1
|
Hou Y, Wang Y, Zhang Y, Lu Z, Zhang Z, Dong Z, Qiu Y. Cotransport of nanoplastics with nZnO in saturated porous media: From brackish water to seawater. J Environ Sci (China) 2025; 148:541-552. [PMID: 39095187 DOI: 10.1016/j.jes.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 08/04/2024]
Abstract
The ocean serves as a repository for various types of artificial nanoparticles. Nanoplastics (NPs) and nano zinc oxide (nZnO), which are frequently employed in personal care products and food packaging materials, are likely simultaneously released and eventually into the ocean with surface runoff. Therefore, their mutual influence and shared destiny in marine environment cannot be ignored. This study examined how nanomaterials interacted and transported through sea sand in various salinity conditions. Results showed that NPs remained dispersed in brine, while nZnO formed homoaggregates. In seawater of 35 practical salinity units (PSU), nZnO formed heteroaggregates with NPs, inhibiting NPs mobility and decreasing the recovered mass percentage (Meff) from 24.52% to 12.65%. In 3.5 PSU brackish water, nZnO did not significantly aggregate with NPs, and thus barely affected their mobility. However, NPs greatly enhanced nZnO transport with Meff increasing from 14.20% to 25.08%, attributed to the carrier effect of higher mobility NPs. Cotransport from brackish water to seawater was simulated in salinity change experiments and revealed a critical salinity threshold of 10.4 PSU, below which the mobility of NPs was not affected by coexisting nZnO and above which nZnO strongly inhibited NP transport. This study highlights the importance of considering the mutual influence and shared destiny of artificial nanoparticles in the marine environment and how their interaction and cotransport are dependent on changes in seawater salinity.
Collapse
Affiliation(s)
- Yuanzhang Hou
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yange Wang
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yidi Zhang
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhibo Lu
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhenbo Zhang
- School of Medicine, Tongji University, Shanghai 200065, China
| | - Zhiqiang Dong
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Municipal Environmental Protection Engineering Co., Ltd of CERC Shanghai Group, Shanghai 201906, China; China Railway Engineering Group Co., Beijing 100039, China
| | - Yuping Qiu
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Chen K, Xu X, Li X, Gui X, Zhao L, Qiu H, Cao X. The colloidal stability of molybdenum disulfide nanosheets in different natural surface waters: Combined effects of water chemistry and light irradiation. WATER RESEARCH 2024; 261:121973. [PMID: 38924950 DOI: 10.1016/j.watres.2024.121973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/20/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
With the increasing production and application, more molybdenum disulfide (MoS2) nanosheets could be released into environment. The aggregation and dispersion of MoS2 nanosheets profoundly impact their transport and transformation in the aquatic environment. However, the colloidal stability of MoS2 remains largely unknown in natural surface waters. This study investigated the colloidal stability of MoS2 nanosheets in six natural surface waters affected by both light irradiation and water chemistry. Compared to that of the pristine MoS2 nanosheets, the colloidal stability of MoS2 photoaged in ultrapure water declined. Light irradiation induced the formation of Mo-O bonds, the release of SO42- species, and the decrease in 1T/2H ratio, which reduced negative charge and enhanced hydrophobicity. However, the colloidal stability of MoS2 photoaged in natural surface waters was increased relative to that in ultrapure water not only for the smaller extent of photochemical transformation but more importantly the surface modification by water chemistry. Furthermore, the colloidal stability of MoS2 photoaged in natural surface waters followed the order of sea water > lake water > river water. The abundant cations (e.g., Ca2+ and Mg2+) in sea water facilitated the covalent grafting (S-C bonds) of more dissolved organic matter (DOM) on MoS2 via charge screening and cation bridging, thus inducing stronger electrostatic repulsion and steric effect to stabilize nanosheets. The crucial role of the covalent grafting of DOM was further confirmed by the positive correlation between the critical coagulation concentration values and S-C ratios (R2 = 0.82, p < 0.05). Our results highlighted the dominant role of water chemistry than light irradiation in dictating the colloidal stability of MoS2 photoaged in natural surface waters, which provided new insight into the environmental behavior of MoS2 in aquatic environment.
Collapse
Affiliation(s)
- Kexin Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangyang Gui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Field Observation and Research Station of Erhai Lake Ecosystem, Yunnan 671000, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Wang X, Wu T. An update on the biological effects of quantum dots: From environmental fate to risk assessment based on multiple biological models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163166. [PMID: 37011691 DOI: 10.1016/j.scitotenv.2023.163166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/12/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
Quantum dots (QDs) are zero-dimension nanomaterials with excellent physical and chemical properties, which have been widely used in environmental science and biomedicine. Therefore, QDs are potential to cause toxicity to the environment and enter organisms through migration and bioenrichment effects. This review aims to provide a comprehensive and systematic analysis on the adverse effects of QDs in different organisms based on recently available data. Following PRISMA guidelines, this study searched PubMed database according to the pre-set keywords, and included 206 studies according to the inclusion and elimination criteria. CiteSpace software was firstly used to analyze the keywords of included literatures, search for breaking points of former studies, and summarize the classification, characterization and dosage of QDs. The environment fate of QDs in the ecosystems were then analyzed, followed with comprehensively summarized toxicity outcomes at individual, system, cell, subcellular and molecular levels. After migration and degradation in the environment, aquatic plants, bacteria, fungi as well as invertebrates and vertebrates have been found to be suffered from toxic effects caused by QDs. Aside from systemic effects, toxicity of intrinsic QDs targeting to specific organs, including respiratory system, cardiovascular system, hepatorenal system, nervous system and immune system were confirmed in multiple animal models. Moreover, QDs could be taken up by cells and disturb the organelles, which resulted in cellular inflammation and cell death, including autophagy, apoptosis, necrosis, pyroptosis and ferroptosis. Recently, several innovative technologies, like organoids have been applied in the risk assessment of QDs to promote the surgical interventions of preventing QDs' toxicity. This review not only aimed at updating the research progress on the biological effects of QDs from environmental fate to risk assessment, but also overcame the limitations of available reviews on basic toxicity of nanomaterials by interdisciplinarity and provided new insights for better applications of QDs.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, PR China; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, PR China; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
4
|
Yang S, Wei P, Wang J, Tan Y, Qu X. Impacts of dissolved organic matter on the aggregation and photo-dissolution of cadmium pigment nanoparticles in aquatic systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161313. [PMID: 36596423 DOI: 10.1016/j.scitotenv.2022.161313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Cadmium pigments are a group of inorganic pigments used in consumer products. The aggregation behavior and photo-dissolution process of cadmium pigment nanoparticles in aquatic systems control their environmental fate, which is largely unknown. Herein, we investigated the influence of dissolved organic matter (DOM) on the aggregation behavior and photo-dissolution process of CdS nanoparticles in aquatic systems. Bare CdS nanoparticles are prone to aggregation in both NaCl and CaCl2 solutions. DOM can remarkably increase the colloidal stability of CdS nanoparticles owing to the steric hindrance and enhanced electrostatic repulsion. With 10 mg/L Suwannee River natural organic matter (SRNOM), the colloidal stability of CdS nanoparticles is significantly enhanced in NaCl solutions (i.e., the critical coagulation concentration, CCCNa, is 707.2 mM). Suwannee River humic acid (SRHA) has a stronger stabilization effect than SRNOM due to its higher molecular weight and aromaticity. The Ca2+ cations can induce charge neutralization and structural compacting of DOM corona, efficiently reducing the colloidal stability of CdS nanoparticles. The CCCCa is 10.8 mM and 14.9 mM with 10 mg/L SRNOM and SRHA, respectively. Upon solar irradiation, the presence of a low concentration of SRNOM (3 mg/L) can enhance the photo-dissolution of CdS nanoparticles and the consequent Cd2+ leaching. This is caused by the facilitated electron transfer from CdS nanoparticles to O2 induced by SRNOM corona, leading to better electron-hole separation. However, a high concentration of SRNOM inhibited the photo-dissolution of CdS nanoparticles due to the strong inner filter effect and the scavenging of phototransients. The colloidal stability of SRNOM-coated CdS nanoparticles increases in NaCl but decreases in CaCl2 solutions after irradiation owing to the oxidation of SRNOM corona. Our results highlight the decisive role of DOM in the environmental fate of cadmium pigments.
Collapse
Affiliation(s)
- Shuxue Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Peiyun Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Jiaxue Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Yi Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China.
| |
Collapse
|
5
|
Duncan TV, Bajaj A, Gray PJ. Surface defects and particle size determine transport of CdSe quantum dots out of plastics and into the environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129687. [PMID: 36104913 DOI: 10.1016/j.jhazmat.2022.129687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 05/26/2023]
Abstract
Polymers incorporating quantum dots (QDs) have attracted interest as components of next-generation consumer products, but there is uncertainty about how these potentially hazardous materials may impact human health and the environment. We investigated how the transport (migration) of QDs out of polymers and into the environment is linked to their size and surface characteristics. Cadmium selenide (CdSe) QDs with diameters ranging from 2.15 to 4.63 nm were incorporated into low-density polyethylene (LDPE). Photoluminescence was used as an indicator of QD surface defect density. Normalized migration of QDs into 3% acetic acid over 15 days ranged from 13.1 ± 0.6-452.5 ± 31.9 ng per cm2 of polymer surface area. Migrated QD mass was negatively correlated to QD diameter and was also higher when QDs had photoluminescence consistent with larger surface defect densities. The results imply that migration is driven by oxidative degradation of QDs originating at surface defect sites and transport of oxidation products along concentration gradients. A semi-empirical framework was developed to model the migration data. The model supports this mechanism and suggests that QD surface reactivity also drives the relationship between QD size and migration, with specific surface area playing a less important role.
Collapse
Affiliation(s)
- Timothy V Duncan
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Bedford Park, IL 60501, USA.
| | - Akhil Bajaj
- Illinois Institute of Technology, Bedford Park, IL 60501, USA
| | - Patrick J Gray
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Bedford Park, IL 60501, USA
| |
Collapse
|
6
|
Chen J, Chen H, Wu Y, Meng J, Jin L. Parental exposure to CdSe/ZnS QDs affects cartilage development in rare minnow (Gobiocypris rarus) offspring. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109304. [PMID: 35257888 DOI: 10.1016/j.cbpc.2022.109304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 11/03/2022]
Abstract
Cartilage development is a sensitive process that is easily disturbed by environmental toxins. In this study, the toxicity of CdSe/ZnS quantum dots on the skeleton of the next generation (F1) was evaluated using rare minnows (Gobiocypris rarus) as model animals. Four-month-old sexually mature parental rare minnows (F0) were selected and treated with 0, 100, 200, 400 and 800 nmol/L CdSe/ZnS quantum dots for 4 days. Embryos of F1 generation rare minnows were obtained by artificial insemination. The results showed that with increasing maternal quantum dots exposure, the body length of F1 embryos decreased, the overall calcium content decreased, and the deformity and mortality rates increased. Alcian blue staining results showed that the lengths of the craniofacial mandible, mandibular arch length, mandibular width, and CH-CH and CH-PQ angles of larvae of rare minnows increased; histological hematoxylin-eosin staining further indicated that quantum dots affected the development of chondrocytes. Furthermore, high concentrations of CdSe/ZnS quantum dots inhibited the transcript expression of the bmp2b, bmp4, bmp6, runx2b, sox9a, lox1 and col2α1 genes. In conclusion, CdSe/ZnS quantum dots can affect the skeletal development of F1 generation embryos of rare minnows at both the individual and molecular levels, the damage to the craniofacial bone is more obvious, and the toxic effect of high concentrations of quantum dots (400 nmol/L and 800 nmol/L) is more significant.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Hang Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Yingyi Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Juanzhu Meng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China.
| |
Collapse
|
7
|
Giroux M, Zahra Z, Salawu OA, Burgess RM, Ho KT, Adeleye AS. Assessing the Environmental Effects Related to Quantum Dot Structure, Function, Synthesis and Exposure. ENVIRONMENTAL SCIENCE. NANO 2022; 9:867-910. [PMID: 35401985 PMCID: PMC8992011 DOI: 10.1039/d1en00712b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Quantum dots (QDs) are engineered semiconductor nanocrystals with unique fluorescent, quantum confinement, and quantum yield properties, making them valuable in a range of commercial and consumer imaging, display, and lighting technologies. Production and usage of QDs are increasing, which increases the probability of these nanoparticles entering the environment at various phases of their life cycle. This review discusses the major types and applications of QDs, their potential environmental exposures, fates, and adverse effects on organisms. For most applications, release to the environment is mainly expected to occur during QD synthesis and end-product manufacturing since encapsulation of QDs in these devices prevents release during normal use or landfilling. In natural waters, the fate of QDs is controlled by water chemistry, light intensity, and the physicochemical properties of QDs. Research on the adverse effects of QDs primarily focuses on sublethal endpoints rather than acute toxicity, and the differences in toxicity between pristine and weathered nanoparticles are highlighted. A proposed oxidative stress adverse outcome pathway framework demonstrates the similarities among metallic and carbon-based QDs that induce reactive oxygen species formation leading to DNA damage, reduced growth, and impaired reproduction in several organisms. To accurately evaluate environmental risk, this review identifies critical data gaps in QD exposure and ecological effects, and provides recommendations for future research. Future QD regulation should emphasize exposure and sublethal effects of metal ions released as the nanoparticles weather under environmental conditions. To date, human exposure to QDs from the environment and resulting adverse effects has not been reported.
Collapse
Affiliation(s)
- Marissa Giroux
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Zahra Zahra
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| | - Omobayo A. Salawu
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| | - Robert M Burgess
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Kay T Ho
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| |
Collapse
|
8
|
Lai Y, Dong L, Sheng X, Chao J, Yu S, Liu J. Monitoring the Cd 2+ release from Cd-containing quantum dots in simulated body fluids by size exclusion chromatography coupled with ICP-MS. Anal Bioanal Chem 2022; 414:5529-5536. [PMID: 35212781 DOI: 10.1007/s00216-022-03976-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Quantification of Cd2+ release from Cd-containing quantum dots (QDs) is of fundamental importance to elucidate its toxicity to organisms, but remains a great challenge due to the lack of appropriate analytical method. Herein, a facile method based on size exclusion chromatography (SEC) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for separating and quantifying the QDs and counterpart ions. By using the mixture of sodium dodecyl sulfate (SDS) and ethylenediaminetetraacetic acid tetrasodium salt (EDTA) as the mobile phase, the defect of QD and ion adsorption onto the SEC column was overcome, thus realizing the accurate quantification of ionic species. Besides, the concentration of QDs was achieved through subtracting the ion concentration from the total concentration. Selecting CdSe@ZnS as the typical QDs, the Cd2+ release process in four typical simulated body fluids, namely, simulated gastric fluid, simulated sweat, Gamble's solution, and artificial lysosomal fluid, was monitored using the developed SEC-ICP-MS method. The media pH is identified as the decisive factor which controls the dissolution of ZnS shells and also the Cd2+ release kinetics and final concentration. Our results suggest that the oral pathway for QD uptake poses the biggest risk to human health.
Collapse
Affiliation(s)
- Yujian Lai
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China
| | - Lijie Dong
- Division of Chemical Metrology and Analytical Chemistry, National Institute of Metrology, Beijing, 100029, China
| | - Xueying Sheng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jingbo Chao
- Division of Chemical Metrology and Analytical Chemistry, National Institute of Metrology, Beijing, 100029, China
| | - Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China
| | - Jingfu Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China. .,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China. .,Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
9
|
Timerbaev AR, Kuznetsova OV, Keppler BK. Current trends and challenges in analysis and characterization of engineered nanoparticles in seawater. Talanta 2021; 226:122201. [PMID: 33676721 DOI: 10.1016/j.talanta.2021.122201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
With the increasingly wide use of engineered nanoparticles (ENPs), their release into the environment makes it important to determine in what quantitates they occur in aquatic systems and to understand their fate therein. In particular, detection and quantification of ENPs in seawater is challenging and often requires analytical methods to perform close to the feasibility confines. This review is aimed at critical analysis of current and emerging capabilities of analytical methods as have been employed for the analysis and characterization of ENPs in seawater in the last decade. An emphasis is given to the most reliable experimental strategies focused on avoiding the high-salt matrix effect and isolation and enrichment of the nanoparticulate fraction prior to analysis. Advanced analytical methodology in use basically relies on the application of elemental mass spectrometry to determine various particle-core metals and its single-particle mode to characterize the seawater-mediated transformation of ENPs, including dissolution, aggregation, etc. On the other hand, common microscopy, light scattering or X-ray based techniques are not sensitive enough to acquire the transformation information from real seawater samples. Finally, attention is pinpointed upon an acute shortcoming of the current research which is in the overwhelming majority of cases restricted to samples spiked with ENPs and often at excessive concentration levels.
Collapse
Affiliation(s)
- Andrei R Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, 119991, Moscow, Russian Federation.
| | - Olga V Kuznetsova
- Vernadsky Institute of Geochemistry and Analytical Chemistry, 119991, Moscow, Russian Federation
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
10
|
Carboni A, Gelabert A, Charron G, Faucher S, Lespes G, Sivry Y, Benedetti MF. Mobility and transformation of CdSe/ZnS quantum dots in soil: Role of the capping ligands and ageing effect. CHEMOSPHERE 2020; 254:126868. [PMID: 32348924 DOI: 10.1016/j.chemosphere.2020.126868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The increasing application of Quantum Dots (QDs) is cause of concern for the potential negative effects for the ecosystem, especially in soils that may act as a sink. In this study, soil leaching experiments were performed in quartz sand packed columns to investigate the behavior of core-shell CdSe/ZnS QDs coated with either small ligands (TGA-QDs) or more complex polymers (POAMA-QDs). Fluorescence emission was compared to mass spectrometric measurements to assess the nanoparticles (NPs) state in both the leachate (transported species) and porous media (deposited amounts). Although both QDs were strongly retained in the column, large differences were observed depending on their capping ligand stability. Specifically, for TGA-QDs elution was negligible and the retained fraction accumulated in the top-columns. Furthermore, 74% of the NPs were degraded and 38% of the Se was found in the leachate in non-NPs state. Conversely, POAMA-QDs were recovered to a larger extent (78.1%), and displayed a higher transport along the soil profile. Further experiments with altered NPs showed that homo-aggregation of the QDs prior injection determined a reduced mobility but no significant changes in their stability. Eventually, ageing of the NPs in the column (15 days) caused the disruption of up to 92% of the original QDs and the immobilization of NPs and metals. These results indicate that QDs will accumulate in top-soils, where transformations phenomena will determine the overall transport, persistency and degradation of these chemicals. Once accumulated, they may act as a source for potentially toxic Cd and Se metal species displaying enhanced mobility.
Collapse
Affiliation(s)
- A Carboni
- Université de Paris, Institut de Physique du Globe de Paris, UMR 7154, CNRS, F-75005, Paris, France; Centre de Recherche et d'Enseignement de Géosciences de l'Environnement, Technopole Environnement Arbois-Mediterranee, BP80, 13545, Aix-en-Provence Cedex 04, Aix-en-Provence, France.
| | - A Gelabert
- Université de Paris, Institut de Physique du Globe de Paris, UMR 7154, CNRS, F-75005, Paris, France
| | - G Charron
- Laboratoire Matière et Systèmes Complexes (MSC), Univ. Paris Diderot, 75013, Paris, France
| | - S Faucher
- Université de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Helioparc, 2 Avenue Pierre Angot, 64053, Pau, France
| | - G Lespes
- Université de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Helioparc, 2 Avenue Pierre Angot, 64053, Pau, France
| | - Y Sivry
- Université de Paris, Institut de Physique du Globe de Paris, UMR 7154, CNRS, F-75005, Paris, France
| | - M F Benedetti
- Université de Paris, Institut de Physique du Globe de Paris, UMR 7154, CNRS, F-75005, Paris, France
| |
Collapse
|
11
|
Gonçalves JM, Rocha T, Mestre NC, Fonseca TG, Bebianno MJ. Assessing cadmium-based quantum dots effect on the gonads of the marine mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2020; 156:104904. [PMID: 32174334 DOI: 10.1016/j.marenvres.2020.104904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
This study assesses the sex-specific effects induced by CdTe QDs, on the marine mussel Mytilus galloprovincialis in comparison to its dissolved counterpart. A 14 days exposure to CdTe QDs and dissolved Cd was conducted (10 μg Cd L-1), analysing Cd accumulation, oxidative stress, biotransformation, metallothionein and oxidative damage in the gonads. Both Cd forms caused significant antioxidant alterations, whereby QDs were more pro-oxidant, leading to oxidative damage, being females more affected. Overall, biochemical impairments on gonads of M. galloprovincialis demonstrate that the reproductive toxicity induced by CdTe QDs in mussels are sex-dependent and mediated by oxidative stress and lipid peroxidation. It is crucial to acknowledge how gametes are affected by metal-based nanoparticles, such as Cd-based QDs. As well as understanding the potential changes they may undergo at the cellular level during gametogenesis, embryogenesis and larval development potentially leading to serious impacts on population sustainability and ecosystem health.
Collapse
Affiliation(s)
- J M Gonçalves
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - T Rocha
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - N C Mestre
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - T G Fonseca
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - M J Bebianno
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| |
Collapse
|
12
|
Paydary P, Larese-Casanova P. Water chemistry influences on long-term dissolution kinetics of CdSe/ZnS quantum dots. J Environ Sci (China) 2020; 90:216-233. [PMID: 32081318 DOI: 10.1016/j.jes.2019.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Widespread usage of engineered metallic quantum dots (QDs) within consumer products has evoked a need to assess their fate within environmental systems. QDs are mixed-metal nanocrystals that often include Cd2+ which poses a health risk as a nanocrystal or when leached into water. The goal of this work is to study the long-term metal cation leaching behavior and the factors affecting the dissolution processes of mercaptopropionic acid (MPA) capped CdSe/ZnS QDs in aphotic conditions. QD suspensions were prepared in different water conditions, and release of Zn2+ and Cd2+ cations were monitored over time by size exclusion chromatography-inductively coupled plasma-mass spectrometry. In most conditions with dissolved O2 present, the ZnS shell degraded fairly rapidly over ~1 week, while some of the CdSe core remained up to 80 days. Additional MPA, Zn2+, and Cd2+ temporarily delayed dissolution, indicating a moderate role for capping agent detachment and mineral solubility. The presence of H2O2 and the ligand ethylenediaminetetraacetate accelerated dissolution, while NOM had no kinetic effect. No dissolution of CdSe core was observed when O2 was absent or when QDs formed aggregates at higher concentrations with O2 present. The shrinking particle model with product layer diffusion control best describes Zn2+ and Cd2+ dissolution kinetics. The longevity of QDs in their nanocrystal form appears to be partly controlled by environmental conditions, with anoxic, aphotic environments preserving the core mineral phase, and oxidants or complexing ligands promoting shell and core mineral dissolution.
Collapse
Affiliation(s)
- Pooya Paydary
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| | - Philip Larese-Casanova
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
13
|
Supiandi NI, Charron G, Tharaud M, Benedetti MF, Sivry Y. Tracing multi-isotopically labelled CdSe/ZnS quantum dots in biological media. Sci Rep 2020; 10:2866. [PMID: 32071375 PMCID: PMC7028726 DOI: 10.1038/s41598-020-59206-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/27/2020] [Indexed: 11/30/2022] Open
Abstract
The strengths and limits of isotopically labelled Engineered Nanoparticles (spiked ENPs) spread in biological media have been assessed. Multi-spiked CdSe/ZnS quantum dots (QDs), measuring 7 nm and coated with thioglycolic acid (TGA), were synthesized and enriched in 68Zn, 77Se and 111Cd. These QDs were dispersed at very low concentrations (0.1 to 5000 ppt) in diverse biological matrices (synthetic saliva, synthetic urine, plasma and Dulbecco's phosphate buffered saline - DPBS growth medium) and the isotopic compositions were determined by HR-ICP-MS. The initial QDs concentrations were calculated to assess the limit of quantification (QD-LOQ) according to the matrix and the isotopically enriched element. The obtained results demonstrated the advantages of the isotopic labelling method in order to work at very low concentrations: the QD-LOQ values for the spiked Zn, Cd and Se originated from the QDs were 10, 0.3 and 6 ppt, respectively, which is below the conventional LOQ of the HR-ICP-MS used (30, 3 and 60 ppt for Zn, Cd and Se, respectively). Conversely, in complex matrices such as saliva, urine, plasma and DPBS growth medium, the QD-LOQ values increased significantly, with values ranging from 16 to 32 ppt for Cd, 446 to 10598 ppt for Zn and 1618 to 8317 ppt for Se. These QD-LOQs are dependent on factors as the elemental background concentration already present in the matrices, and the dilution factor. In this study, the QD-LOQs are expressed for the first time with respect to the background concentration in biological media (QD-RLOQ), which can be used to better assess and then predict the efficiency of the spiking method.
Collapse
Affiliation(s)
- N Izyan Supiandi
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ. Paris Diderot, UMR 7154, CNRS, F-7, 5005, Paris, France
| | - G Charron
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Diderot, 75013, Paris, France
| | - M Tharaud
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ. Paris Diderot, UMR 7154, CNRS, F-7, 5005, Paris, France
| | - M F Benedetti
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ. Paris Diderot, UMR 7154, CNRS, F-7, 5005, Paris, France
| | - Y Sivry
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ. Paris Diderot, UMR 7154, CNRS, F-7, 5005, Paris, France.
| |
Collapse
|
14
|
Matos B, Martins M, Samamed AC, Sousa D, Ferreira I, Diniz MS. Toxicity Evaluation of Quantum Dots (ZnS and CdS) Singly and Combined in Zebrafish ( Danio rerio). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:E232. [PMID: 31905638 PMCID: PMC6981874 DOI: 10.3390/ijerph17010232] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/01/2023]
Abstract
The exponential growth of nanotechnology has led to the production of large quantities of nanomaterials for numerous industrial, technological, agricultural, environmental, food and many other applications. However, this huge production has raised growing concerns about the adverse effects that the release of these nanomaterials may have on the environment and on living organisms. Regarding the effects of QDs on aquatic organisms, existing data is scarce and often contradictory. Thus, more information is needed to understand the mechanisms associated with the potential toxicity of these nanomaterials in the aquatic environment. The toxicity of QDs (ZnS and CdS) was evaluated in the freshwater fish Danio rerio. The fishes were exposed for seven days to different concentrations of QDs (10, 100 and 1000 µg/L) individually and combined. Oxidative stress enzymes (catalase, superoxide dismutase and glutathione S-transferase), lipid peroxidation, HSP70 and total ubiquitin were assessed. In general, results suggest low to moderate toxicity as shown by the increase in catalase activity and lipid peroxidation levels. The QDs (ZnS and CdS) appear to cause more adverse effects singly than when tested combined. However, LPO results suggest that exposure to CdS singly caused more oxidative stress in zebrafish than ZnS or when the two QDs were tested combined. Levels of Zn and Cd measured in fish tissues indicate that both elements were bioaccumulated by fish and the concentrations increased in tissues according to the concentrations tested. The increase in HSP70 measured in fish exposed to 100 µg ZnS-QDs/L may be associated with high levels of Zn determined in fish tissues. No significant changes were detected for total ubiquitin. More experiments should be performed to fully understand the effects of QDs exposure to aquatic biota.
Collapse
Affiliation(s)
- Beatriz Matos
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (B.M.); ; (M.M.); (A.C.S.)
- MARE—Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Marta Martins
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (B.M.); ; (M.M.); (A.C.S.)
- MARE—Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Antonio Cid Samamed
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (B.M.); ; (M.M.); (A.C.S.)
- LAQV/REQUIMTE—Laboratório Associado para a Química Verde, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - David Sousa
- CENIMAT/I3N—Centro de Investigação de Materiais /Institute for Nanostructures, Nanomodelling and Nanofabrication, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (I.F.)
| | - Isabel Ferreira
- CENIMAT/I3N—Centro de Investigação de Materiais /Institute for Nanostructures, Nanomodelling and Nanofabrication, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (I.F.)
| | - Mário S. Diniz
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (B.M.); ; (M.M.); (A.C.S.)
| |
Collapse
|
15
|
Adeleye AS, Ho KT, Zhang M, Li Y, Burgess RM. Fate and Transformation of Graphene Oxide in Estuarine and Marine Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5858-5867. [PMID: 30998850 PMCID: PMC6707712 DOI: 10.1021/acs.est.8b06485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The possibility of graphene oxide (GO) exposure to the environment has spurred several studies investigating the fate of this nanoparticle (NP). However, there is currently little or no data on the fate of GO in estuarine and marine waters. This study investigated the aggregation, sedimentation, and transformation of GO in saline waters, considering the roles of salinity (0-50 ‰), light (visible light and solar irradiation), and aging, among others. The attachment efficiency of GO reached unity at 1.33 ‰. The sedimentation rate of GO increased with salinity up to 10 ‰ after which it decreased due to formation of ramified GO agglomerates and media density. On the basis of the sedimentation rate determined at 30 ‰ (0.121 m/d), the residence time of GO agglomerates in the euphotic zone of typical open oceans will exceed 500 days. Aging in the presence of visible light increased the relative abundance of the GO's aromatic (C-C/C=C) fraction, reducing the NP. Reduction of GO in visible light was confirmed via UV-vis and Raman spectroscopic techniques. Reduction of GO was faster under solar irradiation. This study demonstrates that when introduced into saline waters, GO will undergo a range of transformations affecting its fate and potential effects to aquatic organisms.
Collapse
Affiliation(s)
- Adeyemi S. Adeleye
- National Research Council Research Associate, US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882, USA
| | - Kay T. Ho
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882, USA
| | - Min Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin 300350, China
| | - Yao Li
- Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin 300350, China
| | - Robert M. Burgess
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882, USA
| |
Collapse
|
16
|
Supiandi NI, Charron G, Tharaud M, Cordier L, Guigner JM, Benedetti MF, Sivry Y. Isotopically Labeled Nanoparticles at Relevant Concentrations: How Low Can We Go? The Case of CdSe/ZnS QDs in Surface Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2586-2594. [PMID: 30703329 DOI: 10.1021/acs.est.8b04096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Analytical barriers impose work at nanoparticles (NPs) concentrations orders of magnitude higher than the expected NPs concentrations in the environment. To overcome these limitations, the use of nontraditional stable isotope tracers incorporated in NPs (spiked-NPs) coupled with HR-ICP-MS has been proposed. The performance and efficiency of this analytical method was assessed in the case of quantum dots (QDs). Multi-isotopically labeled 111Cd77Se/68ZnS QDs were synthesized and their dissemination in natural aquatic matrices (river, estuarine and sea waters) was modeled at very low concentrations (from 0.1 to 5000 ppt). The QD limits of quantification (QD-LOQ) in each matrix were calculated according to the isotopic tracer. In ultrapure and simple medium (HNO3 2%), Zn, Cd, and Se originated from the QDs were quantifiable at concentrations of 10, 0.3, and 6 ppt, respectively, which are lower than the conventional HR-ICP-MS LOQs. In aquatic matrices, the QD-LOQs increase 10-, 130-, and 250-fold for Zn, Cd, and Se, respectively, but remain relevant of environmental concentrations (3.4 ppt ≤ QD-LOQs ≤ 2.5 ppb). These results validate the use of isotopically labeled ENPs at relevant concentrations in experimental studies related to either their fate, behavior, or toxicity in most aquatic matrices.
Collapse
Affiliation(s)
- Nurul I Supiandi
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité , Université Paris Diderot , UMR 7154, CNRS , F-75005 Paris , France
| | - G Charron
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 , Université Paris Diderot , Sorbonne Paris Cité , 75013 Paris , France
| | - M Tharaud
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité , Université Paris Diderot , UMR 7154, CNRS , F-75005 Paris , France
| | - L Cordier
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité , Université Paris Diderot , UMR 7154, CNRS , F-75005 Paris , France
| | - J-M Guigner
- Institut de Minéralogie , de Physique des Matériaux et de Cosmochimie (IMPMC) , 75005 Paris , France
| | - M F Benedetti
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité , Université Paris Diderot , UMR 7154, CNRS , F-75005 Paris , France
| | - Y Sivry
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité , Université Paris Diderot , UMR 7154, CNRS , F-75005 Paris , France
| |
Collapse
|
17
|
Johnson CA, Chern M, Nguyen TT, Dennis AM, Goldfarb JL. Ligands and media impact interactions between engineered nanomaterials and clay minerals. NANOIMPACT 2019; 13:112-122. [PMID: 31819907 PMCID: PMC6901284 DOI: 10.1016/j.impact.2019.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The exponential growth in technologies incorporating engineered nanomaterials (ENMs) requires plans to handle waste ENM disposal and accidental environmental release throughout the material life cycle. These scenarios motivate efforts to quantify and model ENM interactions with diverse background particles and solubilized chemical species in a variety of environmental systems. In this study, quantum dot (QD) nanoparticles and clay minerals were mixed in a range of water chemistries in order to develop simple assays to predict aggregation trends. CdSe QDs were used as a model ENM functionalized with either negatively charged or zwitterionic small molecule ligand coatings, while clays were chosen as an environmentally relevant sorbent given their potential as an economical water treatment technology and ubiquitous presence in nature. In our unbuffered experimental systems, clay type impacted pH, which resulted in a change in zwitterionic ligand speciation that favored aggregation with kaolinite more than with montmorillonite. With kaolinite, the zwitterionic ligand-coated QD exhibited greater than ten times the relative attachment efficiency for QD-clay heteroaggregation compared to the negatively charged ligand coated QD. Under some conditions, particle oxidative dissolution and dynamic sorption of ions and QDs to surfaces complicated the interpretation of the removal kinetics. This work demonstrates that QDs stabilized by small molecule ligands and electrostatic surface charges are highly sensitive to changes in water chemistry in complex media. Natural environments enable rapid dynamic physicochemical changes that will influence the fate and mobility of ENMs, as seen by the differential adsorption of water-soluble QDs to our clay media.
Collapse
Affiliation(s)
- Carol A Johnson
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215
| | - Margaret Chern
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215
| | - Thuy T Nguyen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Allison M Dennis
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Jillian L Goldfarb
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853
| |
Collapse
|
18
|
Petersen EJ, Mortimer M, Burgess RM, Handy R, Hanna S, Ho KT, Johnson M, Loureiro S, Selck H, Scott-Fordsmand JJ, Spurgeon D, Unrine J, van den Brink N, Wang Y, White J, Holden P. Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms. ENVIRONMENTAL SCIENCE. NANO 2019; 6:10.1039/C8EN01378K. [PMID: 31579514 PMCID: PMC6774209 DOI: 10.1039/c8en01378k] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
One of the key components for environmental risk assessment of engineered nanomaterials (ENMs) is data on bioaccumulation potential. Accurately measuring bioaccumulation can be critical for regulatory decision making regarding material hazard and risk, and for understanding the mechanism of toxicity. This perspective provides expert guidance for performing ENM bioaccumulation measurements across a broad range of test organisms and species. To accomplish this aim, we critically evaluated ENM bioaccumulation within three categories of organisms: single-celled species, multicellular species excluding plants, and multicellular plants. For aqueous exposures of suspended single-celled and small multicellular species, it is critical to perform a robust procedure to separate suspended ENMs and small organisms to avoid overestimating bioaccumulation. For many multicellular organisms, it is essential to differentiate between the ENMs adsorbed to external surfaces or in the digestive tract and the amount absorbed across epithelial tissues. For multicellular plants, key considerations include how exposure route and the role of the rhizosphere may affect the quantitative measurement of uptake, and that the efficiency of washing procedures to remove loosely attached ENMs to the roots is not well understood. Within each organism category, case studies are provided to illustrate key methodological considerations for conducting robust bioaccumulation experiments for different species within each major group. The full scope of ENM bioaccumulation measurements and interpretations are discussed including conducting the organism exposure, separating organisms from the ENMs in the test media after exposure, analytical methods to quantify ENMs in the tissues or cells, and modeling the ENM bioaccumulation results. One key finding to improve bioaccumulation measurements was the critical need for further analytical method development to identify and quantify ENMs in complex matrices. Overall, the discussion, suggestions, and case studies described herein will help improve the robustness of ENM bioaccumulation studies.
Collapse
Affiliation(s)
- Elijah J. Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Monika Mortimer
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Robert M. Burgess
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Richard Handy
- Plymouth University, School of Biological Sciences, United Kingdom
| | - Shannon Hanna
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Kay T. Ho
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Monique Johnson
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Henriette Selck
- Roskilde University, Dept. of Science and Environment, Denmark
| | | | - David Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Nico van den Brink
- Department of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ying Wang
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Jason White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Patricia Holden
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
19
|
Dong Z, Zhang W, Qiu Y, Yang Z, Wang J, Zhang Y. Cotransport of nanoplastics (NPs) with fullerene (C 60) in saturated sand: Effect of NPs/C 60 ratio and seawater salinity. WATER RESEARCH 2019; 148:469-478. [PMID: 30408733 DOI: 10.1016/j.watres.2018.10.071] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/27/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Nanoplastics (NPs) have been identified as newly emerging particulate contaminants. In marine environments, the interaction between NPs and other engineered nanoparticles remains unknown. This study investigated the cotransport of NPs with fullerene (C60) in seawater-saturated columns packed with natural sand as affected by the mass concentration ratio of NPs/C60 and the hydrochemical characteristics. In seawater with 35 practical salinity units (PSU), NPs could remarkably enhance C60 dispersion with a NPs/C60 ratio of 1. NPs behaved as a vehicle to facilitate C60 transport by decreasing colloidal ζ-potential and forming stable primary heteroaggregates. As the NPs/C60 ratio decreased to 1/3, NPs mobility was progressively restrained because of the formation of large secondary aggregates. When the ratio continuously decreased to 1/10, the stability and transport of colloids were governed by C60 rather than NPs. Under this condition, the transport trend of binary suspensions was similar to that of single C60 suspension, which was characterized by a ripening phenomenon. Seawater salinity is another key factor affecting the stability and associated transport of NPs and C60. In seawater with 3.5 PSU, NPs and C60 (1:1) in binary suspension exhibited colloidal dispersion, which was driven by a high-energy barrier. Thus, the profiles of the cotransport and retention of NPs/C60 resembled those of single NPs suspension. This work demonstrated that the cotransport of NPs/C60 strongly depended on their mass concentration ratios and seawater salinity.
Collapse
Affiliation(s)
- Zhiqiang Dong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, International Joint Research Center for Sustainable Urban Water System, Shanghai, 200092, PR China
| | - Wen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, International Joint Research Center for Sustainable Urban Water System, Shanghai, 200092, PR China
| | - Yuping Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, International Joint Research Center for Sustainable Urban Water System, Shanghai, 200092, PR China.
| | - Zhenglong Yang
- School of Materials Science and Engineering, Jiading Campus, Tongji University, Shanghai, 201804, China
| | - Junliang Wang
- School of the Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yidi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
20
|
Liu Y, Yang T, Wang L, Huang Z, Li J, Cheng H, Jiang J, Pang S, Qi J, Ma J. Interpreting the effects of natural organic matter on antimicrobial activity of Ag 2S nanoparticles with soft particle theory. WATER RESEARCH 2018; 145:12-20. [PMID: 30118974 DOI: 10.1016/j.watres.2018.07.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Natural organic matter (NOM) ubiquitously exists in natural waters and would adsorb onto the particle surface. Previous studies showed that NOM would alleviate the toxicity of nanomaterials, while the mechanism is seldom quantitatively interpreted. Herein, the effects of humic substances [Suwannee River fulvic acid (SRFA) and Suwannee River humic acid (SRHA)] and biomacromolecules [alginate and bovine serum albumin (BSA)] on the aggregation and antimicrobial effects of silver sulfide nanoparticles (Ag2S-NPs) were investigated. The aggregation kinetics of Ag2S-NPs in electrolyte solutions were in agreement with the results based on Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The dynamic light scattering (DLS) results showed that the SRFA, SRHA, alginate and BSA molecules coated on the Ag2S-NPs surfaces. The NOM coating layer prevented salt-induced coagulation of Ag2S-NPs, and the effects of BSA and SRHA on Ag2S-NPs stabilizing were more obvious than that of SRFA and alginate. Flow cytometry analysis results suggested that BSA and SRHA were more effective on alleviating the Ag2S-NPs induced cell (Escherichia coli) membrane damage than SRFA and alginate. After interpreting the electrophoretic mobility (EPM) data of the NOM coated Ag2S-NPs by Ohshima's soft particle theory, it was found that the thickness of the NOM coating layers followed the orders of BSA > SRHA > alginate > SRFA. The E.coli cell membrane damage level was negatively correlated with the thickness and softness of the coating layer. NOM coating may physically alleviate the contact between NPs and E. coli cells and thus attenuate the extent of cell membrane damage caused by the NP-cell interaction. This work provides a new perspective for quantitatively interpreting the influence of NOM on the environmental behaviors and risks of nanomaterials.
Collapse
Affiliation(s)
- Yulei Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tao Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Zhuangsong Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Juan Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Haijun Cheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jin Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Suyan Pang
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Jingyao Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
21
|
Dong Z, Qiu Y, Zhang W, Yang Z, Wei L. Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater. WATER RESEARCH 2018; 143:518-526. [PMID: 30007255 DOI: 10.1016/j.watres.2018.07.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 05/20/2023]
Abstract
A series of one-dimensional column experiments were conducted to investigate the transport and retention of micron-sized plastic spheres (MPs) with diameters of 0.1-2.0 μm in seawater-saturated sand. In seawater with salinity of 35 PSU (practical salinity units), the mass percentages recovered from the effluent (Meff) of the larger MPs increased from 13.6% to 41.3%, as MP size decreased from 2.0 μm to 0.8 μm. This occurred because of the gradual reduction of physical straining effect of MPs in the pores between sands. The smaller MPs (0.6, 0.4, and 0.1 μm) showed the stronger inhibition of MPs mobility, with Meff values of 11.5%, 11.9%, and 9.8%, respectively. This was due to the lower energy barriers (from 108 kBT to 16 kBT) between the smaller MPs and the sand surface, when compared with the larger MPs (from 296 kBT to 161 kBT). In particular, the aggregation of MPs (0.6 or 0.4 μm) triggered a progressive decrease in MP concentration in the effluent. Retention experiments showed that the vertical migration distance of most MP colloids was 0-4 cm at the inlet of column. For 0.6 or 0.4 μm MPs, the particles were concentrated over a 0-2 cm vertical distance. Moreover, the salinity (35-3.5 PSU) did not affect the transport of the larger MPs (2.0-0.8 μm). However, as seawater salinity decreased from 35 PSU to 17.5 or 3.5 PSU, the aggregation of the smaller MPs (0.6-0.1 μm) was dramatically inhibited or completely prevented. Meanwhile, ripening of the sand surface by the MPs (0.6 and 0.4 μm) no longer occurred. By contrast, all MPs in deionized water (0 PSU) achieved complete column breakthroughs because of the strong repulsive energy barrier (from 218 kBT to 4192 kBT) between the MPs and the sand surface. Consequently, we find that the transport and retention of MPs in sandy marine environment strongly relies on both the MP size and the salinity levels.
Collapse
Affiliation(s)
- Zhiqiang Dong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuping Qiu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Wen Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhenglong Yang
- School of Materials Science and Engineering, Jiading Campus, Tongji University, Shanghai 201804, China
| | - Li Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
22
|
Parks AN, Cantwell MG, Katz DR, Cashman MA, Luxton TP, Clar JG, Perron MM, Portis L, Ho KT, Burgess RM. Assessing the release of copper from nanocopper-treated and conventional copper-treated lumber into marine waters II: Forms and bioavailability. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1969-1979. [PMID: 29575127 PMCID: PMC6038930 DOI: 10.1002/etc.4140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/06/2018] [Accepted: 03/22/2018] [Indexed: 05/18/2023]
Abstract
One application of nanocopper is as a wood-preserving pesticide in pressure-treated lumber. Recent research has shown that pressure-treated lumber amended with micronized copper azole (MCA), which contains nanosized copper, releases copper under estuarine and marine conditions. The form of copper released (i.e., ionic, nanocopper [1-100 nm in size]) is not fully understood but will affect the bioavailability and toxicity of the metal. In the present study, multiple lines of evidence, including size fractionation, ion-selective electrode electrochemistry, comparative toxicity, and copper speciation were used to determine the form of copper released from lumber blocks and sawdust. The results of all lines of evidence supported the hypothesis that ionic copper was released from MCA lumber and sawdust, with little evidence that nanocopper was released. For example, copper concentrations in size fractionations of lumber block aqueous leachates including unfiltered, 0.1 μm, and 3 kDa were not significantly different, suggesting that the form of copper released was in the size range operationally defined as dissolved. These results correlated with the ion-selective electrode data which detects only ionic copper. In addition, comparative toxicity testing resulted in a narrow range of median lethal concentrations (221-257 μg/L) for MCA lumber blocks and CuSO4 . We conclude that ionic copper was released from the nanocopper pressure-treated lumber under estuarine and marine conditions. Environ Toxicol Chem 2018;37:1969-1979. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Ashley N Parks
- National Research Council c/o U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| | - Mark G Cantwell
- U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| | - David R Katz
- U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| | - Michaela A Cashman
- University of Rhode Island, Department of Geosciences, Kingston, RI, USA
| | - Todd P Luxton
- U.S. EPA, ORD/NRMRL, Land and Materials Management Division, Cincinnati, OH, USA
| | - Justin G Clar
- Oak Ridge Institute for Science and Education c/o U.S. EPA, ORD/NRMRL/LMMD, Cincinnati, OH, USA
| | - Monique M Perron
- US EPA, OCSPP, Office of Pesticides Programs, Washington, DC, USA
| | - Lisa Portis
- Lifespan Ambulatory Care Center, East Greenwich, RI USA
| | - Kay T Ho
- U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| | - Robert M Burgess
- U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| |
Collapse
|
23
|
Parks AN, Cantwell MG, Katz DR, Cashman MA, Luxton TP, Ho KT, Burgess RM. Assessing the release of copper from nanocopper-treated and conventional copper-treated lumber into marine waters I: Concentrations and rates. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1956-1968. [PMID: 29575152 PMCID: PMC6040830 DOI: 10.1002/etc.4141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/08/2017] [Accepted: 03/13/2018] [Indexed: 05/18/2023]
Abstract
Little is known about the release of metal engineered nanomaterials (ENMs) from consumer goods, including lumber treated with micronized copper. Micronized copper is a recent form of antifouling wood preservative containing nanosized copper particles for use in pressure-treated lumber. The present study investigated the concentrations released and the release rate of total copper over the course of 133 d under freshwater, estuarine, and marine salinity conditions (0, 1, 10, and 30‰) for several commercially available pressure-treated lumbers: micronized copper azole (MCA) at 0.96 and 2.4 kg/m3 , alkaline copper quaternary (ACQ) at 0.30 and 9.6 kg/m3 , and chromated copper arsenate (CCA) at 40 kg/m3 . Lumber was tested as blocks and as sawdust. Overall, copper was released from all treated lumber samples. Under leaching conditions, total release ranged from 2 to 55% of the measured copper originally in the lumber, with release rate constants from the blocks of 0.03 to 2.71 (units per day). Generally, measured release and modeled equilibrium concentrations were significantly higher in the estuarine conditions compared with freshwater or marine salinities, whereas rate constants showed very limited differences between salinities. Furthermore, organic carbon was released during the leaching and demonstrated a significant relationship with released copper concentrations as a function of salinity. The results indicate that copper is released into estuarine/marine waters from multiple wood treatments including lumber amended with nanoparticle-sized copper. Environ Toxicol Chem 2018;37:1956-1968. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Ashley N Parks
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA
| | - Mark G Cantwell
- U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| | - David R Katz
- U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| | - Michaela A Cashman
- University of Rhode Island, Department of Geosciences, Kingston, RI, USA
| | - Todd P Luxton
- U.S. EPA, ORD/NRMRL, Land Remediation and Pollution Control Division, Division, Cincinnati, OH, USA
| | - Kay T Ho
- U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| | - Robert M Burgess
- U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| |
Collapse
|
24
|
Sharma VK, McDonald TJ, Sohn M, Anquandah GAK, Pettine M, Zboril R. Assessment of toxicity of selenium and cadmium selenium quantum dots: A review. CHEMOSPHERE 2017; 188:403-413. [PMID: 28892773 DOI: 10.1016/j.chemosphere.2017.08.130] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/27/2017] [Accepted: 08/24/2017] [Indexed: 05/10/2023]
Abstract
This paper reviews the current understanding of the toxicity of selenium (Se) to terrestrial mammalian and aquatic organisms. Adverse biological effects occur in the case of Se deficiencies, associated with this element having essential biological functions and a narrow window between essentiality and toxicity. Several inorganic species of Se (-2, 0, +4, and +6) and organic species (monomethylated and dimethylated) have been reported in aquatic systems. The toxicity of Se in any given sample depends not only on its speciation and concentration, but also on the concomitant presence of other compounds that may have synergistic or antagonistic effects, affecting the target organism as well, usually spanning 2 or 3 orders of magnitude for inorganic Se species. In aquatic ecosystems, indirect toxic effects, linked to the trophic transfer of excess Se, are usually of much more concern than direct Se toxicity. Studies on the toxicity of selenium nanoparticles indicate the greater toxicity of chemically generated selenium nanoparticles relative to selenium oxyanions for fish and fish embryos while oxyanions of selenium have been found to be more highly toxic to rats as compared to nano-Se. Studies on polymer coated Cd/Se quantum dots suggest significant differences in toxicity of weathered vs. non-weathered QD's as well as a significant role for cadmium with respect to toxicity.
Collapse
Affiliation(s)
- Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX, 77843, USA; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 771 46, Olomouc, Czech Republic.
| | - Thomas J McDonald
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX, 77843, USA
| | - Mary Sohn
- Department of Chemistry, Florida Institute of Technology, 150 West University, Boulevard, Melbourne, FL, 32901, USA
| | - George A K Anquandah
- Department of Chemistry and Biochemistry, St Mary's University, 1 Camino Santa Maria, San Antonio, TX, 78228, USA
| | - Maurizio Pettine
- Istituto di Ricerca sulle Acque (IRSA)/Water Research Institute (IRSA), Consiglio Nazionale delle Ricerche (CNR)/National Research Council, Via Salaria km 29,300 C.P. 10, 00015, Monterotondo, RM, Italy
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 771 46, Olomouc, Czech Republic
| |
Collapse
|
25
|
Feliu N, Sun X, Alvarez Puebla RA, Parak WJ. Quantitative Particle-Cell Interaction: Some Basic Physicochemical Pitfalls. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6639-6646. [PMID: 28379704 DOI: 10.1021/acs.langmuir.6b04629] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
There are numerous reports about particle-cell interaction studies in the literature. Many of those are performed in two-dimensional cell cultures. While the interpretation of such studies seems trivial at first sight, in fact for quantitative analysis some basic physical and physicochemical bases need to be considered. This starts with the dispersion of the particles, for which gravity, Brownian motion, and interparticle interactions need to be considered. The respective strength of these interactions determines whether the particles will sediment, are dispersed, or are agglomerated. This in turn largely influences their interaction with cells. While in the case of well-dispersed particles only a fraction of them will come into contact with cells in a two-dimensional culture, (agglomeration-induced) sedimentation drives the particles toward the cell surface, resulting in enhanced uptake.
Collapse
Affiliation(s)
- Neus Feliu
- Fachbereich Physik, Philipps Universität Marburg , Marburg, Germany
- Department of Laboratory Medicine (LABMED), Karolinska Institutet , Stockholm, Sweden
- Medcom Advance S.A., Barcelona, Spain
| | - Xing Sun
- Fachbereich Physik, Philipps Universität Marburg , Marburg, Germany
| | - Ramon A Alvarez Puebla
- Departamento de Química Física e Inorgánica and Emas, Universitat Rovira i Virgili , Tarragona, Spain
- ICREA, Barcelona, Spain
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg , Marburg, Germany
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|