1
|
Blázquez-Pallí N, Torrentó C, Marco-Urrea E, Garriga D, González M, Bosch M. Pilot tests for the optimization of the bioremediation strategy of a multi-layered aquifer at a multi-focus site impacted with chlorinated ethenes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173093. [PMID: 38768723 DOI: 10.1016/j.scitotenv.2024.173093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
A multi-layered aquifer in an industrial area in the north of the Iberian Peninsula is severely contaminated with the chlorinated ethenes (CEs) tetrachloroethylene, trichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride. Both shallow and deep aquifers are polluted, with two differentiated north and south CEs plumes. Hydrogeochemical and isotopic data (δ13C of CEs) evidenced natural attenuation of CEs. To select the optimal remediation strategy to clean-up the contamination plumes, laboratory treatability studies were performed, which confirmed the intrinsic biodegradation potential of the north and south shallow aquifers to fully dechlorinate CEs to ethene after injection of lactate, but also the combination of lactate and sulfidized mZVI as an alternative treatment for the north deep aquifer. In the lactate-amended microcosms, full dechlorination of CEs was accompanied by an increase in 16S rRNA gene copies of Dehalococcoides and Dehalogenimonas, and the tceA, vcrA and bvcA reductive dehalogenases. Three in situ pilot tests were implemented, which consisted in injections of lactate in the north and south shallow aquifers, and injections of lactate and sulfidized mZVI in the north deep aquifer. The hydrogeochemical, isotopic and molecular analyses used to monitor the pilot tests evidenced that results obtained mimicked the laboratory observations, albeit at different dechlorination rates. It is likely that the efficiency of the injections was affected by the amendment distribution. In addition, monitoring of the pilot tests in the shallow aquifers showed the release of CEs due to back diffusion from secondary sources, which limited the use of isotopic data for assessing treatment efficiency. In the pilot test that combined the injection of lactate and sulfidized mZVI, both biotic and abiotic pathways contributed to the production of ethene. This study demonstrates the usefulness of integrating different chemical, isotopic and biomolecular approaches for a more robust selection and implementation of optimal remediation strategies in CEs polluted sites.
Collapse
Affiliation(s)
- Natàlia Blázquez-Pallí
- LITOCLEAN, S.L., Environmental site assessment and remediation, c/ Numància 36, 08029 Barcelona, Spain.
| | - Clara Torrentó
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain; Serra Húnter Fellowship, Generalitat de Catalunya, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), c/ de les Sitges s/n, 08193 Cerdanyola del Vallès, Spain
| | - David Garriga
- LITOCLEAN, S.L., Environmental site assessment and remediation, c/ Numància 36, 08029 Barcelona, Spain
| | - Marta González
- LITOCLEAN, S.L., Environmental site assessment and remediation, c/ Numància 36, 08029 Barcelona, Spain
| | - Marçal Bosch
- LITOCLEAN, S.L., Environmental site assessment and remediation, c/ Numància 36, 08029 Barcelona, Spain
| |
Collapse
|
2
|
Buchner D, Martin PR, Scheckenbach J, Kümmel S, Gelman F, Haderlein SB. Expanding the calibration range of compound-specific chlorine isotope analysis by the preparation of a 37 Cl-enriched tetrachloroethylene. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9378. [PMID: 35975721 DOI: 10.1002/rcm.9378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE The recent development of reliable GC/qMS methods for δ37 Cl compound-specific stable isotope analysis (CSIA) paves the way for dual carbon-chlorine isotope analysis of chlorinated ethenes and thus allows deeper insights into underlying transformation processes/mechanisms. A two-point calibration is indispensable for the precise and correct conversion of raw data to the international δ37 ClSMOC scale. The currently available calibration standards for tetrachloroethylene (PCE) span only a very narrow range from -2.52‰ (EIL2) to +0.29‰ (EIL1), which is considerably smaller than observed δ37 Cl isotope enrichment in (bio-)transformation studies (up to 12‰). METHODS We describe the preparation and evaluation of a new 37 Cl-enriched PCE standard to avoid bias in δ37 Cl CSIA arising from extrapolation beyond the calibration range. The preparation comprised: (i) partial PCE reduction by zero-valent zinc in a system of PCE, ethanol (initial volume ratio 3/5) and trace amounts of water followed by (ii) liquid-liquid extraction and (iii) a subsequent fractional distillation to purify the 37 Cl-enriched PCE. RESULTS The obtained PCE (PCEenriched ) showed a purity of 98.8% (mole fraction) and a δ37 ClSMOC value of +10.8 ± 0.5‰. The evaluation of an experimental dataset with and without extrapolation showed no significant variation. CONCLUSIONS The new PCE standard (PCEenriched ) expands the calibration range to 13.3‰ (previously 2.8‰) and thus prevents potential bias introduced by extrapolation beyond the calibration range.
Collapse
Affiliation(s)
- Daniel Buchner
- Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Philipp R Martin
- Department of Geosciences, University of Tübingen, Tübingen, Germany
| | | | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | | | | |
Collapse
|
3
|
Gilevska T, Sullivan Ojeda A, Kümmel S, Gehre M, Seger E, West K, Morgan SA, Mack EE, Sherwood Lollar B. Multi-element isotopic evidence for monochlorobenzene and benzene degradation under anaerobic conditions in contaminated sediments. WATER RESEARCH 2021; 207:117809. [PMID: 34741903 DOI: 10.1016/j.watres.2021.117809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/10/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Industrial chemicals are frequently detected in sediments due to a legacy of chemical spills. Globally, site remedies for groundwater and sediment decontamination include natural attenuation by in situ abiotic and biotic processes. Compound-specific isotope analysis (CSIA) is a diagnostic tool to identify, quantify, and characterize degradation processes in situ, and in some cases can differentiate between abiotic degradation and biodegradation. This study reports high-resolution carbon, chlorine, and hydrogen stable isotope profiles for monochlorobenzene (MCB), and carbon and hydrogen stable isotope profiles for benzene, coupled with measurements of pore water concentrations in contaminated sediments. Multi-element isotopic analysis of δ13C and δ37Cl for MCB were used to generate dual-isotope plots, which for 2 locations at the study site resulted in ΛC/Cl(130) values of 1.42 ± 0.19 and ΛC/Cl(131) values of 1.70 ± 0.15, consistent with theoretical calculations for carbon-chlorine bond cleavage (ΛT = 1.80 ± 0.31) via microbial reductive dechlorination. For benzene, significant δ2H (122‰) and δ13C (6‰) depletion trends, followed by enrichment trends in δ13C (1.6‰) in the upper part of the sediment, were observed at the same location, indicating not only production of benzene due to biodegradation of MCB, but subsequent biotransformation of benzene itself to nontoxic end-products. Degradation rate constants calculated independently using chlorine isotopic data and carbon isotopic data, respectively, agreed within uncertainty thus providing multiple lines of evidence for in situ contaminant degradation via reductive dechlorination and providing the foundation for a novel approach to determine site-specific in situ rate estimates essential for the prediction of remediation outcomes and timelines.
Collapse
Affiliation(s)
- Tetyana Gilevska
- Department of Earth Sciences, University of Toronto, Toronto, ON M5S 3B1, Canada; CNRS/EOST, ITES UMR 7063, Earth and Environment Institute of Strasbourg (ITES), University of Strasbourg, Strasbourg, 67084, France
| | - Ann Sullivan Ojeda
- Department of Earth Sciences, University of Toronto, Toronto, ON M5S 3B1, Canada; Department of Geosciences, Auburn University, Auburn, AL 36849, United States
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, UFZ, Leipzig, 04318, Germany
| | - Matthias Gehre
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, UFZ, Leipzig, 04318, Germany
| | - Edward Seger
- The Chemours Company, Wilmington, DE 19810, United States
| | | | | | | | | |
Collapse
|
4
|
Jin B, Zhang J, Xu W, Rolle M, Liu J, Zhang G. Simultaneous determination of stable chlorine and bromine isotopic ratios for bromochlorinated trihalomethanes using GC-qMS. CHEMOSPHERE 2021; 264:128529. [PMID: 33038736 DOI: 10.1016/j.chemosphere.2020.128529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/05/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Bromochlorinated compounds are organic contaminants originating from different natural and anthropic sources and increasingly found in different environmental compartments. This work presents an online approach for compound specific stable isotope analysis of chlorine and bromine isotope ratios for bromochlorinated trihalomethanes using gas chromatography coupled to quadrupole mass spectrometry (GC-qMS). An evaluation scheme was developed to simultaneously determine stable chlorine and bromine isotope ratios based on the mass spectral data of two target compounds: dibromochloromethane and dichlorobromomethane. The analytical technique was optimized by assessing the impact of different instrumental parameters, including dwell time, split ratios, and ionization energy. Successively, static headspace samples containing the two target compounds at aqueous concentrations ranging from 0.1 mg/L to 5 mg/L were analyzed in order to test the precision and reproducibility of the proposed approach. The results showed a good precision under the optimized instrumental conditions, with relative standard deviations ranging between 0.05% and 0.5% for chlorine and bromine isotope analysis. Finally, the method was tested in a source identification problem in which the simultaneous determination of chlorine and bromine stable isotope ratios allowed the clear distinction of dibromochloromethane from three different manufacturers.
Collapse
Affiliation(s)
- Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources Utilization, China; University of Chinese Academy of Sciences, Beijing, 10069, China.
| | - Jiyun Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 10069, China
| | - Wenli Xu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 10069, China
| | - Massimo Rolle
- DTU Environment, Department of Environmental Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Jinzhong Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
5
|
Ojeda AS, Phillips E, Sherwood Lollar B. Multi-element (C, H, Cl, Br) stable isotope fractionation as a tool to investigate transformation processes for halogenated hydrocarbons. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:567-582. [PMID: 31993605 DOI: 10.1039/c9em00498j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Compound-specific isotope analysis (CSIA) is a powerful tool to evaluate transformation processes of halogenated compounds. Many halogenated hydrocarbons allow for multiple stable isotopic systems (C, H, Cl, Br) to be measured for a single compound. This has led to a large body of literature describing abiotic and biotic transformation pathways and reaction mechanisms for contaminants such as chlorinated alkenes and alkanes as well as brominated hydrocarbons. Here, the current literature is reviewed and a new compilation of Λ values for multi-isotopic systems for halogenated hydrocarbons is presented. Case studies of each compound class are discussed and thereby the current strengths of multi-element isotope analysis, continuing challenges, and gaps in our current knowledge are identified for practitioners of multi-element CSIA to address in the near future.
Collapse
Affiliation(s)
- Ann Sullivan Ojeda
- Department of Geosciences, Auburn University, Auburn, Alabama 36849, USA.
| | | | | |
Collapse
|
6
|
Büsing J, Buchner D, Behrens S, Haderlein SB. Deciphering the Variability of Stable Isotope (C, Cl) Fractionation of Tetrachloroethene Biotransformation by Desulfitobacterium strains Carrying Different Reductive Dehalogenases Enzymes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1593-1602. [PMID: 31880148 DOI: 10.1021/acs.est.9b05606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Kinetic isotope effects have been used successfully to prove and characterize organic contaminant transformation on various scales including field and laboratory studies. For tetrachloroethene (PCE) biotransformation, however, causes for the substantial variability of reported isotope enrichment factors (ε) are still not deciphered (εC = -0.4 to -19.0‰). Factors such as different reaction mechanisms and masking of isotope fractionation by either limited intracellular mass transfer or rate-limitations within the enzymatic multistep reaction are under discussion. This study evaluated the contribution of these factors to the magnitude of carbon and chlorine isotope fractionation of Desulfitobacterium strains harboring three different PCE-transforming enzymes (PCE-RdhA). Despite variable single element isotope fractionation (εC = -5.0 to -19.7‰; εCl = -1.9 to -6.3‰), similar slopes of dual element isotope plots (ΛC/Cl values of 2.4 ± 0.1 to 3.6 ± 0.1) suggest a common reaction mechanism for different PCE-RdhAs. Cell envelope properties of the Desulfitobacterium strains allowed to exclude masking effects due to PCE mass transfer limitation. Our results thus revealed that different rate-limiting steps (e.g., substrate channel diffusion) in the enzymatic multistep reactions of individual PCE-RdhAs rather than different reaction mechanisms determine the extent of PCE isotope fractionation in the Desulfitobacterium genus.
Collapse
Affiliation(s)
- Johannes Büsing
- Center for Applied Geoscience , University of Tübingen , 72074 Tübingen , Germany
| | - Daniel Buchner
- Center for Applied Geoscience , University of Tübingen , 72074 Tübingen , Germany
| | - Sebastian Behrens
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Stefan B Haderlein
- Center for Applied Geoscience , University of Tübingen , 72074 Tübingen , Germany
| |
Collapse
|
7
|
Blázquez-Pallí N, Rosell M, Varias J, Bosch M, Soler A, Vicent T, Marco-Urrea E. Integrative isotopic and molecular approach for the diagnosis and implementation of an efficient in-situ enhanced biological reductive dechlorination of chlorinated ethenes. WATER RESEARCH 2019; 167:115106. [PMID: 31581036 DOI: 10.1016/j.watres.2019.115106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Based on the previously observed intrinsic bioremediation potential of a site originally contaminated with perchloroethene (PCE), field-derived lactate-amended microcosms were performed to test different lactate isomers and concentrations, and find clearer isotopic and molecular parameters proving the feasibility of an in-situ enhanced reductive dechlorination (ERD) from PCE-to-ethene (ETH). According to these laboratory results, which confirmed the presence of Dehalococcoides sp. and the vcrA gene, an in-situ ERD pilot test consisting of a single injection of lactate in a monitoring well was performed and monitored for 190 days. The parameters used to follow the performance of the ERD comprised the analysis of i) hydrochemistry, including redox potential (Eh), and the concentrations of redox sensitive species, chlorinated ethenes (CEs), lactate, and acetate; ii) stable isotope composition of carbon of CEs, and sulphur and oxygen of sulphate; and iii) 16S rRNA gene sequencing from groundwater samples. Thus, it was proved that the injection of lactate promoted sulphate-reducing conditions, with the subsequent decrease in Eh, which allowed for the full reductive dechlorination of PCE to ETH in the injection well. The biodegradation of CEs was also confirmed by the enrichment in 13C and carbon isotopic mass balances. The metagenomic results evidenced the shift in the composition of the microbial population towards the predominance of fermentative bacteria. Given the success of the in-situ pilot test, a full-scale ERD with lactate was then implemented at the site. After one year of treatment, PCE and trichloroethene were mostly depleted, whereas vinyl chloride (VC) and ETH were the predominant metabolites. Most importantly, the shift of the carbon isotopic mass balances towards more positive values confirmed the complete reductive dechlorination, including the VC-to-ETH reaction step. The combination of techniques used here provides complementary lines of evidence for the diagnosis of the intrinsic biodegradation potential of a polluted site, but also to monitor the progress, identify potential difficulties, and evaluate the success of ERD at the field scale.
Collapse
Affiliation(s)
- Natàlia Blázquez-Pallí
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), c/ de les Sitges s/n, 08193, Cerdanyola del Vallès, Spain; Litoclean, S.L, c/ Numància 36, 08029, Barcelona, Spain
| | - Mònica Rosell
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), c/ Martí Franquès s/n, 08028, Barcelona, Spain
| | - Joan Varias
- Litoclean, S.L, c/ Numància 36, 08029, Barcelona, Spain
| | - Marçal Bosch
- Litoclean, S.L, c/ Numància 36, 08029, Barcelona, Spain
| | - Albert Soler
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), c/ Martí Franquès s/n, 08028, Barcelona, Spain
| | - Teresa Vicent
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), c/ de les Sitges s/n, 08193, Cerdanyola del Vallès, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), c/ de les Sitges s/n, 08193, Cerdanyola del Vallès, Spain.
| |
Collapse
|
8
|
Murray AM, Ottosen CB, Maillard J, Holliger C, Johansen A, Brabæk L, Kristensen IL, Zimmermann J, Hunkeler D, Broholm MM. Chlorinated ethene plume evolution after source thermal remediation: Determination of degradation rates and mechanisms. JOURNAL OF CONTAMINANT HYDROLOGY 2019; 227:103551. [PMID: 31526529 DOI: 10.1016/j.jconhyd.2019.103551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
The extent, mechanism(s), and rate of chlorinated ethene degradation in a large tetrachloroethene (PCE) plume were investigated in an extensive sampling campaign. Multiple lines of evidence for this degradation were explored, including compound-specific isotope analysis (CSIA), dual C-Cl isotope analysis, and quantitative real-time polymerase chain reaction (qPCR) analysis targeting the genera Dehalococcoides and Dehalogenimonas and the genes vcrA, bvcA, and cerA. A decade prior to this sampling campaign, the plume source was thermally remediated by steam injection. This released dissolved organic carbon (DOC) that stimulated microbial activity and created reduced conditions within the plume. Based on an inclusive analysis of minor and major sampling campaigns since the initial site characterization, it was estimated that reduced conditions peaked 4 years after the remediation event. At the time of this study, 11 years after the remediation event, the redox conditions in the aquifer are returning to their original state. However, the DOC released from the remediated source zone matches levels measured 3 years prior and plume conditions are still suitable for biotic reductive dechlorination. Dehalococcoides spp., Dehalogenimonas spp., and vcrA, bvcA, and cerA reductive dehalogenase genes were detected close to the source, and suggest that complete, biotic PCE degradation occurs here. Further downgradient, qPCR analysis and enriched δ13C values for cis-dichloroethene (cDCE) suggest that cDCE is biodegraded in a sulfate-reducing zone in the plume. In the most downgradient portion of the plume, lower levels of specific degraders supported by dual C-Cl analysis indicate that the biodegradation occurs in combination with abiotic degradation. Additionally, 16S rRNA gene amplicon sequencing shows that organizational taxonomic units known to contain organohalide-respiring bacteria are relatively abundant throughout the plume. Hydraulic conductivity testing was also conducted, and local degradation rates for PCE and cDCE were determined at various locations throughout the plume. PCE degradation rates from sampling campaigns after the thermal remediation event range from 0.11 to 0.35 yr-1. PCE and cDCE degradation rates from the second to the third sampling campaigns ranged from 0.08 to 0.10 yr-1 and 0.01 to 0.07 yr-1, respectively. This is consistent with cDCE as the dominant daughter product in the majority of the plume and cDCE degradation as the time-limiting step. The extensive temporal and spatial analysis allowed for tracking the evolution of the plume and the lasting impact of the source remediation and illustrates that the multiple lines of evidence approach is essential to elucidate the primary degradation mechanisms in a plume of such size and complexity.
Collapse
Affiliation(s)
- Alexandra Marie Murray
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Cecilie B Ottosen
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Julien Maillard
- Laboratory for Environmental Biotechnology, ENAC-IIE, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Christof Holliger
- Laboratory for Environmental Biotechnology, ENAC-IIE, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Anders Johansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lærke Brabæk
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Inge Lise Kristensen
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Jeremy Zimmermann
- Centre for Hydrogeology & Geothermics (CHYN), University of Neuchatel, Rue Emile Argand 11, CH 2000 Neuchatel, Switzerland
| | - Daniel Hunkeler
- Centre for Hydrogeology & Geothermics (CHYN), University of Neuchatel, Rue Emile Argand 11, CH 2000 Neuchatel, Switzerland
| | - Mette M Broholm
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
9
|
Lihl C, Douglas LM, Franke S, Pérez-de-Mora A, Meyer AH, Daubmeier M, Edwards EA, Nijenhuis I, Sherwood Lollar B, Elsner M. Mechanistic Dichotomy in Bacterial Trichloroethene Dechlorination Revealed by Carbon and Chlorine Isotope Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4245-4254. [PMID: 30857389 DOI: 10.1021/acs.est.8b06643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tetrachloroethene (PCE) and trichloroethene (TCE) are significant groundwater contaminants. Microbial reductive dehalogenation at contaminated sites can produce nontoxic ethene but often stops at toxic cis-1,2-dichloroethene ( cis-DCE) or vinyl chloride (VC). The magnitude of carbon relative to chlorine isotope effects (as expressed by ΛC/Cl, the slope of δ13C versus δ37Cl regressions) was recently recognized to reveal different reduction mechanisms with vitamin B12 as a model reactant for reductive dehalogenase activity. Large ΛC/Cl values for cis-DCE reflected cob(I)alamin addition followed by protonation, whereas smaller ΛC/Cl values for PCE evidenced cob(I)alamin addition followed by Cl- elimination. This study addressed dehalogenation in actual microorganisms and observed identical large ΛC/Cl values for cis-DCE (ΛC/Cl = 10.0 to 17.8) that contrasted with identical smaller ΛC/Cl for TCE and PCE (ΛC/Cl = 2.3 to 3.8). For TCE, the trend of small ΛC/Cl could even be reversed when mixed cultures were precultivated on VC or DCEs and subsequently confronted with TCE (ΛC/Cl = 9.0 to 18.2). This observation provides explicit evidence that substrate adaptation must have selected for reductive dehalogenases with different mechanistic motifs. The patterns of ΛC/Cl are consistent with practically all studies published to date, while the difference in reaction mechanisms offers a potential answer to the long-standing question of why bioremediation frequently stalls at cis-DCE.
Collapse
Affiliation(s)
- Christina Lihl
- Institute of Groundwater Ecology , Helmholtz Zentrum München , Ingolstädter Landstrasse 1 , 85764 Neuherberg , Germany
| | - Lisa M Douglas
- Department of Earth Sciences , University of Toronto , Toronto , Ontario M5S 3B5 , Canada
| | - Steffi Franke
- Department for Isotope Biogeochemistry , Helmholtz-Centre for Environmental Research, UFZ , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Alfredo Pérez-de-Mora
- Institute of Groundwater Ecology , Helmholtz Zentrum München , Ingolstädter Landstrasse 1 , 85764 Neuherberg , Germany
| | - Armin H Meyer
- Institute of Groundwater Ecology , Helmholtz Zentrum München , Ingolstädter Landstrasse 1 , 85764 Neuherberg , Germany
| | - Martina Daubmeier
- Institute of Groundwater Ecology , Helmholtz Zentrum München , Ingolstädter Landstrasse 1 , 85764 Neuherberg , Germany
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Ivonne Nijenhuis
- Department for Isotope Biogeochemistry , Helmholtz-Centre for Environmental Research, UFZ , Permoserstrasse 15 , 04318 Leipzig , Germany
| | | | - Martin Elsner
- Institute of Groundwater Ecology , Helmholtz Zentrum München , Ingolstädter Landstrasse 1 , 85764 Neuherberg , Germany
- Chair of Analytical Chemistry and Water Chemistry , Technical University of Munich , Marchioninistrasse 17 , 81377 Munich , Germany
| |
Collapse
|
10
|
Rosell M, Palau J, Mortan SH, Caminal G, Soler A, Shouakar-Stash O, Marco-Urrea E. Dual carbon - chlorine isotope fractionation during dichloroelimination of 1,1,2-trichloroethane by an enrichment culture containing Dehalogenimonas sp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:422-429. [PMID: 30121041 DOI: 10.1016/j.scitotenv.2018.08.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Chlorinated ethanes are frequent groundwater contaminants but compound specific isotope analysis (CSIA) has been scarcely applied to investigate their degradation pathways. In this study, dual carbon and chlorine isotope fractionation was used to investigate for the first time the anoxic biodegradation of 1,1,2-trichloroethane (1,1,2-TCA) using a Dehalogenimonas-containing culture. The isotopic fractionation values obtained for the biodegradation of 1,1,2-TCA were ɛC = -6.9 ± 0.4‰ and ɛCl = -2.7 ± 0.3‰. The detection of vinyl chloride (VC) as unique byproduct and a closed carbon isotopic mass balance corroborated that dichloroelimination was the degradation pathway used by this strain. Combining the values of δ13C and δ37Cl resulted in a dual element C-Cl isotope slope of Λ = 2.5 ± 0.2‰. Investigation of the apparent kinetic isotope effects (AKIEs) expected for cleavage of a CCl bond showed an important masking of the intrinsic isotope fractionation. Theoretical calculation of Λ suggested that dichloroelimination of 1,1,2-TCA was taking place via simultaneous cleavage of two CCl bonds (concerted reaction mechanism). The isotope data obtained in this study can be useful to monitor natural attenuation of 1,1,2-TCA via dichloroelimination and provide insights into the source and fate of VC in contaminated groundwaters.
Collapse
Affiliation(s)
- Mònica Rosell
- Grup MAiMA, Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain
| | - Jordi Palau
- Grup MAiMA, Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain; Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Hydrogeology Group (UPC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Siti Hatijah Mortan
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
| | - Gloria Caminal
- Institut de Química Avançada de Catalunya (IQAC), CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Albert Soler
- Grup MAiMA, Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain
| | - Orfan Shouakar-Stash
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Isotope Tracer Technologies Inc., Waterloo, Ontario N2 V 1Z5, Canada
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
11
|
Liu N, Ding L, Li H, Zhang P, Zheng J, Weng CH. Stable carbon isotope fractionation of chlorinated ethenes by a microbial consortium containing multiple dechlorinating genes. BIORESOURCE TECHNOLOGY 2018; 261:133-141. [PMID: 29656226 DOI: 10.1016/j.biortech.2018.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
The study aimed to determine the possible contribution of specific growth conditions and community structures to variable carbon enrichment factors (Ɛ-carbon) values for the degradation of chlorinated ethenes (CEs) by a bacterial consortium with multiple dechlorinating genes. Ɛ-carbon values for trichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride were -7.24% ± 0.59%, -14.6% ± 1.71%, and -21.1% ± 1.14%, respectively, during their degradation by a microbial consortium containing multiple dechlorinating genes including tceA and vcrA. The Ɛ-carbon values of all CEs were not greatly affected by changes in growth conditions and community structures, which directly or indirectly affected reductive dechlorination of CEs by this consortium. Stability analysis provided evidence that the presence of multiple dechlorinating genes within a microbial consortium had little effect on carbon isotope fractionation, as long as the genes have definite, non-overlapping functions.
Collapse
Affiliation(s)
- Na Liu
- College of Environment and Resources, Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Longzhen Ding
- College of Environment and Resources, Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Haijun Li
- Sichuan University of Science & Engineering, Sichuan, China
| | - Pengpeng Zhang
- College of Environment and Resources, Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Jixing Zheng
- College of Environment and Resources, Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Chih-Huang Weng
- Department of Civil and Ecological Engineering, I-Shou University, Kaohsiung City 84008, Taiwan.
| |
Collapse
|
12
|
Heckel B, McNeill K, Elsner M. Chlorinated Ethene Reactivity with Vitamin B12 Is Governed by Cobalamin Chloroethylcarbanions as Crossroads of Competing Pathways. ACS Catal 2018. [DOI: 10.1021/acscatal.7b02945] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Benjamin Heckel
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, D-81377 Munich, Germany
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, CH-8092 Zurich, Switzerland
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, D-81377 Munich, Germany
| |
Collapse
|
13
|
Leitner S, Berger H, Gorfer M, Reichenauer TG, Watzinger A. Isotopic effects of PCE induced by organohalide-respiring bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24803-24815. [PMID: 28913587 DOI: 10.1007/s11356-017-0075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Reductive dechlorination performed by organohalide-respiring bacteria (OHRB) enables the complete detoxification of certain emerging groundwater pollutants such as perchloroethene (PCE). Environmental samples from a contaminated site incubated in a lab-scale microcosm (MC) study enable documentation of such reductive dechlorination processes. As compound-specific isotope analysis is used to monitor PCE degradation processes, nucleic acid analysis-like 16S-rDNA analysis-can be used to determine the key OHRB that are present. This study applied both methods to laboratory MCs prepared from environmental samples to investigate OHRB-specific isotope enrichment at PCE dechlorination. This method linkage can enhance the understanding of isotope enrichment patterns of distinct OHRB, which further contribute to more accurate evaluation, characterisation and prospection of natural attenuation processes. Results identified three known OHRB genera (Dehalogenimonas, Desulfuromonas, Geobacter) in diverse abundance within MCs. One species of Dehalogenimonas was potentially involved in complete reductive dechlorination of PCE to ethene. Furthermore, the isotopic effects of PCE degradation were clustered and two isotope enrichment factors (ε) (- 11.6‰, - 1.7‰) were obtained. Notably, ε values were independent of degradation rates and kinetics, but did reflect the genera of the dechlorinating OHRB.
Collapse
Affiliation(s)
- Simon Leitner
- AIT Austrian Institute of Technology GmbH, Energy Department, Environmental Resources & Technologies, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Harald Berger
- AIT Austrian Institute of Technology GmbH, Health & Environment Department, Bioresources, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Markus Gorfer
- AIT Austrian Institute of Technology GmbH, Health & Environment Department, Bioresources, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Thomas G Reichenauer
- AIT Austrian Institute of Technology GmbH, Energy Department, Environmental Resources & Technologies, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Andrea Watzinger
- AIT Austrian Institute of Technology GmbH, Energy Department, Environmental Resources & Technologies, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria.
| |
Collapse
|
14
|
Heckel B, Cretnik S, Kliegman S, Shouakar-Stash O, McNeill K, Elsner M. Reductive Outer-Sphere Single Electron Transfer Is an Exception Rather than the Rule in Natural and Engineered Chlorinated Ethene Dehalogenation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9663-9673. [PMID: 28727446 DOI: 10.1021/acs.est.7b01447] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chlorinated ethenes (CEs) such as perchloroethylene, trichloroethylene and dichloroethylene are notorious groundwater contaminants. Although reductive dehalogenation is key to their environmental and engineered degradation, underlying reaction mechanisms remain elusive. Outer-sphere reductive single electron transfer (OS-SET) has been proposed for such different processes as Vitamin B12-dependent biodegradation and zerovalent metal-mediated dehalogenation. Compound-specific isotope effect (13C/12C, 37Cl/35Cl) analysis offers a new opportunity to test these hypotheses. Defined OS-SET model reactants (CO2 radical anions, S2--doped graphene oxide in water) caused strong carbon (εC = -7.9‰ to -11.9‰), but negligible chlorine isotope effects (εCl = -0.12‰ to 0.04‰) in CEs. Greater chlorine isotope effects were observed in CHCl3 (εC = -7.7‰, εCl = -2.6‰), and in CEs when the exergonicity of C-Cl bond cleavage was reduced in an organic solvent (reaction with arene radical anions in glyme). Together, this points to dissociative OS-SET (SET to a σ* orbital concerted with C-Cl breakage) in alkanes compared to stepwise OS-SET (SET to a π* orbital followed by C-Cl cleavage) in ethenes. The nonexistent chlorine isotope effects of chlorinated ethenes in all aqueous OS-SET experiments contrast strongly with pronounced Cl isotope fractionation in all natural and engineered reductive dehalogenations reported to date suggesting that OS-SET is an exception rather than the rule in environmental transformations of chlorinated ethenes.
Collapse
Affiliation(s)
- Benjamin Heckel
- Institute of Groundwater Ecology, Helmholtz Zentrum München , Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Stefan Cretnik
- Institute of Groundwater Ecology, Helmholtz Zentrum München , Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Sarah Kliegman
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Orfan Shouakar-Stash
- Department of Earth Sciences, University of Waterloo , Waterloo, Ontario, Canada N2L 3G1
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich , CH-8092 Zurich, Switzerland
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München , Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich , Marchioninistrasse 17, D-81377 Munich, Germany
| |
Collapse
|
15
|
Buchner D, Jin B, Ebert K, Rolle M, Elsner M, Haderlein SB. Experimental Determination of Isotope Enrichment Factors - Bias from Mass Removal by Repetitive Sampling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1527-1536. [PMID: 27995793 DOI: 10.1021/acs.est.6b03689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Application of compound-specific stable isotope approaches often involves comparisons of isotope enrichment factors (ε). Experimental determination of ε-values is based on the Rayleigh equation, which relates the change in measured isotope ratios to the decreasing substrate fractions and is valid for closed systems. Even in well-controlled batch experiments, however, this requirement is not necessarily fulfilled, since repetitive sampling can remove a significant fraction of the analyte. For volatile compounds the need for appropriate corrections is most evident, and various methods have been proposed to account for mass removal and for volatilization into the headspace. In this study we use both synthetic and experimental data to demonstrate that the determination of ε-values according to current correction methods is prone to considerable systematic errors even in well-designed experimental setups. Application of inappropriate methods may lead to incorrect and inconsistent ε-values entailing misinterpretations regarding the processes underlying isotope fractionation. In fact, our results suggest that artifacts arising from inappropriate data evaluation might contribute to the variability of published ε-values. In response, we present novel, adequate methods to eliminate systematic errors in data evaluation. A model-based sensitivity analysis serves to reveal the most crucial experimental parameters and can be used for future experimental design to obtain correct ε-values allowing mechanistic interpretations.
Collapse
Affiliation(s)
- Daniel Buchner
- Department of Geosciences, Center for Applied Geosciences, University of Tübingen , Hölderlinstraße 12, D-72074 Tübingen, Germany
| | - Biao Jin
- Department of Geosciences, Center for Applied Geosciences, University of Tübingen , Hölderlinstraße 12, D-72074 Tübingen, Germany
- Department of Environmental Engineering, Technical University of Denmark , Miljøvej Building 113, DK-2800 Kgs. Lyngby, Denmark
| | - Karin Ebert
- Department of Geosciences, Center for Applied Geosciences, University of Tübingen , Hölderlinstraße 12, D-72074 Tübingen, Germany
| | - Massimo Rolle
- Department of Geosciences, Center for Applied Geosciences, University of Tübingen , Hölderlinstraße 12, D-72074 Tübingen, Germany
- Department of Environmental Engineering, Technical University of Denmark , Miljøvej Building 113, DK-2800 Kgs. Lyngby, Denmark
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München , Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Stefan B Haderlein
- Department of Geosciences, Center for Applied Geosciences, University of Tübingen , Hölderlinstraße 12, D-72074 Tübingen, Germany
| |
Collapse
|
16
|
Ebert KA, Laskov C, Elsner M, Haderlein SB. Calibration bias of experimentally determined chlorine isotope enrichment factors: the need for a two-point calibration in compound-specific chlorine isotope analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:68-74. [PMID: 27689937 DOI: 10.1002/rcm.7752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE The recent development of compound-specific online chlorine isotope analysis (37 Cl-CSIA) methods has fostered dual chlorine-carbon isotope studies to gain better insights into sources and environmental transformation reactions of chlorinated ethenes. One-point and two-point calibration schemes are currently used to convert raw data to the international δ37 ClSMOC scale, but a critical evaluation of best practices to arrive at reliable δ37 ClSMOC signatures and enrichment factors was missing and is presented here. METHODS Aqueous solutions of neat perchloroethylene and trichloroethylene (TCE) and aqueous samples from a TCE biodegradation experiment with pure cultures of Desulfitobacterium hafniense Y51 were analysed for their chlorine isotope ratios using GC/qMS and GC/IRMS. The δ37 ClSMOC values were obtained using one-point and two-point calibration schemes. Chlorine isotope enrichment factors, εCl , were calculated using both approaches and the corresponding bias of δ37 ClSMOC values introduced by the different types of calibration was determined. RESULTS Different calibration methods resulted in significant differences (up to 30%) in both δ37 Cl signatures and εCl values. CONCLUSIONS Our results demonstrate that a two-point calibration together with comprehensive information on reference materials is indispensable and should become standard practice for reliable 37 Cl-CSIA of organic compounds. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Karin A Ebert
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany
| | - Christine Laskov
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Stefan B Haderlein
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany
| |
Collapse
|