby indirectly contributing changes in the photosynthetic apparatus. Moreover, AgNP treatments exhibited more severe inhibitory effects compared to AgNO3, which indicates that the impact on photosynthesis is dependent on the form of Ag.
Collapse
Affiliation(s)
- Petra Peharec Štefanić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia; (P.P.Š.); (K.K.); (B.B.)
| | - Karla Košpić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia; (P.P.Š.); (K.K.); (B.B.)
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia; (D.M.L.); (L.J.)
| | - Lara Jurković
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia; (D.M.L.); (L.J.)
| | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia; (P.P.Š.); (K.K.); (B.B.)
| | - Mirta Tkalec
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia; (P.P.Š.); (K.K.); (B.B.)
- Correspondence:
| |
Collapse
|
14
|
Esposito MC, Corsi I, Russo GL, Punta C, Tosti E, Gallo A. The Era of Nanomaterials: A Safe Solution or a Risk for Marine Environmental Pollution? Biomolecules 2021; 11:441. [PMID: 33809769 PMCID: PMC8002239 DOI: 10.3390/biom11030441] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, the application of engineered nanomaterials (ENMs) in environmental remediation gained increasing attention. Due to their large surface area and high reactivity, ENMs offer the potential for the efficient removal of pollutants from environmental matrices with better performances compared to conventional techniques. However, their fate and safety upon environmental application, which can be associated with their release into the environment, are largely unknown. It is essential to develop systems that can predict ENM interactions with biological systems, their overall environmental and human health impact. Until now, Life-Cycle Assessment (LCA) tools have been employed to investigate ENMs potential environmental impact, from raw material production, design and to their final disposal. However, LCA studies focused on the environmental impact of the production phase lacking information on their environmental impact deriving from in situ employment. A recently developed eco-design framework aimed to fill this knowledge gap by using ecotoxicological tools that allow the assessment of potential hazards posed by ENMs to natural ecosystems and wildlife. In the present review, we illustrate the development of the eco-design framework and review the application of ecotoxicology as a valuable strategy to develop ecosafe ENMs for environmental remediation. Furthermore, we critically describe the currently available ENMs for marine environment remediation and discuss their pros and cons in safe environmental applications together with the need to balance benefits and risks promoting an environmentally safe nanoremediation (ecosafe) for the future.
Collapse
Affiliation(s)
- Maria Consiglia Esposito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy;
| | - Gian Luigi Russo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano and INSTM Local Unit, Via Mancinelli 7, 20131 Milano, Italy;
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| |
Collapse
|
15
|
Wu J, Yu Q, Bosker T, Vijver MG, Peijnenburg WJGM. Quantifying the relative contribution of particulate versus dissolved silver to toxicity and uptake kinetics of silver nanowires in lettuce: impact of size and coating. Nanotoxicology 2020; 14:1399-1414. [PMID: 33074765 DOI: 10.1080/17435390.2020.1831639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Functionalized high-aspect-ratio silver nanowires (AgNWs) have been recognized as one of the most promising alternatives for fabricating products, with their use ranging from electronic devices to biomedical fields. Given concerns on the safety of AgNWs, there is an urgent need to investigate the relation between intrinsic properties of AgNWs and their toxicity. In this study, lettuce was exposed for either 6 or 18 d to different AgNWs to determine how the size/aspect ratio and coating of AgNWs affect the contributions of the dissolved and particulate Ag to the overall phytotoxicity and uptake kinetics. We found that the uncoated AgNW (39 nm diameter × 8.4 µm length) dissolved fastest of all AgNWs investigated. The phytotoxicity, uptake rate constants, and bioaccumulation factors of the PVP-coated AgNW (43 nm diameter × 1.8 µm length) and the uncoated AgNW (39 nm diameter × 8.4 µm length) were similar, and both were higher than that of the PVP-coated AgNW with the larger diameter(65 nm diameter × 4.4 µm length). These results showed that the diameter of the AgNWs predominantly affected toxicity and Ag accumulation in plants. Particulate Ag was found to be the predominant driver/descriptor of overall toxicity and Ag accumulation in the plants rather than dissolved Ag for all AgNWs tested. The relative contribution of dissolved versus particulate Ag to the overall effects was influenced by the exposure concentration and the extent of dissolution of AgNWs. This work highlights inherent particulate-dependent effects of AgNWs in plants and suggests that toxicokinetics should explicitly be considered for more nanomaterials and organisms, consequently providing more realistic input information for their environmental risk assessment.
Collapse
Affiliation(s)
- Juan Wu
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Qi Yu
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Thijs Bosker
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
- Leiden University College, Leiden University, Leiden, The Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven, The Netherlands
| |
Collapse
|
16
|
Zhang J, Shen L, Xiang Q, Ling J, Zhou C, Hu J, Chen L. Proteomics reveals surface electrical property-dependent toxic mechanisms of silver nanoparticles in Chlorella vulgaris. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114743. [PMID: 32534322 DOI: 10.1016/j.envpol.2020.114743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (AgNPs) are known to exert adverse effects on both humans and aquatic organisms; however, the toxic mechanisms underlying these effects remain unclear. In this study, we investigated the toxic mechanisms of various AgNPs with different surface electrical properties in the freshwater algae Chlorella vulgaris using an advanced proteomics approach with Data-Independent Acquisition. Citrate-coated AgNPs (Cit-AgNPs) and polyethyleneimine-coated AgNPs (PEI-AgNPs) were selected as representatives of negatively and positively charged nanoparticles, respectively. Our results demonstrated that the AgNPs exhibited surface electrical property-dependent effects on the proteomic profile of C. vulgaris. In particular, the negatively charged Cit-AgNPs specifically regulated mitochondrial function-related proteins, resulting in the disruption of several associated metabolic pathways, such as those related to energy metabolism, oxidative phosphorylation, and amino acid synthesis. In contrast, the positively charged PEI-AgNPs primarily targeted ribosome function-related proteins and interrupted pathways of protein synthesis and DNA genetic information transmission. In addition, Ag+ ions released from the AgNPs had a significant influence on protein regulation and the induction of cellular stress. Collectively, our findings provide new insight into the surface electrical property-dependent proteomic effects of AgNPs on C. vulgaris and should improve our understanding of the toxic mechanisms of AgNPs in freshwater algae.
Collapse
Affiliation(s)
- Jilai Zhang
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Lin Shen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Qianqian Xiang
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jian Ling
- College of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Chuanhua Zhou
- College of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jinming Hu
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Liqiang Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
17
|
Developments in the Application of Nanomaterials for Water Treatment and Their Impact on the Environment. NANOMATERIALS 2020; 10:nano10091764. [PMID: 32906594 PMCID: PMC7558965 DOI: 10.3390/nano10091764] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Nanotechnology is an uppermost priority area of research in several nations presently because of its enormous capability and financial impact. One of the most promising environmental utilizations of nanotechnology has been in water treatment and remediation where various nanomaterials can purify water by means of several mechanisms inclusive of the adsorption of dyes, heavy metals, and other pollutants, inactivation and removal of pathogens, and conversion of harmful materials into less harmful compounds. To achieve this, nanomaterials have been generated in several shapes, integrated to form different composites and functionalized with active components. Additionally, the nanomaterials have been added to membranes that can assist to improve the water treatment efficiency. In this paper, we have discussed the advantages of nanomaterials in applications such as adsorbents (removal of dyes, heavy metals, pharmaceuticals, and organic contaminants from water), membrane materials, catalytic utilization, and microbial decontamination. We discuss the different carbon-based nanomaterials (carbon nanotubes, graphene, graphene oxide, fullerenes, etc.), and metal and metal-oxide based nanomaterials (zinc-oxide, titanium dioxide, nano zerovalent iron, etc.) for the water treatment application. It can be noted that the nanomaterials have the ability for improving the environmental remediation system. The examination of different studies confirmed that out of the various nanomaterials, graphene and its derivatives (e.g., reduced graphene oxide, graphene oxide, graphene-based metals, and graphene-based metal oxides) with huge surface area and increased purity, outstanding environmental compatibility and selectivity, display high absorption capability as they trap electrons, avoiding their recombination. Additionally, we discussed the negative impacts of nanomaterials such as membrane damage and cell damage to the living beings in the aqueous environment. Acknowledgment of the possible benefits and inadvertent hazards of nanomaterials to the environment is important for pursuing their future advancement.
Collapse
|
18
|
Singh D, Kumar A. Binary mixture of nanoparticles in sewage sludge: Impact on spinach growth. CHEMOSPHERE 2020; 254:126794. [PMID: 32957267 DOI: 10.1016/j.chemosphere.2020.126794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 05/24/2023]
Abstract
Present study carried out pot experiments and evaluated effects of single and binary mixture of nanoparticles (exposed via sludge as soil conditioner) on spinach plant. Exposure of Ag2O nanoparticles (NPs) (1 and 10 mg/kg soil-sludge) did not show significant reduction in plant as compared to control. On the other hand, TiO2 NPs (exposed as single and in binary mixture) resulted in significant increase in root length (29% and 37%) and fresh weight (60% and 48%) at highest exposure concentration. Total chlorophyll content decreased for Ag2O and binary mixture (7% and 4%, respectively) and increased for TiO2 (5%) at 10 mg/kg soil-sludge. The toxic interaction between Ag2O and TiO2 NPs was additive at both exposure concentrations. Ag2O NPs had higher tendency of root surface adsorption than TiO2 NPs. Metal content in spinach leaves at highest exposure concentration was Ag: 2.6 ± 0.55 mg/g plant biomass(for Ag2O NPs) and 1.02 ± 0.32 mg/g plant biomass (for Ag2O + TiO2 NPs) and for Ti: 1.12 ± 0.78 (for TiO2 NPs) mg/g plant biomass and 0.58 ± 0.41 mg/g (for Ag2O + TiO2 NPs). The inadvertent ingestion of NPs- contaminated spinach resulted in projected daily intake (DI) of Ag and Ti for different age-mass classes (child to adult) exceeding the oral reference dose for toxicity during oral ingestion. In conclusion, we report no acute toxicity of single and binary mixture of NPs to spinach but significant accumulation of Ag and Ti metals in spinach leaves. There are high chances that ingestion of spinach grown in such environment might lead to human health risks.
Collapse
Affiliation(s)
- Divya Singh
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, 110016, India.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, 110016, India.
| |
Collapse
|
19
|
Fiorati A, Bellingeri A, Punta C, Corsi I, Venditti I. Silver Nanoparticles for Water Pollution Monitoring and Treatments: Ecosafety Challenge and Cellulose-Based Hybrids Solution. Polymers (Basel) 2020; 12:E1635. [PMID: 32717864 PMCID: PMC7465245 DOI: 10.3390/polym12081635] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
Silver nanoparticles (AgNPs) are widely used as engineered nanomaterials (ENMs) in many advanced nanotechnologies, due to their versatile, easy and cheap preparations combined with peculiar chemical-physical properties. Their increased production and integration in environmental applications including water treatment raise concerns for their impact on humans and the environment. An eco-design strategy that makes it possible to combine the best material performances with no risk for the natural ecosystems and living beings has been recently proposed. This review envisages potential hybrid solutions of AgNPs for water pollution monitoring and remediation to satisfy their successful, environmentally safe (ecosafe) application. Being extremely efficient in pollutants sensing and degradation, their ecosafe application can be achieved in combination with polymeric-based materials, especially with cellulose, by following an eco-design approach. In fact, (AgNPs)-cellulose hybrids have the double advantage of being easily produced using recycled material, with low costs and possible reuse, and of being ecosafe, if properly designed. An updated view of the use and prospects of these advanced hybrids AgNP-based materials is provided, which will surely speed their environmental application with consequent significant economic and environmental impact.
Collapse
Affiliation(s)
- Andrea Fiorati
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy; (A.F.); (C.P.)
| | - Arianna Bellingeri
- Department of Physical, Earth and Environmental Sciences and INSTM Local Unit, University of Siena, 53100 Siena, Italy; (A.B.); (I.C.)
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy; (A.F.); (C.P.)
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences and INSTM Local Unit, University of Siena, 53100 Siena, Italy; (A.B.); (I.C.)
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome, via della Vasca Navale 79, 00146 Rome, Italy
| |
Collapse
|
20
|
Mariano S, Panzarini E, Inverno MD, Voulvoulis N, Dini L. Toxicity, Bioaccumulation and Biotransformation of Glucose-Capped Silver Nanoparticles in Green Microalgae Chlorella vulgaris. NANOMATERIALS 2020; 10:nano10071377. [PMID: 32679737 PMCID: PMC7408452 DOI: 10.3390/nano10071377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 01/16/2023]
Abstract
Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials in consumer products. When discharged into the aquatic environment AgNPs can cause toxicity to aquatic biota, through mechanisms that are still under debate, thus rendering the nanoparticles (NPs) effects evaluation a necessary step. Different aquatic organism models, i.e., microalgae, mussels, Daphnia magna, sea urchins and Danio rerio, etc. have been largely exploited for NPs toxicity assessment. On the other hand, alternative biological microorganisms abundantly present in nature, i.e., microalgae, are nowadays exploited as a potential sink for removal of toxic substances from the environment. Indeed, the green microalgae Chlorella vulgaris is one of the most used microorganisms for waste treatment. With the aim to verify the possible involvement of C. vulgaris not only as a model microorganism of NPs toxicity but also for the protection toward NPs pollution, we used these microalgae to measure the AgNPs biotoxicity and bioaccumulation. In particular, to exclude any toxicity derived by Ag+ ions release, green chemistry-synthesised and glucose-coated AgNPs (AgNPs-G) were used. C. vulgaris actively internalised AgNPs-G whose amount increases in a time- and dose-dependent manner. The internalised NPs, found inside large vacuoles, were not released back into the medium, even after 1 week, and did not undergo biotransformation since AgNPs-G maintained their crystalline nature. Biotoxicity of AgNPs-G causes an exposure time and AgNPs-G dose-dependent growth reduction and a decrease in chlorophyll-a amount. These results confirm C. vulgaris as a bioaccumulating microalgae for possible use in environmental protection.
Collapse
Affiliation(s)
- Stefania Mariano
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (S.M.); (E.P.)
| | - Elisa Panzarini
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (S.M.); (E.P.)
| | - Maria D. Inverno
- Centre for Environmental Policy, Imperial College London, London SW7 2AZ, UK; (M.D.I.); (N.V.)
| | - Nick Voulvoulis
- Centre for Environmental Policy, Imperial College London, London SW7 2AZ, UK; (M.D.I.); (N.V.)
| | - Luciana Dini
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
- CNR Nanotec, 73100 Lecce, Italy
- Correspondence: ; Tel.: +39-064-991-2306; Fax: +39-064991
| |
Collapse
|
21
|
Wu J, Wang G, Vijver MG, Bosker T, Peijnenburg WJGM. Foliar versus root exposure of AgNPs to lettuce: Phytotoxicity, antioxidant responses and internal translocation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114117. [PMID: 32062092 DOI: 10.1016/j.envpol.2020.114117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 05/25/2023]
Abstract
Whether toxicity of silver nanoparticles (AgNPs) to organisms originates from the nanoparticles themselves or from the dissolved Ag-ions is still debated, with the majority of studies claiming that extracellular release of Ag-ions is the main cause of toxicity. The objective of this study was to determine the contributions of both particles and dissolved ions to toxic responses, and to better understand the underlying mechanisms of toxicity. In addition, the pathways of AgNPs exposure to plants might play an important role and therefore are explicitly studied as well. We systematically assessed the phytotoxicity, internalization, biodistribution, and antioxidant responses in lettuce (Lactuca sativa) following root or foliar exposure to AgNPs and ionic Ag at various concentrations. For each endpoint the relative contribution of the particle-specific versus the ionic form was quantified. The results reveal particle-specific toxicity and uptake of AgNPs in lettuce as the relative contribution of particulate Ag accounted for more than 65% to the overall toxicity and the Ag accumulation in whole plant tissues. In addition, particle toxicity is shown to originate from the accumulation of Ag in plants by blocking nutrient transport, while ion toxicity is likely due to the induction of excess ROS production. Root exposure induced higher toxicity than foliar exposure at comparable exposure levels. Ag was found to be taken up and subsequently translocated from the exposed parts of plants to other portions regardless of the exposure pathway. These findings suggest particle related toxicity, and demonstrate that the accumulation and translocation of silver nanoparticles need to be considered in assessment of environmental risks and of food safety following consumption of plants exposed to AgNPs by humans.
Collapse
Affiliation(s)
- Juan Wu
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands.
| | - Guiyin Wang
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands; College of Environmental Science, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands
| | - Thijs Bosker
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands; Leiden University College, Leiden University, P.O. Box 13228, 2501 EE, The Hague, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands; National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, P. O. Box 1, 3720 BA, Bilthoven, the Netherlands
| |
Collapse
|
22
|
Dang F, Wang Q, Cai W, Zhou D, Xing B. Uptake kinetics of silver nanoparticles by plant: relative importance of particles and dissolved ions. Nanotoxicology 2020; 14:654-666. [DOI: 10.1080/17435390.2020.1735550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing, PR China
| | - Qi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing, PR China
| | - Weiping Cai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing, PR China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
23
|
Yang Z, Xiao Y, Jiao T, Zhang Y, Chen J, Gao Y. Effects of Copper Oxide Nanoparticles on the Growth of Rice ( Oryza Sativa L.) Seedlings and the Relevant Physiological Responses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041260. [PMID: 32075321 PMCID: PMC7068423 DOI: 10.3390/ijerph17041260] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 11/24/2022]
Abstract
Rice (Oryza sativa L.), a major staple food for billions of people, was assessed for its phytotoxicity of copper oxide nanoparticle (CuO NPs, size < 50 nm). Under hydroponic condition, seven days of exposure to 62.5, 125, and 250 mg/L CuO NPs significantly suppressed the growth rate of rice seedlings compared to both the control and the treatment of supernatant from 250 mg/L CuO NP suspensions. In addition, physiological indexes associated with antioxidants, including membrane damage and antioxidant enzyme activity, were also detected. Treatment with 250 mg/L CuO NPs significantly increased malondialdehyde (MDA) content and electrical conductivity of rice shoots by 83.4% and 67.0%, respectively. The activity of both catalase and superoxide dismutase decreased in rice leaves treated with CuO NPs at the concentration of 250 mg/L, while the activity of the superoxide dismutase significantly increased by 1.66 times in rice roots exposed to 125 mg/L CuO NPs. The chlorophyll, including chlorophyll a and chlorophyll b, and carotenoid content in rice leaves decreased with CuO NP exposure. Finally, to explain potential molecular mechanisms of chlorophyll variations, the expression of four related genes, namely, Magnesium chelatase D subunit, Chlorophyll synthase, Magnesium-protoporphyrin IX methyltransferase, and Chlorophyllide a oxygenase, were quantified by qRT-PCR. Overall, CuO NPs, especially at 250 mg/L concentration, could affect the growth and development of rice seedlings, probably through oxidative damage and disturbance of chlorophyll and carotenoid synthesis.
Collapse
Affiliation(s)
- Zhongzhou Yang
- College of Life Science, Northeast Normal University, Changchun 130024, China;
| | - Yifan Xiao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (T.J.); (Y.Z.)
| | - Tongtong Jiao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (T.J.); (Y.Z.)
| | - Yang Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (T.J.); (Y.Z.)
| | - Jing Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (T.J.); (Y.Z.)
- Correspondence: (J.C.); (Y.G.); Tel.: +86-0431-8509-9056 (J.C.); +86-0431-8509-9992 (Y.G.); Fax: +86-0431-8509-9056 (J.C.); +86-0431-8569-5065 (Y.G.)
| | - Ying Gao
- College of Life Science, Northeast Normal University, Changchun 130024, China;
- Correspondence: (J.C.); (Y.G.); Tel.: +86-0431-8509-9056 (J.C.); +86-0431-8509-9992 (Y.G.); Fax: +86-0431-8509-9056 (J.C.); +86-0431-8569-5065 (Y.G.)
| |
Collapse
|
24
|
Hurtado-Gallego J, Pulido-Reyes G, González-Pleiter M, Salas G, Leganés F, Rosal R, Fernández-Piñas F. Toxicity of superparamagnetic iron oxide nanoparticles to the microalga Chlamydomonas reinhardtii. CHEMOSPHERE 2020; 238:124562. [PMID: 31442774 DOI: 10.1016/j.chemosphere.2019.124562] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/22/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) have been widely studied for different biomedical and environmental applications. In this study we evaluated the toxicity and potential alterations of relevant physiological parameters caused to the microalga Chlamydomonas reinhardtii (C. reinhardtii) upon exposure to SPION. The results showed dose-dependent toxicity. A mechanistic study combining flow cytometry and physiological endpoints showed a toxic response consisting of a decrease in metabolic activity, increased oxidative stress and alterations in the mitochondrial membrane potential. Additionally, and due to the light absorption of SPION suspensions, we observed a significant shading effect, causing a marked decrease in photosynthetic activity. In this work, we demonstrated for the first time, the internalization of SPION by endocytosis in C. reinhardtii. These results demonstrated that SPION pose a potential risk for the environment if not managed properly.
Collapse
Affiliation(s)
- Jara Hurtado-Gallego
- Departamento de Biología, Facultad de ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Gerardo Pulido-Reyes
- Departamento de Biología, Facultad de ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Miguel González-Pleiter
- Departamento de Biología, Facultad de ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Gorka Salas
- IMDEA Nanociencia, C/Faraday 9, Cantoblanco, 28049 Madrid, Spain
| | - Francisco Leganés
- Departamento de Biología, Facultad de ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Roberto Rosal
- Departamento de Ingeniería Química, Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain
| | - Francisca Fernández-Piñas
- Departamento de Biología, Facultad de ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
| |
Collapse
|
25
|
Déniel M, Errien N, Daniel P, Caruso A, Lagarde F. Current methods to monitor microalgae-nanoparticle interaction and associated effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105311. [PMID: 31730931 DOI: 10.1016/j.aquatox.2019.105311] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Widespread use of nanoparticles for different applications has diffused their presence in the environment, particularly in water. Many studies have been conducted to evaluate their effects on aquatic organisms. Microalgae are at the base of aquatic trophic chains. These organisms which can be benthic or pelagic, meaning that they can enter into interaction with all kinds of particulate materials whatever their density, and constitute an interesting model study. The purpose of this review was to gather more than sixty studies on microalgae exposure to the different nanoparticles that may be present in the aquatic environment. After a brief description of each type of nanoparticle (metals, silica and plastic) commonly used in ecotoxicological studies, techniques to monitor their properties are presented. Then, different effects on microalgae resulting from interaction with nanoparticles are described as well as the parameters and techniques for monitoring them. The impacts described in the literature are primarily shading, ions release, oxidative stress, adsorption, absorption and disruption of microalgae barriers. Several parameters are proposed to monitor effects such as growth, photosynthesis, membrane integrity, biochemical composition variations and gene expression changes. Finally, in the literature, while different impacts of nanoparticles on microalgae have been described, there is no consensus on evidence of nanomaterial toxicity with regard to microalgae. A parallel comparison of different nanoparticle types appears essential in order to prioritize which factors exert the most influence on toxicity in microalgae cultures: size, nature, surface chemistry, concentration or interaction time.
Collapse
Affiliation(s)
- Maureen Déniel
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9, France.
| | - Nicolas Errien
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9, France.
| | - Philippe Daniel
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9, France.
| | - Aurore Caruso
- Laboratoire Mer, Molécules, Santé, EA 2160, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9, France.
| | - Fabienne Lagarde
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9, France.
| |
Collapse
|
26
|
Salas P, Odzak N, Echegoyen Y, Kägi R, Sancho MC, Navarro E. The role of size and protein shells in the toxicity to algal photosynthesis induced by ionic silver delivered from silver nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:233-239. [PMID: 31349164 DOI: 10.1016/j.scitotenv.2019.07.237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Because of their biocide properties, silver nanoparticles (AgNPs) are present in numerous consumer products. The biocidal properties of AgNPs are due to both the interactions between AgNP and cell membranes and the release of dissolved silver (Ag+). Recent studies emphasized the role of different nanoparticle coatings in complexing and storing Ag+. In this study, the availability of dissolved silver in the presence of algae was assessed for three AgNPs with different silver contents (59%, 34% and 7% of total Ag), silver core sizes and casein shell thicknesses. The impact of ionic silver on the photosynthetic yield of Chlamydomonas reinhardtii was used as a proxy to estimate the amount of ionic silver toxically active during in vivo assays. The results showed that cysteine, a strong silver ligand, mitigated the toxicity of AgNPs in all cases, demonstrating the key role of Ag+ in this toxicity. The results showed that the AgNPs presenting an intermediate level of silver (34%) were 10 times more effective in terms of total mass (EC50 ten times smaller) than those presenting more (59%) or less (7%) silver. The higher toxicity was due to the higher release of Ag+ under biotic conditions due to the high surface/mass ratio of the nanoparticle silver core. Protein shells played a minor role in altering the availability of Ag+, probably acting as intermediate reservoirs. This study highlighted the utility of a very sensitive biological endpoint (i.e., algal photosynthesis) for the optimization of ionic silver delivery by nanomaterials.
Collapse
Affiliation(s)
- Patricia Salas
- Pyrenean Institute of Ecology-CSIC, Av. Montañana 1005, Zaragoza 50059, Spain; Sonea Ingenieria y Medio Ambiente S.L., P.Tec. WALQA, Ctra. Zaragoza N330 Km. 566, Huesca, Spain.
| | - Niksa Odzak
- Eawag, Überlandstrasse 133, Dübendorf 8600, Switzerland.
| | - Yolanda Echegoyen
- Dept. of Experimental and Social Sciences Teaching, University of Valencia, Avd. Tarongers 4, Valencia 46022, Spain.
| | - Ralf Kägi
- Eawag, Überlandstrasse 133, Dübendorf 8600, Switzerland.
| | - M Carmen Sancho
- Pyrenean Institute of Ecology-CSIC, Av. Montañana 1005, Zaragoza 50059, Spain.
| | - Enrique Navarro
- Pyrenean Institute of Ecology-CSIC, Av. Montañana 1005, Zaragoza 50059, Spain.
| |
Collapse
|
27
|
Prosposito P, Burratti L, Bellingeri A, Protano G, Faleri C, Corsi I, Battocchio C, Iucci G, Tortora L, Secchi V, Franchi S, Venditti I. Bifunctionalized Silver Nanoparticles as Hg 2+ Plasmonic Sensor in Water: Synthesis, Characterizations, and Ecosafety. NANOMATERIALS 2019; 9:nano9101353. [PMID: 31547209 PMCID: PMC6835846 DOI: 10.3390/nano9101353] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022]
Abstract
In this work, hydrophilic silver nanoparticles (AgNPs), bifunctionalized with citrate (Cit) and L-cysteine (L-cys), were synthesized. The typical local surface plasmon resonance (LSPR) at λ max = 400 nm together with Dynamic Light Scattering (DLS) measurements (<2RH> = 8 ± 1 nm) and TEM studies (Ø = 5 ± 2 nm) confirmed the system nanodimension and the stability in water. Molecular and electronic structures of AgNPs were investigated by FTIR, SR-XPS, and NEXAFS techniques. We tested the system as plasmonic sensor in water with 16 different metal ions, finding sensitivity to Hg2+ in the range 1–10 ppm. After this first screening, the molecular and electronic structure of the AgNPs-Hg2+ conjugated system was deeply investigated by SR-XPS. Moreover, in view of AgNPs application as sensors in real water systems, environmental safety assessment (ecosafety) was performed by using standardized ecotoxicity bioassay as algal growth inhibition tests (OECD 201, ISO 10253:2006), coupled with determination of Ag+ release from the nanoparticles in fresh and marine aqueous exposure media, by means of ICP-MS. These latest studies confirmed low toxicity and low Ag+ release. Therefore, these ecosafe AgNPs demonstrate a great potential in selective detection of environmental Hg2+, which may attract a great interest for several biological research fields.
Collapse
Affiliation(s)
- Paolo Prosposito
- Department of Industrial Engineering and INSTM, University of Rome Tor Vergata, via del Politecnico 1, 00133 Rome, Italy.
- Center for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Luca Burratti
- Department of Industrial Engineering and INSTM, University of Rome Tor Vergata, via del Politecnico 1, 00133 Rome, Italy.
| | - Arianna Bellingeri
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Giuseppe Protano
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Claudia Faleri
- Department of Life Sciences, via Mattioli 4, 53100 Siena, Italy.
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Giovanna Iucci
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Luca Tortora
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
- Surface Analysis Laboratory INFN Roma Tre, via della Vasca Navale 84, 00146 Rome, Italy.
| | - Valeria Secchi
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Stefano Franchi
- Elettra-Sincrotrone Trieste S.c.p.A., Strada Statale 14, km 163.5, 34149 Basovizza Trieste, Italy.
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| |
Collapse
|
28
|
Zhang WY, Wang Q, Li M, Dang F, Zhou DM. Nonselective uptake of silver and gold nanoparticles by wheat. Nanotoxicology 2019; 13:1073-1086. [PMID: 31271319 DOI: 10.1080/17435390.2019.1640909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metallic nanoparticles (NPs) show unique reactivity to crop plants, but the uptake mechanisms remain unclear. We quantitatively evaluated the phytoavailability of particles to wheat (Triticum aestivum L.) in hydroponics upon exposure to AgNPs (15 nm) or AuNPs (13 and 33 nm). Particles were physically separated from the released Ag ions by a dialysis membrane, under which particle-specific uptake of AgNPs could be discerned. Plants did not differentiate AgNPs and AuNPs during particle uptake, with uptake rate constants of 1.1 ± 0.1, 1.2 ± 0.3, and 1.2 ± 0.1 L kg-1 h-1 for AgNPs, AuNPs (13 nm), and AuNPs (33 nm), respectively. We found little effect of particle size (13 or 33 nm AuNPs) or core composition (Ag or Au) on particle bioavailability. Plants stimulated the subsequent uptake of Evans blue stain and showed cell damage in root tips. These results imply similar physiological processes involved in particle-specific uptake of AgNPs and AuNPs. The internalization of particles was further confirmed by single particle inductively coupled plasma mass spectrometry (spICP-MS) and transmission electron microscope-energy dispersive spectrometer (TEM-EDS) analysis. The work here builds the knowledge base for the nature of particle-specific uptake of different NP types by crop plants.
Collapse
Affiliation(s)
- Wan-Ying Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing , China.,University of Chinese Academy of Sciences , Beijing , China
| | - Qi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing , China.,Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection , Nanjing , China
| | - Min Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing , China.,University of Chinese Academy of Sciences , Beijing , China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing , China
| | - Dong-Mei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing , China
| |
Collapse
|
29
|
Ponton DE, Croteau MN, Luoma SN, Pourhoseini S, Merrifield RC, Lead JR. Three-layered silver nanoparticles to trace dissolution and association to a green alga. Nanotoxicology 2019; 13:1149-1160. [PMID: 31284796 DOI: 10.1080/17435390.2019.1640912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Core-shell silver nanoparticles (NPs) consisting of an inner Ag core and successive layers of Au and Ag (Ag@Au@Ag) were used to measure the simultaneous association of Ag NPs and ionic Ag by the green alga Chlamydomonas (C.) reinhardtii. Dissolution of the inner Ag core was prevented by a gold (Au) layer, while the outer Ag layer was free to dissolve. In short-term experiments, we exposed C. reinhardtii to a range of environmentally realistic Ag concentrations added as AgNO3 or as NPs. Results provide three lines of evidence for the greater cell-association of NPs compared to dissolved Ag over the concentration range tested, assuming that cell-association comprises both uptake and adsorption. First, the cell-association rate constants (kuw) for total Ag (AgNP+D), NPs (AgNP) and AuNP were similar and 2.2-fold higher than the one from AgD exposure, suggesting predominant association of the particles over the dissolved form. Second, model calculations based on Ag fluxes suggested that only 6-33% of algal burden was from AgD. Third, the significantly lower AgNP/Au ratio measured with the algae after exposure (2.1 ± 0.1) compared to the AgNP/Au ratio of the NPs in the media (2.47 ± 0.05) suggests cell-association of NPs depleted in Ag. Core-shell NPs provide an innovative tool to understand NP behavior and to directly delineate Ag accumulation from ion and NPs in aquatic systems.
Collapse
Affiliation(s)
- Dominic E Ponton
- United State Geological Survey , Menlo Park , CA , USA.,Department of Environmental Health Sciences, Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina , Columbia , SC , USA
| | | | - Samuel N Luoma
- United State Geological Survey , Menlo Park , CA , USA.,John Muir Institute of the Environment, University of California Davis , Davis , CA , USA
| | - Sahar Pourhoseini
- Department of Environmental Health Sciences, Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina , Columbia , SC , USA
| | - Ruth C Merrifield
- Department of Environmental Health Sciences, Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina , Columbia , SC , USA
| | - Jamie R Lead
- Department of Environmental Health Sciences, Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina , Columbia , SC , USA
| |
Collapse
|
30
|
Abbas Q, Liu G, Yousaf B, Ali MU, Ullah H, Ahmed R. Effects of biochar on uptake, acquisition and translocation of silver nanoparticles in rice (Oryza sativa L.) in relation to growth, photosynthetic traits and nutrients displacement. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:728-736. [PMID: 31035155 DOI: 10.1016/j.envpol.2019.04.083] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 05/22/2023]
Abstract
Rapid development in nanotechnology and incorporation of silver nanoparticles (AgNPs) in wide range of consumer products causing the considerable release of these NPs in the environment, leading concerns for ecosystem safety and plant health. In this study, rice (Oryza sativa) was exposed to AgNPs (0, 100, 200, 500 and 1000 mg L-1) in biochar amended (2 %w/v) and un-amended systems. Exposure of plants to AgNPs alone reduced the root and shoot length, biomass production, chlorophyll contents, photosynthesis related physiological parameters as well as macro-and micronutrients in a dose dependent manner. However, in case of biochar amendment, physiological parameters i.e., net photosynthesis rate, maximum photosynthesis rate, CO2 assimilation, dark respiration and stomatal conductance reduced only 16, 6, 7, 3 and 8%, respectively under AgNPs exposure at 1000 mg L-1 dose. Meanwhile, biochar at all exposure level of AgNPs decreased the bioaccumulation of Ag in rice root and shoot tissues, thus alleviated the phyto-toxic effects of NPs on plant growth. Moreover, results showed that biochar reduced the bioavailability of AgNPs by surface complexation, suppressing dissolution and release of toxic Ag+ ions in the growth medium. The presence of biochar at least decreased 2-fold tissue contents of Ag even at highest AgNPs (1000 mg L-1) concentration. These finding suggested that biochar derived from waste biomass resources can be used effectively to prevent the bioaccumulation and subsequent trophic level transfer of emerging Ag nano-pollutant in the environment.
Collapse
Affiliation(s)
- Qumber Abbas
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Muhammad Ubaid Ali
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Habib Ullah
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
31
|
Hazeem LJ, Kuku G, Dewailly E, Slomianny C, Barras A, Hamdi A, Boukherroub R, Culha M, Bououdina M. Toxicity Effect of Silver Nanoparticles on Photosynthetic Pigment Content, Growth, ROS Production and Ultrastructural Changes of Microalgae Chlorella vulgaris. NANOMATERIALS 2019; 9:nano9070914. [PMID: 31247939 PMCID: PMC6669524 DOI: 10.3390/nano9070914] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 11/16/2022]
Abstract
Silver nanoparticles (Ag NPs) exhibit antibacterial activity and are extensively used in numerous applications. The aim of this study was to examine the toxic effect of Ag NPs on the marine microalga, Chlorella vulgaris. The microalgae, at the exponential growth phase, were treated with different concentrations of Ag NPs (50 and 100 nm) for 96 h. X-Ray diffraction (XRD) results indicated that the used NPs are single and pure Ag phase with a mean crystallite size of 21 and 32 nm. Ag NPs were found to have a negative effect on viable cell concentration, a variable effect on chlorophyll a concentration, and increased ROS formation. Transmission electron microscopy (TEM) analysis revealed that Ag NPs were present inside the microalgae cells and formed large aggregates in the culture medium. Ag+ ions, in the form of AgNO3, were also assessed at higher concentrations and found to cause inhibitory effects.
Collapse
Affiliation(s)
- Layla J Hazeem
- Department of Biology, College of Science, University of Bahrain, P.O. Box 32038, Zallaq 1054, Bahrain
| | - Gamze Kuku
- Department of Genetics and Bioengineering, Yeditepe University, Atasehir 34755, Istanbul, Turkey.
| | - Etienne Dewailly
- Laboratoire de Physiologie Cellulaire, INSERM U.1003, Université de Lille, Rue Paul Langevin, 59655 Villeneuve d'Ascq, France
| | - Christian Slomianny
- Laboratoire de Physiologie Cellulaire, INSERM U.1003, Université de Lille, Rue Paul Langevin, 59655 Villeneuve d'Ascq, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| | - Abderrahmane Hamdi
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| | - Mustafa Culha
- Department of Genetics and Bioengineering, Yeditepe University, Atasehir 34755, Istanbul, Turkey
| | - Mohamed Bououdina
- Department of Physics, College of Science, University of Bahrain, P.O. Box 32038, Zallaq 1054, Bahrain
| |
Collapse
|
32
|
Liu F, Tan QG, Fortin C, Campbell PGC. Why Does Cysteine Enhance Metal Uptake by Phytoplankton in Seawater but Not in Freshwater? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6511-6519. [PMID: 31074972 DOI: 10.1021/acs.est.9b00571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Low-molecular-weight weak ligands such as cysteine have been shown to enhance metal uptake by marine phytoplankton in the presence of strong ligands, but the effect is not observed in freshwater. We hypothesized that these contrasting results might be caused by local cysteine degradation and a Ca effect on metal-ligand exchange kinetics in the boundary layer surrounding the algal cells; newly liberated free metal ions cannot be immediately complexed in seawater by Ca-bound strong ligands but can be rapidly complexed by free ligands at low-Ca levels. The present results consistently support this hypothesis. At constant bulk Cd2+ concentrations, buffered by strong ligands: (1) at 50 mM Ca, cysteine addition significantly enhanced Cd uptake in high-Ca preacclimated euryhaline Chlamydomonas reinhardtii (cultured with cysteine as a nitrogen source to enhance local Cd2+ liberation via cysteine degradation); (2) at 0.07 mM Ca, this enhancement was not observed in the algae; (3) at 50 mM Ca, the enhancement disappeared when C. reinhardtii were cultured with ammonium (to inhibit cysteine degradation and local Cd2+ liberation); (4) cysteine addition did not enhance Cd uptake by cysteine-cultured marine Thalassiosira weissflogii when the concentration of immediately reacting strong ligands was sufficient to complex local Cd2+ liberation.
Collapse
Affiliation(s)
- Fengjie Liu
- Centre Eau Terre Environnement , Institut national de la Recherche scientifique , 490 de la Couronne , Québec , Québec G1K 9A9 , Canada
| | - Qiao-Guo Tan
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of Environment and Ecology , Xiamen University , Xiamen , Fujian 361102 , China
| | - Claude Fortin
- Centre Eau Terre Environnement , Institut national de la Recherche scientifique , 490 de la Couronne , Québec , Québec G1K 9A9 , Canada
| | - Peter G C Campbell
- Centre Eau Terre Environnement , Institut national de la Recherche scientifique , 490 de la Couronne , Québec , Québec G1K 9A9 , Canada
| |
Collapse
|
33
|
Abstract
The increase in synthesis and application of silver nanoparticles (AgNPs) in the last decade has resulted in contamination of AgNPs in the aquatic environment. The presence of AgNPs in aquatic environments has posed toxic effects to aquatic organisms and ecological damage. In this study, two tropical microalgae species including the freshwater Scenedesmus sp. and the marine diatom Thalassiosira sp. were employed to examine the toxic effects of AgNPs. The toxic effects were determined by analyzing different end points, such as half maximal effective concentration (EC50), algae growth inhibition, algae cell size, chlorophyll-a content, and total lipid accumulation. The results suggested that AgNPs presented different toxicity mechanisms for microalgae and showed to be more toxic in freshwater than in marine environment. The EC50 values of AgNPs after 72 h for the growth inhibition of Scenedesmus sp. and Thalassiosira sp. were 89.92 ± 9.68 and 107.21 ± 7.43 μg/L, respectively. AgNPs at a certain concentration have resulted in change in cell diameter, reduction in chlorophyll-a content, and enhancement of the total lipid production in the tested microalgae. Thus, local species should be involved in the toxic assessment. This research contributes on understanding the toxicity of AgNPs on freshwater and marine environments.
Collapse
|
34
|
Huang B, Wei ZB, Yang LY, Pan K, Miao AJ. Combined Toxicity of Silver Nanoparticles with Hematite or Plastic Nanoparticles toward Two Freshwater Algae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3871-3879. [PMID: 30882224 DOI: 10.1021/acs.est.8b07001] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the natural environment, the interactions of different types of nanoparticles (NPs) may alter their toxicity, thus masking their true environmental effects. This study investigated the toxicity of silver NPs (AgNPs) combined with hematite (HemNPs) or polystyrene (PsNPs) NPs toward the freshwater algae Chlamydomonas reinhardtii and Ochromonas danica. The former has a cell wall and cannot internalize these NPs, while the latter without a cell wall can. Therefore, the toxicity of AgNPs toward C. reinhardtii was attributed to the released Ag ions, while AgNPs had direct toxic effects on O. danica. Moreover, nontoxic HemNPs ameliorated AgNP toxicity toward C. reinhardtii, by decreasing the bioavailability of Ag ions through adsorption. Despite their role as Ag-ion carriers, HemNPs still reduced the toxicity of AgNPs toward O. danica by competitively inhibiting AgNP uptake. In both algae, Ag accumulation fully accounted for the combined toxicity of AgNPs and HemNPs. However, the combined toxicity of AgNPs and PsNPs was complicated by their significant individual toxicities and the synergistic interactions of these particles with the algae, regardless of differences in Ag accumulation. Overall, in environmental assessments, considerations of the combined toxicity of dissimilar NPs will allow more accurate assessments of their environmental risks.
Collapse
Affiliation(s)
- Bin Huang
- Institute for Advanced Study , Shenzhen University , Nanhai Boulevard 3688 , Shenzhen , Guangdong Province 518060 , China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen , Guangdong Province 518060 , China
| | - Zhong-Bo Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Mail box 24, Xianlin Road 163 , Nanjing , Jiangsu Province 210023 , China
| | - Liu-Yan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Mail box 24, Xianlin Road 163 , Nanjing , Jiangsu Province 210023 , China
| | - Ke Pan
- Institute for Advanced Study , Shenzhen University , Nanhai Boulevard 3688 , Shenzhen , Guangdong Province 518060 , China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Mail box 24, Xianlin Road 163 , Nanjing , Jiangsu Province 210023 , China
| |
Collapse
|
35
|
Dong F, Zhou Y. Differential transformation and antibacterial effects of silver nanoparticles in aerobic and anaerobic environment. Nanotoxicology 2019; 13:339-353. [DOI: 10.1080/17435390.2018.1548667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Feng Dong
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore
| |
Collapse
|
36
|
Silver and Copper Acute Effects on Membrane Proteins and Impact on Photosynthetic and Respiratory Complexes in Bacteria. mBio 2018; 9:mBio.01535-18. [PMID: 30459190 PMCID: PMC6247083 DOI: 10.1128/mbio.01535-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The use of metal ions represents a serious threat to the environment and to all living organisms because of the acute toxicity of these ions. Nowadays, silver nanoparticles are one of the most widely used nanoparticles in various industrial and health applications. The antimicrobial effect of nanoparticles is in part related to the released Ag+ ions and their ability to interact with bacterial membranes. Here, we identify, both in vitro and in vivo, specific targets of Ag+ ions within the membrane of bacteria. This include complexes involved in photosynthesis, but also complexes involved in respiration. Silver (Ag+) and copper (Cu+) ions have been used for centuries in industry, as well as antimicrobial agents in agriculture and health care. Nowadays, Ag+ is also widely used in the field of nanotechnology. Yet, the underlying mechanisms driving toxicity of Ag+ ions in vivo are poorly characterized. It is well known that exposure to excess metal impairs the photosynthetic apparatus of plants and algae. Here, we show that the light-harvesting complex II (LH2) is the primary target of Ag+ and Cu+ exposure in the purple bacterium Rubrivivax gelatinosus. Ag+ and Cu+ specifically inactivate the 800-nm absorbing bacteriochlorophyll a (B800), while Ni2+ or Cd2+ treatment had no effect. This was further supported by analyses of CuSO4- or AgNO3-treated membrane proteins. Indeed, this treatment induced changes in the LH2 absorption spectrum related to the disruption of the interaction of B800 molecules with the LH2 protein. This caused the release of B800 molecules and subsequently impacted the spectral properties of the carotenoids within the 850-nm absorbing LH2. Moreover, previous studies have suggested that Ag+ can affect the respiratory chain in mitochondria and bacteria. Our data demonstrated that exposure to Ag+, both in vivo and in vitro, caused a decrease of cytochrome c oxidase and succinate dehydrogenase activities. Ag+ inhibition of these respiratory complexes was also observed in Escherichia coli, but not in Bacillus subtilis.
Collapse
|
37
|
Tighe-Neira R, Carmora E, Recio G, Nunes-Nesi A, Reyes-Diaz M, Alberdi M, Rengel Z, Inostroza-Blancheteau C. Metallic nanoparticles influence the structure and function of the photosynthetic apparatus in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:408-417. [PMID: 30064097 DOI: 10.1016/j.plaphy.2018.07.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
The applications of nanoparticles continue to expand into areas as diverse as medicine, bioremediation, cosmetics, pharmacology and various industries, including agri-food production. The widespread use of nanoparticles has generated concerns given the impact these nanoparticles - mostly metal-based such as CuO, Ag, Au, CeO2, TiO2, ZnO, Co, and Pt - could be having on plants. Some of the most studied variables are plant growth, development, production of biomass, and ultimately oxidative stress and photosynthesis. A systematic appraisal of information about the impact of nanoparticles on these processes is needed to enhance our understanding of the effects of metallic nanoparticles and oxides on the structure and function on the plant photosynthetic apparatus. Most nanoparticles studied, especially CuO and Ag, had a detrimental impact on the structure and function of the photosynthetic apparatus. Nanoparticles led to a decrease in concentration of photosynthetic pigments, especially chlorophyll, and disruption of grana and other malformations in chloroplasts. Regarding the functions of the photosynthetic apparatus, nanoparticles were associated with a decrease in the photosynthetic efficiency of photosystem II and decreased net photosynthesis. However, CeO2 and TiO2 nanoparticles may have a positive effect on photosynthetic efficiency, mainly due to an increase in electron flow between the photosystems II and I in the Hill reaction, as well as an increase in Rubisco activity in the Calvin and Benson cycle. Nevertheless, the underlying mechanisms are poorly understood. The future mechanistic work needs to be aimed at characterizing the enhancing effect of nanoparticles on the active generation of ATP and NADPH, carbon fixation and its incorporation into primary molecules such as photo-assimilates.
Collapse
Affiliation(s)
- Ricardo Tighe-Neira
- Programa de Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Erico Carmora
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Facultad de Ingeniería, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Gonzalo Recio
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Facultad de Ingeniería, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Minas Gerais, 36570-900, Viçosa, Brazil
| | - Marjorie Reyes-Diaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile; Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Miren Alberdi
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile; Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| | - Claudio Inostroza-Blancheteau
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile.
| |
Collapse
|
38
|
Chen J, Dou R, Yang Z, You T, Gao X, Wang L. Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:604-612. [PMID: 30121512 DOI: 10.1016/j.plaphy.2018.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 05/21/2023]
Abstract
This work focused on the toxicity evaluation of ZnO NPs and their uptake and transportation in a significant crop plant, Rice (Oryza sativa L.). Under hydroponic condition, 25, 50 and 100 mg/L ZnO NPs could inhibit the growth of rice seedlings by reducing their biomass comparing with Zn2+ (13.82 mg/L) treatment and the control. In addition, physiological index was determined, involving the decrease of the chlorophyll content, which was further confirmed by the down-regulation of photosynthetic pigment related genes. Based on the expression levels of the genes encoding three antioxidant enzyme, e.g. Catalase (EC 1.11.1.6), Ascorbate peroxidase (EC 1.11.1.11) and Superoxide dismutase (EC 1.15.1.1), the oxidative damage was found in ZnO NPs exposed rice. On the other hand, by ultra-thin slicing and transmission electron microscopy, ZnO NPs were observed in the intercellular space and cytoplasm of rice root cells, and their transport to aerial tissue from roots were further confirmed by inductively coupled plasma atomic emission spectrometer. Overall, ZnO NPs could be uptaken by rice in the form of ions or particles, which further affected plant growth and development at phenotypic, physiological and molecular levels.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Runzhi Dou
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Zhongzhou Yang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Tingting You
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; National Demonstration Center for Experimental Biology Education, Northeast Normal University, China.
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
39
|
Ghaemi B, Shaabani E, Najafi-Taher R, Jafari Nodooshan S, Sadeghpour A, Kharrazi S, Amani A. Intracellular ROS Induction by Ag@ZnO Core-Shell Nanoparticles: Frontiers of Permanent Optically Active Holes in Breast Cancer Theranostic. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24370-24381. [PMID: 29932633 DOI: 10.1021/acsami.8b03822] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we investigated whether ZnO coating on Ag nanoparticles (NPs) tunes electron flux and hole figuration at the metal-semiconductor interface under UV radiation. This effect triggers the photoactivity and generation of reactive oxygen species from Ag@ZnO NPs, which results in enhanced cytotoxic effects and apoptotic cell death in human breast cancer cells (MDA-MB231). In this context, upregulation of apoptotic cascade proteins (i.e., Bax/Bcl2 association, p53, cytochrome c, and caspase-3) along with activation of oxidative stress proteins suggested the occurrence of apoptosis by Ag@ZnO NPs in cancer cells through the mitochondrial pathway. Also, preincubation of breast cancer cells with Ag@ZnO NPs in dark conditions muted NP-related toxic effects and consequent apoptotic fate, highlighting biocompatible properties of unexcited Ag@ZnO NPs. Furthermore, the diagnostic efficacy of Ag@ZnO NPs as computed tomography (CT)/optical nanoprobes was investigated. Results confirmed the efficacy of the photoactivated system in obtaining desirable outcomes from CT/optical imaging, which represents novel theranostic NPs for simultaneous imaging and treatment of cancer.
Collapse
Affiliation(s)
| | | | | | | | - Amin Sadeghpour
- Centre for X-Ray Analytics, Department of Material Meet Life , Swiss Federal Laboratories for Material Science and Technology (Empa) , 9014 St. Gallen , Switzerland
| | | | | |
Collapse
|
40
|
Huang Z, Zeng Z, Chen A, Zeng G, Xiao R, Xu P, He K, Song Z, Hu L, Peng M, Huang T, Chen G. Differential behaviors of silver nanoparticles and silver ions towards cysteine: Bioremediation and toxicity to Phanerochaete chrysosporium. CHEMOSPHERE 2018; 203:199-208. [PMID: 29614413 DOI: 10.1016/j.chemosphere.2018.03.144] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/18/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Potential transformations of silver nanoparticles (AgNPs) upon interaction with naturally ubiquitous organic ligands in aquatic environments influence their transport, persistence, bioavailability, and subsequent toxicity to organisms. In this study, differential behaviors of AgNPs and silver ions (Ag+) towards cysteine (Cys), an amino acid representative of thiol ligands that easily coordinate to Ag+ and graft to nanoparticle surfaces, were investigated in the aspects of bioremediation and their toxicity to Phanerochaete chrysosporium. Total Ag removal, 2,4-dichlorophenol (2,4-DCP) degradation, extracellular protein secretion, and cellular viability were enhanced to some extent after supplement of various concentrations of cysteine under stress of AgNPs and Ag+. However, an obvious decrease in total Ag uptake was observed after 5-50 μM cysteine addition in the groups treated with 10 μM AgNPs and 1 μM Ag+, especially at a Cys:Ag molar ratio of 5. More stabilization in uptake pattern at this ratio was detected under Ag+ exposure than that under AgNP exposure. Furthermore, in the absence of cysteine, all Ag+ treatments stimulated the generation of reactive oxygen species (ROS) more significantly than high-dose AgNPs did. However, cysteine supply under AgNP/Ag+ stress aggravated ROS levels, albeit alleviated at 100 μM Ag+, indicating that the toxicity profiles of AgNPs and Ag+ to P. chrysosporium could be exacerbated or marginally mitigated by cysteine. The results obtained were possibly associated with the lability and bioavailability of AgNP/Ag+-cysteine complexes.
Collapse
Affiliation(s)
- Zhenzhen Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, PR China.
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Kai He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhongxian Song
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Liang Hu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Min Peng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Tiantian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Guiqiu Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
41
|
Nguyen NHA, Padil VVT, Slaveykova VI, Černík M, Ševců A. Green Synthesis of Metal and Metal Oxide Nanoparticles and Their Effect on the Unicellular Alga Chlamydomonas reinhardtii. NANOSCALE RESEARCH LETTERS 2018; 13:159. [PMID: 29796771 PMCID: PMC5966349 DOI: 10.1186/s11671-018-2575-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/10/2018] [Indexed: 05/20/2023]
Abstract
Recently, the green synthesis of metal nanoparticles has attracted wide attention due to its feasibility and very low environmental impact. This approach was applied in this study to synthesise nanoscale gold (Au), platinum (Pt), palladium (Pd), silver (Ag) and copper oxide (CuO) materials in simple aqueous media using the natural polymer gum karaya as a reducing and stabilising agent. The nanoparticles' (NPs) zeta-potential, stability and size were characterised by Zetasizer Nano, UV-Vis spectroscopy and by electron microscopy. Moreover, the biological effect of the NPs (concentration range 1.0-20.0 mg/L) on a unicellular green alga (Chlamydomonas reinhardtii) was investigated by assessing algal growth, membrane integrity, oxidative stress, chlorophyll (Chl) fluorescence and photosystem II photosynthetic efficiency. The resulting NPs had a mean size of 42 (Au), 12 (Pt), 1.5 (Pd), 5 (Ag) and 180 (CuO) nm and showed high stability over 6 months. At concentrations of 5 mg/L, Au and Pt NPs only slightly reduced algal growth, while Pd, Ag and CuO NPs completely inhibited growth. Ag, Pd and CuO NPs showed strong biocidal properties and can be used for algae prevention in swimming pools (CuO) or in other antimicrobial applications (Pd, Ag), whereas Au and Pt lack these properties and can be ranked as harmless to green alga.
Collapse
Affiliation(s)
- Nhung H. A. Nguyen
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| | - Vinod Vellora Thekkae Padil
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| | - Vera I. Slaveykova
- Faculty of Sciences, Earth and Environmental Sciences, Institute F.-A. Forel, University of Geneva, Uni Carl Vogt, 66 Bvd Carl-Vogt, 1211 Geneva, Switzerland
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| |
Collapse
|
42
|
Shevlin D, O'Brien N, Cummins E. Silver engineered nanoparticles in freshwater systems - Likely fate and behaviour through natural attenuation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:1033-1046. [PMID: 29079093 DOI: 10.1016/j.scitotenv.2017.10.123] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Growth in the nanotechnology sector is likely introducing unnatural formations of materials on the nanoscale (10-9m) to the environment. Disposal and degradation of products incorporating engineered nanomaterials (ENMs) are likely being released into natural aquatic systems un-intentionally primarily via waste water effluents. The fate and behaviour of metallic based nanoparticles (NPs) such as silver (Ag) in aquatic waters is complex with high levels of variability and uncertainty. In-situ physical, biological and chemical (natural attenuation) processes are likely to influence ENM fate and behaviour in freshwater systems. Surfaced functionalized particles may inhibit or limit environmental transformations which influence particle aggregation, mobility, dissolution and eco-toxic potential. This paper focuses on ENM characteristics and the influence of physical, chemical and biological processes occurring in aquatic systems that are likely to impact metallic ENMs fate. A focus on silver NPs (while for comparison, reporting about other metallic ENMs as appropriate) released to aquatic systems is discussed relating to their likely fate and behaviour in this dynamic and complex environment. This paper further highlights the need for specific risk assessment approaches for metallic ENMs and puts this into context with regard to informing environmental policy and potential NP influence on environmental/human health.
Collapse
Affiliation(s)
- David Shevlin
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Niall O'Brien
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
43
|
Sikder M, Eudy E, Chandler GT, Baalousha M. Comparative study of dissolved and nanoparticulate Ag effects on the life cycle of an estuarine meiobenthic copepod, Amphiascus tenuiremis. Nanotoxicology 2018; 12:375-389. [DOI: 10.1080/17435390.2018.1451568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mithun Sikder
- South Carolina SmartState Center for Environmental Nanoscience and Risk (CENR), Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Emily Eudy
- South Carolina SmartState Center for Environmental Nanoscience and Risk (CENR), Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - G. Thomas Chandler
- South Carolina SmartState Center for Environmental Nanoscience and Risk (CENR), Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Mohammed Baalousha
- South Carolina SmartState Center for Environmental Nanoscience and Risk (CENR), Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
44
|
Kataoka C, Kato Y, Ariyoshi T, Takasu M, Narazaki T, Nagasaka S, Tatsuta H, Kashiwada S. Comparative toxicities of silver nitrate, silver nanocolloids, and silver chloro-complexes to Japanese medaka embryos, and later effects on population growth rate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:1155-1163. [PMID: 29037497 DOI: 10.1016/j.envpol.2017.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/04/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Fish embryo toxicology is important because embryos are more susceptible than adults to toxicants. In addition, the aquatic toxicity of chemicals depends on water quality. We examined the toxicities to medaka embryos of three types of silver-AgNO3, silver nanocolloids (SNCs), and silver ions from silver nanoparticle plates (SNPPs)-under three pH conditions (4.0, 7.0, and 9.0) in embryo-rearing medium (ERM) or ultrapure water. Furthermore, we tested the later-life-stage effects of SNCs on medaka and their population growth. "Later-life-stage effects" were defined here as delayed toxic effects that occurred during the adult stage of organisms that had been exposed to toxicant during their early life stage only. AgNO3, SNCs, and silver ions were less toxic in ERM than in ultrapure water. Release of silver ions from the SNPPs was pH dependent: in ERM, silver toxicity was decreased owing to the formation of silver chloro-complexes. SNC toxicity was higher at pH 4.0 than at 7.0 or 9.0. AgNO3 was more toxic than SNCs. To observe later-life effects of SNCs, larvae hatched from embryos exposed to 0.01 mg/L SNCs in ultrapure water were incubated to maturity under clean conditions. The mature medaka were then allowed to reproduce for 21 days. Calculations using survival ratios and reproduction data indicated that the intrinsic population growth rate decreased after exposure of embryos to SNC. SNC exposure reduced the extinction time as a function of the medaka population-carrying capacity.
Collapse
Affiliation(s)
- Chisato Kataoka
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan
| | - Yumie Kato
- Department of Life Science, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Tadashi Ariyoshi
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Masaki Takasu
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Takahito Narazaki
- Department of Life Science, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Seiji Nagasaka
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan; Research Center for Life and Environmental Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Haruki Tatsuta
- Research Center for Life and Environmental Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan; Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Nakagami, Okinawa 903-0213, Japan
| | - Shosaku Kashiwada
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan; Research Center for Life and Environmental Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan.
| |
Collapse
|
45
|
Quantification of silver nanoparticle toxicity to algae in soil via photosynthetic and flow-cytometric analyses. Sci Rep 2018; 8:292. [PMID: 29321492 PMCID: PMC5762909 DOI: 10.1038/s41598-017-18680-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022] Open
Abstract
Soil algae, which have received attention for their use in a novel bioassay to evaluate soil toxicity, expand the range of terrestrial test species. However, there is no information regarding the toxicity of nanomaterials to soil algae. Thus, we evaluated the effects of silver nanoparticles (0-50 mg AgNPs/kg dry weight soil) on the soil alga Chlamydomonas reinhardtii after six days, and assessed changes in biomass, photosynthetic activity, cellular morphology, membrane permeability, esterase activity, and oxidative stress. The parameters measured were markedly affected by AgNP-induced stress at 50 mg AgNPs/kg dry weight soil, where soil algal biomass, three measures of photosynthetic activity (area, reaction center per absorption flux, and reaction center per trapped energy flux), and esterase activity decreased. AgNPs also induced increases in both cell size and membrane permeability at 50 mg AgNPs/kg dry weight soil. In addition to the increase in cell size observed via microscopy, a mucilaginous sheath formed as a protective barrier against AgNPs. Thus, the toxicity of AgNPs can be effectively quantified based on the physiological, biochemical, and morphological responses of soil algae, where quantifying the level of toxicity of AgNPs to soil algae could prove to be a useful method in terrestrial ecotoxicology.
Collapse
|
46
|
Haire TC, Bell C, Cutshaw K, Swiger B, Winkelmann K, Palmer AG. Robust Microplate-Based Methods for Culturing and in Vivo Phenotypic Screening of Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2018; 9:235. [PMID: 29623083 PMCID: PMC5874318 DOI: 10.3389/fpls.2018.00235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 02/09/2018] [Indexed: 05/15/2023]
Abstract
Chlamydomonas reinhardtii (Cr), a unicellular alga, is routinely utilized to study photosynthetic biochemistry, ciliary motility, and cellular reproduction. Its minimal culture requirements, unicellular morphology, and ease of transformation have made it a popular model system. Despite its relatively slow doubling time, compared with many bacteria, it is an ideal eukaryotic system for microplate-based studies utilizing either, or both, absorbance as well as fluorescence assays. Such microplate assays are powerful tools for researchers in the areas of toxicology, pharmacology, chemical genetics, biotechnology, and more. However, while microplate-based assays are valuable tools for screening biological systems, these methodologies can significantly alter the conditions in which the organisms are cultured and their subsequent physiology or morphology. Herein we describe a novel method for the microplate culture and in vivo phenotypic analysis of growth, viability, and photosynthetic pigments of C. reinhardtii. We evaluated the utility of our assay by screening silver nanoparticles for their effects on growth and viability. These methods are amenable to a wide assortment of studies and present a significant advancement in the methodologies available for research involving this model organism.
Collapse
Affiliation(s)
- Timothy C. Haire
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Cody Bell
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Kirstin Cutshaw
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Brendan Swiger
- Department of Chemistry, Florida Institute of Technology, Melbourne, FL, United States
| | - Kurt Winkelmann
- Department of Chemistry, Florida Institute of Technology, Melbourne, FL, United States
| | - Andrew G. Palmer
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States
- *Correspondence: Andrew G. Palmer,
| |
Collapse
|
47
|
Chen Z, Sheng X, Wang J, Wen Y. Silver nanoparticles or free silver ions work? An enantioselective phytotoxicity study with a chiral tool. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:77-83. [PMID: 28803204 DOI: 10.1016/j.scitotenv.2017.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Nowadays, silver nanoparticles (AgNP) have been widely used and there are raising concerns about their potential adverse effects on organism. As for the exact toxicity mechanism of AgNP, opinions still vary and whether the released silver ions (Ag+) or AgNP themselves are responsible for the toxicity remains debatable. In the present study, we have designed two exposure systems where Ag+ and AgNP coexisted but differed in quantification by using photo-reduced method with cysteine enantiomers, and their toxicities to freshwater microalgae Scenedesmus obliquus and model plant Arabidopsis thaliana were determined. In the results, Ag+ was in suit photo-reduced by cysteine enantiomers, and the UV-Vis and circular dichroism spectrum evidence confirmed the quantification difference between Ag-l-cysteine (Ag-l-Cys) and Ag-d-cysteine (Ag-d-Cys), where there was more AgNP and less Ag+ in Ag-l-Cys. Furthermore, the toxicity assay data revealed that Ag-d-Cys was more toxic to S. obliquus but A. thaliana was more susceptible to Ag-l-Cys. The metal element distribution in Arabidopsis leaves was also influenced in an enantioselective manner, which was related to the oxidative stress. Considering the quantification difference between Ag-l-Cys and Ag-d-Cys, it can be concluded that AgNP exhibited their toxicity to S. obliquus by the action of Ag+, but toxicity brought to A. thaliana was attributed to AgNP themselves rather than Ag+. The results of the present study help to better clarify the role of Ag+ in AgNP toxicity and offer a chiral tool and a new sight to investigate the toxicity mechanism of AgNP.
Collapse
Affiliation(s)
- Zunwei Chen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaolin Sheng
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia Wang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
48
|
Zhang L, Goswami N, Xie J, Zhang B, He Y. Unraveling the molecular mechanism of photosynthetic toxicity of highly fluorescent silver nanoclusters to Scenedesmus obliquus. Sci Rep 2017; 7:16432. [PMID: 29180714 PMCID: PMC5703894 DOI: 10.1038/s41598-017-16634-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/15/2017] [Indexed: 12/30/2022] Open
Abstract
While the discovery of numerous attractive properties of silver at the nanoscale has increased their demand in many sectors including medicine, optics, sensing, painting and cosmetics, it has also raised wide public concerns about their effect on living organisms in aquatic environment. Despite the continuous effort to understand the various aspects of the toxicity of silver nanomaterials, the molecular level understanding on their cytotoxicity mechanism to biological organisms has remained unclear. Herein, we demonstrated the underlying mechanism of the photosynthetic toxicity against green algae namely, Scenedesmus obliquus by using an emerging silver nanomaterial, called silver nanoclusters (defined as r-Ag NCs). By exploiting the unique fluorescence properties of r-Ag NCs along with various other analytical/biological tools, we proposed that the photosynthetic toxicity of r-Ag NCs was largely attributed to the "joint-toxicity" effect of particulate form of r-Ag NCs and its released Ag+, which resulted in the disruption of the electron transport chain of light reaction and affected the content of key enzymes (RuBP carboxylase/ oxygenase) of Calvin cycle of algae cells. We believe that the present study can also be applied to the assessment of the ecological risk derived from other metal nanoparticles.
Collapse
Affiliation(s)
- Li Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Nirmal Goswami
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, #03-18, Singapore, 117585, Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, #03-18, Singapore, 117585, Singapore
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
49
|
The Effect of Silver and Copper Nanoparticles on the Condition of English Oak (Quercus robur L.) Seedlings in a Container Nursery Experiment. FORESTS 2017. [DOI: 10.3390/f8090310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Mitra C, Gummadidala PM, Afshinnia K, Merrifield RC, Baalousha M, Lead JR, Chanda A. Citrate-Coated Silver Nanoparticles Growth-Independently Inhibit Aflatoxin Synthesis in Aspergillus parasiticus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8085-8093. [PMID: 28618218 DOI: 10.1021/acs.est.7b01230] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Manufactured silver nanoparticles (Ag NPs) have long been used as antimicrobials. However, little is known about how these NPs affect fungal cell functions. While multiple previous studies reveal that Ag NPs inhibit secondary metabolite syntheses in several mycotoxin producing filamentous fungi, these effects are associated with growth repression and hence need sublethal to lethal NP doses, which besides stopping fungal growth, can potentially accumulate in the environment. Here we demonstrate that citrate-coated Ag NPs of size 20 nm, when applied at a selected nonlethal dose, can result in a >2 fold inhibition of biosynthesis of the carcinogenic mycotoxin and secondary metabolite, aflatoxin B1 in the filamentous fungus and an important plant pathogen, Aspergillus parasiticus, without inhibiting fungal growth. We also show that the observed inhibition was not due to Ag ions, but was specifically associated with the mycelial uptake of Ag NPs. The NP exposure resulted in a significant decrease in transcript levels of five aflatoxin genes and at least two key global regulators of secondary metabolism, laeA and veA, with a concomitant reduction of total reactive oxygen species (ROS). Finally, the depletion of Ag NPs in the growth medium allowed the fungus to regain completely its ability of aflatoxin biosynthesis. Our results therefore demonstrate the feasibility of Ag NPs to inhibit fungal secondary metabolism at nonlethal concentrations, hence providing a novel starting point for discovery of custom designed engineered nanoparticles that can efficiently prevent mycotoxins with minimal risk to health and environment.
Collapse
Affiliation(s)
- Chandrani Mitra
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina , Columbia, South Carolina, United States
| | - Phani M Gummadidala
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina , Columbia, South Carolina, United States
| | - Kamelia Afshinnia
- Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina , Columbia, South Carolina, United States
| | - Ruth C Merrifield
- Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina , Columbia, South Carolina, United States
| | - Mohammed Baalousha
- Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina , Columbia, South Carolina, United States
| | - Jamie R Lead
- Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina , Columbia, South Carolina, United States
| | - Anindya Chanda
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina , Columbia, South Carolina, United States
| |
Collapse
|