1
|
Erlandson G, Magzamen S, Sharp JL, Seidel J, Poole JA, Bradford M, Schaeffer JW. Hypertonic Saline Nasal Rinse Intervention: Immunomodulatory Effects in Dairy Workers. J Agromedicine 2025; 30:27-37. [PMID: 39440411 DOI: 10.1080/1059924x.2024.2416425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Increased risk of occupational exposure to bioaerosols has long been recognized in livestock operations including dairy facilities. Spanning the inhalable fraction (0-100 μm), dairy bioaerosols comprise a wide variety of inflammatory components that deposit in the nasopharyngeal region. The resultant inflammatory response from bioaerosol exposure is likely driving the increased prevalence of respiratory disease observed in dairy workers. It is also thought the microbiome of the upper respiratory system may help mediate this inflammation. We investigated the viability of a low-cost hypertonic saline nasal rinse intervention in modulating inflammatory responses in bioaerosol exposed dairy workers and its impact on microbial diversity. METHODS Pre- and post-shift nasal rinses were administered and collected alongside full shift inhalable personal breathing zone (PBZ) samples for each participant for up to 5 consecutive days. Treatment group participants (n = 23) received hypertonic saline rinses while control group participants (n = 22) received normotonic saline rinses. Particulate matter (PM) and endotoxin concentrations were quantified from PBZ samples using gravimetric and enzymatic analytical methods, respectively. Pre- and post-shift rinses were analyzed for pro- and anti-inflammatory markers and microbial diversity using a multiplex assay and 16S rRNA sequencing, respectively. RESULTS PM and endotoxin concentrations were comparable between groups indicating similar exposures. Post-shift pro-inflammatory markers were significantly higher than pre-shift for IL-13 (p = .047), IL-1β (p < .001), IL-6 (p < .001), IL-8 (p < .001), and TNF-α (p = .024). There was no evidence of a difference in log concentrations between intervention group or day among any of the measured inflammatory markers. Anti-inflammatory IL-10 concentrations increased across the 5 sample days, independent of treatment group suggesting tonicity may not be driving the change. However, this result was not significant (p = .217). Nasal microbiome alpha (within sample) and beta (between sample) diversity metrics did not differ significantly between group or day demonstrating no adverse washout intervention effects. CONCLUSION This study provided encouraging results that warrant future research to further evaluate saline nasal rinses as a workplace intervention.
Collapse
Affiliation(s)
- Grant Erlandson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Julia L Sharp
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO, USA
- Sharp Analytics LLC, Fort Collins, CO, USA
| | - James Seidel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jill A Poole
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mary Bradford
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Joshua W Schaeffer
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Environmental and Occupational Health, Colorado School of Public Health, Denver, CO, USA
| |
Collapse
|
2
|
Kwak N, Tsameret S, Gaire TN, Mendoza KM, Cortus EL, Cardona C, Noyes N, Li J. Influence of rainfall on size-resolved bioaerosols around a livestock farm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176184. [PMID: 39276997 DOI: 10.1016/j.scitotenv.2024.176184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Bioaerosols, capable of transporting microorganisms, can impact human health and agriculture by spreading to nearby communities. Their transmissions are influenced by various factors, including weather conditions and human activities. However, the scarcity of detailed, taxon-specific data on bioaerosols' sizes limits our ability to assess risks associated with bioaerosols' generation and spread. This study examined the composition and size of bioaerosols at a livestock farm and a non-agricultural site, focusing on how bioaerosols evolve at different locations and meteorological conditions. The location had an impact on bioaerosol samples. We conducted 16S rRNA gene amplicon sequencing to identify bacteria genera in bioaerosols. We observed consistently higher concentrations of bioaerosols across all sizes at the livestock farm, and samples from the livestock farm exhibited greater bacterial diversity, where we identified Staphylococcus and Corynebacterium as the most abundant species. The effects of rainfall on bioaerosol diversity are complex, suggesting a dynamic interplay between bioaerosol removal and generation. After rainfall, the bioaerosol fraction of particles larger than 2.5 μm increased by nearly 400% compared to post-rain levels. Conversely, for bioaerosols below 1 μm size, the fraction decreased by 50%. Furthermore, the sequencing results showed that precipitation differentially responded to the abundance of various genera in the bioaerosols. Moreover, even for the same genus, the response to precipitation varied depending on the size of the bioaerosols. Our research reveals how size, location, and environmental conditions influence bioaerosol dynamics, enhancing our understanding of bioaerosol formation and transmission.
Collapse
Affiliation(s)
- Nohhyeon Kwak
- Mechanical and Aerospace Engineering, University of Miami, 1251 Memorial Dr., Coral Gables, FL 33146, USA
| | - Shahar Tsameret
- Mechanical and Aerospace Engineering, University of Miami, 1251 Memorial Dr., Coral Gables, FL 33146, USA
| | - Tara N Gaire
- Department of Veterinary Population Medicine, University of Minnesota, 1988 Fitch Ave., St. Paul, MN 55108, USA
| | - Kristelle M Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave., St. Paul, MN 55108, USA
| | - Erin L Cortus
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Carol Cardona
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave., St. Paul, MN 55108, USA
| | - Noelle Noyes
- Department of Veterinary Population Medicine, University of Minnesota, 1988 Fitch Ave., St. Paul, MN 55108, USA
| | - Jiayu Li
- Mechanical and Aerospace Engineering, University of Miami, 1251 Memorial Dr., Coral Gables, FL 33146, USA.
| |
Collapse
|
3
|
Madsen AM, Rasmussen PU, Delsuz MS, Frederiksen MW. A cross-sectional study on occupational hygiene in biowaste plants. Ann Work Expo Health 2024; 68:967-981. [PMID: 39312492 PMCID: PMC11586275 DOI: 10.1093/annweh/wxae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Recycling demands are increasing and new biowaste plants are established. The aim of this study is to obtain knowledge about occupational hygiene in biowaste pretreatment plants. At 6 plants, bioaerosol exposure, hand hygiene, and bioaerosol concentrations in work areas were investigated repeatedly. The total inflammatory potential (TIP) of exposures was measured using the human HL-60 cell line. Exposure to airborne bacteria, bacteria able to grow anaerobic, fungi(37°C), endotoxin, and TIP differed between plants and was lowest in a plant transporting waste in closed pipes compared to plants where waste was delivered on the receiving hall floor. Conversely, high exposures were measured in a plant that also processes compost. All microbial components had an impact on TIP of workers' exposure with main effects of fungi and endotoxin. Seasonality was found for several exposures and TIP, and they were lowest in the winter. Concentrations of bacteria and fungi on workers' hands at the end of the workday were 15 times higher for production than for nonproduction workers. In work areas, the concentrations of airborne fungi were highest in the waste-receiving area. Bacteria (3.2 µm) and anaerobic bacteria (4.0 µm) were present as larger airborne particles than fungi (2.8 µm), and bacteria were largest in the waste-receiving area. The microbial community compositions of exposures and work areas differed between plants and work areas. In conclusion, measures to reduce exposure should focus on the waste-receiving area and on the production workers. Differences in exposures and community compositions were found between seasons, work areas, work groups, and plants.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Pil Uthaug Rasmussen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Mohammad Seeiar Delsuz
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
4
|
Pan YY, Zhu W, Ji XH, He ZK, Shen AG, Popp J. Covalent Self-Assembly of Bio-HCP Nanoparticles for Shell-Programmed Encapsulation of Microbial Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59256-59267. [PMID: 39411856 DOI: 10.1021/acsami.4c12281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Modifying the bacterial surface through grafting functional nanoparticles is a common strategy for programing bacteria. At this moment, the targeted nanoparticles face a dilemma of no multifunctional structure, high toxicity, and weak chemical driving forces, which restrict the broad practical applications. Like a multistage booster of a rocket, we propose a multistage covalent self-assembly strategy to protect, expand, and control the encapsulated shells of microbial cells via biocompatible hyper-cross-linked polymer nanoparticles (Bio-HCP NPs) with internal porosity and surface functional groups. The bacterial surface is enhanced with rich amino groups up to 1010 per cell for specifically grafting nanoparticles. The arming bacteria after first-stage assembly can complete biocatalysis in a highly toxic environment, and as-prepared polymer aggregates (6-20 μm) after third-stage assembly can be accurately counted in an aerosol environment. This nanoparticle encapsulation exhibits strong cell viability from pollutants and specificity from impurity particles, holding promise for various complex application scenarios.
Collapse
Affiliation(s)
- Yao-Yu Pan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Wei Zhu
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Xing-Hu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Zhi-Ke He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Ai-Guo Shen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Member of the Leibniz Center for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Strasse 9, 07745 Jena, Germany
| |
Collapse
|
5
|
Al-Shaarani AAQA, Pecoraro L. A review of pathogenic airborne fungi and bacteria: unveiling occurrence, sources, and profound human health implication. Front Microbiol 2024; 15:1428415. [PMID: 39364169 PMCID: PMC11446796 DOI: 10.3389/fmicb.2024.1428415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Airborne fungi and bacteria have been extensively studied by researchers due to their significant effects on human health. We provided an overview of the distribution and sources of airborne pathogenic microbes, and a detailed description of the detrimental effects that these microorganisms cause to human health in both outdoor and indoor environments. By analyzing the large body of literature published in this field, we offered valuable insights into how airborne microbes influence our well-being. The findings highlight the harmful consequences associated with the exposure to airborne fungi and bacteria in a variety of natural and human-mediated environments. Certain demographic groups, including children and the elderly, immunocompromised individuals, and various categories of workers are particularly exposed and vulnerable to the detrimental effect on health of air microbial pollution. A number of studies performed up to date consistently identified Alternaria, Cladosporium, Penicillium, Aspergillus, and Fusarium as the predominant fungal genera in various indoor and outdoor environments. Among bacteria, Bacillus, Streptococcus, Micrococcus, Enterococcus, and Pseudomonas emerged as the dominant genera in air samples collected from numerous environments. All these findings contributed to expanding our knowledge on airborne microbe distribution, emphasizing the crucial need for further research and increased public awareness. Collectively, these efforts may play a vital role in safeguarding human health in the face of risks posed by airborne microbial contaminants.
Collapse
Affiliation(s)
- Amran A. Q. A. Al-Shaarani
- College of Pharmaceutical Science & Moganshan Research Institute at Deqing County, Zhejiang University of Technology, Hangzhou, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lorenzo Pecoraro
- College of Pharmaceutical Science & Moganshan Research Institute at Deqing County, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
6
|
Madsen AM, Rasmussen PU, Frederiksen MW. Fungal and bacterial species on biowaste workers' hands and inhalation zone, and potential airway deposition. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:290-301. [PMID: 38788497 DOI: 10.1016/j.wasman.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
This study aims to investigate the microbiological working environment of biowaste workers, focusing on airborne fungal and bacterial species exposure, size distribution, and species on workers' hands. The research, conducted across six plants with 45 personal exposure assessments, revealed a total of 150 bacterial species and 47 fungal species on workers' hands, including 19 and 9 species classified in risk class 2 (RC2), respectively. Workers' exposure analysis identified 172 bacterial and 32 fungal species, with several in RC2. In work areas, 55 anaerobic bacterial species belonging to RC2 were found. Different species compositions were observed in various particle size fractions, with the highest species richness for anaerobic bacteria in the fraction potentially depositing in the secondary bronchi and for fungi in the pharynx fraction. The geometric mean aerodynamic diameter (DG) of RC2 anaerobic bacteria was 3.9 µm, <1.6 µm for Streptomyces, 3.4 µm for Aspergillus, and 2.0 µm for Penicillium. Overlapping species were identified on workers' hands, in their exposure, and in work areas, with Bacillus amyloliquefaciens, Leuconostoc mesenteroides, Bacillus cereus, Enterococcus casseliflavus, and Aspergillus niger consistently present. While the majority of RC2 bacterial species lacked documented associations with occupational health problems, certain bacteria and fungi, including Bacillus cereus, Escherichia coli, Enterobacter, Klebsiella pneumonia, Aspergillus fumigatus, Aspergillus niger, Aspergillus flavus, Lichtheimia corymbifera, Lichtheimia ramosa, and Paecilomyces variotii, have previously been linked to occupational health issues. In conclusion, biowaste workers were exposed to a wide range of microorganisms including RC2 species which would deposit in different parts of the airways.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| | - Pil Uthaug Rasmussen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
7
|
Zhang W, Hu W, Zhu Q, Niu M, An N, Feng Y, Kawamura K, Fu P. Hydroxy fatty acids in the surface Earth system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167358. [PMID: 37793460 DOI: 10.1016/j.scitotenv.2023.167358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023]
Abstract
Lipids are ubiquitous and highly abundant in a wide range of organisms and have been found in various types of environmental media. These molecules play a crucial role as organic tracers by providing a chemical perspective on viewing the material world, as well as offering a wealth of information on metabolic activities. Among the diverse lipid compounds, hydroxy fatty acids (HFAs) with one to multiple hydroxyl groups attached to the carbon chain stand out as important biomarkers for different sources of organic matter. HFAs are widespread in nature and are involved in biotransformation and oxidation processes in living organisms. The unique chemical and physical properties attributed to the hydroxyl group make HFAs ideal biomarkers in biomedicine and environmental toxicology, as well as organic geochemistry. The molecular distribution patterns of HFAs can be unique and diagnostic for a given class of organisms, including animals, plants, and microorganisms. Thus, HFAs can act as a valuable proxy for understanding the ecological relationships between different organisms and their environment. Furthermore, HFAs have numerous industrial applications due to their higher reactivity, viscosity, and solvent miscibility. This review paper integrates the latest research on the sources and chemical analyses of HFAs, as well as their applications in industrial/medicinal production and as biomarkers in environmental studies. This review article also provides insights into the biogeochemical cycles of HFAs in the surface Earth system, highlighting the importance of these compounds in understanding the complex interactions between living organisms and the environment.
Collapse
Affiliation(s)
- Wenxin Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China.
| | - Quanfei Zhu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Mutong Niu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Na An
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yuqi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Japan
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
8
|
Pan YY, Zhao BC, Zhang X, Zhu W, Shen AG. "Dramatic Growth" of Microbial Aerosols for Visualization and Accurate Counting of Bioaerosols. Anal Chem 2023; 95:13537-13545. [PMID: 37653720 DOI: 10.1021/acs.analchem.3c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
While the global COVID-19 pandemic has subsided, microbial aerosol detection has become of high concern. Timely, accurate, and highly sensitive monitoring of microbial aerosols in indoor air is the basis for effective prevention and control of infectious diseases. At present, no commercial equipment or reliable technology can simultaneously control the detection time and limit at 6 h and 102 CFU/mL, respectively. Based on the "safety size range" of particulate matter in the air, we propose a new method of microbial dilation detection, which enables the pathogen to grow rapidly and dramatically into a polymeric microsphere, larger in size than the coexisting aerosol particles. "Like a crane standing among chickens", the microorganism can be easily visualized and counted. Different from routine chemical and biological sensing technologies, this method can achieve absolute counting of microbial particles, and the simple principles can be developed into devices for different life scenarios.
Collapse
Affiliation(s)
- Yao-Yu Pan
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P.R. China
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430072, P.R. China
| | - Bai-Chuan Zhao
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430072, P.R. China
| | - Xin Zhang
- Beijing Digital Sky Eye Biotechnology Co., Beijing 100089, P.R. China
| | - Wei Zhu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Ai-Guo Shen
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P.R. China
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
9
|
Seidel J, Magzamen S, Wang YH, Neujahr V, Schaeffer JW. Lessons from Dairy Farmers for Occupational Allergy and Respiratory Disease. Curr Allergy Asthma Rep 2023:10.1007/s11882-023-01081-2. [PMID: 37191901 PMCID: PMC10186320 DOI: 10.1007/s11882-023-01081-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE OF REVIEW Exposure to bioaerosols at dairies has long been associated with allergy, respiratory disease, and decreases in lung function. Recent advancements in exposure assessments have aided our understanding on the size distribution and composition of these bioaerosols, but investigations focusing solely on exposures may overlook important intrinsic factors impacting worker's susceptibility to disease. RECENT FINDINGS In our review, we discuss the most recent studies examining the exposures and genetic factors that contribute to occupational disease in dairy work. We also review more recent concerns in livestock work associated with zoonotic pathogens, antimicrobial resistant genes, and the role of the human microbiome. The studies highlighted in this review demonstrate the need for further research to better understand bioaerosol exposure-response relationships in the context of extrinsic and intrinsic factors, antibiotic-resistant genes, viral pathogens, and the human microbiome to help inform effective interventions that improve respiratory health among dairy farmers.
Collapse
Affiliation(s)
- J Seidel
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO, 80523-1681, USA
| | - S Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO, 80523-1681, USA
| | - Y H Wang
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO, 80523-1681, USA
| | - V Neujahr
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO, 80523-1681, USA
| | - J W Schaeffer
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO, 80523-1681, USA.
| |
Collapse
|
10
|
Erlandson G, Magzamen S, Sharp JL, Mitra S, Jones K, Poole JA, Bradford M, Nonnenmann M, Reynolds SJ, Schaeffer JW. Preliminary investigation of a hypertonic saline nasal rinse as a hygienic intervention in dairy workers. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2023; 20:14-22. [PMID: 36260509 PMCID: PMC10958439 DOI: 10.1080/15459624.2022.2137297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Livestock workers experience an increased burden of bioaerosol-induced respiratory disease including a high prevalence of rhinosinusitis. Dairy operations generate bioaerosols spanning the inhalable size fraction (0-100 μm) containing bacterial constituents such as endotoxin. Particles with an aerodynamic diameter between 10 and 100 μm are known to deposit in the nasopharyngeal region and likely affect the upper respiratory tract. We evaluated the effectiveness of a hypertonic saline nasal lavage in reducing inflammatory responses in dairy workers from a high-volume dairy operation. Inhalable personal breathing zone samples and pre-/post-shift nasal lavage samples from each participant over five consecutive days were collected. The treatment group (n = 5) received hypertonic saline while the control group (n = 5) received normotonic saline. Personal breathing zone samples were analyzed for particulate concentrations and endotoxin using gravimetric and enzymatic methods, respectively. Pro- and anti-inflammatory cytokines (i.e., IL-8, IL-10, and TNF-α) were measured from nasal lavage samples using a multiplex assay. Inhalable dust concentrations ranged from 0.15 to 1.9 mg/m3. Concentrations of both pro- and anti-inflammatory cytokines, specifically IL-6, IL-8, and IL-10, were significantly higher in the treatment group compared to the control group (p < 0.02, p < 0.04, and p < 0.01, respectively). Further analysis of IL-10 anti-inflammatory indicates a positive association between hypertonic saline administration and IL-10 production. This pilot study demonstrates that hypertonic saline nasal lavages were successful in upregulating anti-inflammatory cytokines to support larger interventional studies.
Collapse
Affiliation(s)
- Grant Erlandson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado
| | - Julia L Sharp
- Department of Statistics, Colorado State University, Fort Collins, Colorado
| | - Sanchayita Mitra
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Kenneth Jones
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
- Department of Cell Biology, University of Oklahoma Health Science Campus, Oklahoma City, Oklahoma
| | - Jill A Poole
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mary Bradford
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Matthew Nonnenmann
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | - Stephen J Reynolds
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
- Department of Environmental and Occupational Health, Colorado School of Public Health, Denver, Colorado
- High Plains Intermountain Center for Agricultural Health and Safety, Colorado State University, Fort Collins, Colorado
| | - Joshua W Schaeffer
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
- Department of Environmental and Occupational Health, Colorado School of Public Health, Denver, Colorado
| |
Collapse
|
11
|
Wang Q, Hou Z, Li L, Guo S, Liang H, Li M, Luo H, Wang L, Luo Y, Ren H. Seasonal disparities and source tracking of airborne antibiotic resistance genes in Handan, China. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126844. [PMID: 34399210 DOI: 10.1016/j.jhazmat.2021.126844] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The transmission of airborne antibiotic resistance genes (ARGs) loaded on particle is a significant global public health concern. Up to date, the dispersal pattern of airborne ARGs remains unclear despite their critical role in multiregional transmission. In this study, airborne ARGs loaded on fine particulate matter (PM2.5) and source tracking based on the airflow trajectories were performed by the potential source contribution function (PSCF) and concentration weighted trajectory (CWT) model. The results show that the absolute abundance of ARG subtypes were generally twice times higher in the winter season than that in the summer season, which could be attributable to winter haze events with high particulate matter concentrations in Handan. Exogenous input from serious haze events and local release of ARGs loaded on PM2.5 of air masses may cause higher levels of ARGs in the winter. Moreover, based on the positive correlation between the abundance of ARGs and PM2.5 concentration, a source tracing model of airborne ARGs was proposed to the estimate of ARGs release and dissemination. This study highlights airborne ARGs transmission loaded on PM2.5 of air masses, which facilitating the global spread of antibiotic resistance.
Collapse
Affiliation(s)
- Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Zelin Hou
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Linyun Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Shaoyue Guo
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Haiyin Liang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Menghan Li
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Huixiao Luo
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Litao Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China.
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China; College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
12
|
Kabelitz T, Biniasch O, Ammon C, Nübel U, Thiel N, Janke D, Swaminathan S, Funk R, Münch S, Rösler U, Siller P, Amon B, Aarnink AJA, Amon T. Particulate matter emissions during field application of poultry manure - The influence of moisture content and treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146652. [PMID: 34030313 DOI: 10.1016/j.scitotenv.2021.146652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Along with industry and transportation, agriculture is one of the main sources of primary particulate matter (PM) emissions worldwide. Bioaerosol formation and PM release during livestock manure field application and the associated threats to environmental and human health are rarely investigated. In the temperate climate zone, field fertilization with manure seasonally contributes to local PM air pollution regularly twice per year (spring and autumn). Measurements in a wind tunnel, in the field and computational fluid dynamics (CFD) simulations were performed to analyze PM aerosolization during poultry manure application and the influence of manure moisture content and treatment. A positive correlation between manure dry matter content (DM) and PM release was observed. Therefore, treatments strongly increasing the DM of poultry manure should be avoided. However, high manure DM led to reduced microbial abundance and, therefore, to a lower risk of environmental pathogen dispersion. Considering the findings of PM and microbial measurements, the optimal poultry manure DM range for field fertilization was identified as 50-70%. Maximum PM10 concentrations of approx. 10 mg per m3 of air were measured during the spreading of dried manure (DM 80%), a concentration that is classified as strongly harmful. The modeling of PM aerosolization processes indicated a low health risk beyond a distance of 400 m from the manure application source. The detailed knowledge about PM aerosolization during manure field application was improved with this study, enabling manure management optimization for lower PM aerosolization and pathogenic release into the environment.
Collapse
Affiliation(s)
- Tina Kabelitz
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Oliver Biniasch
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Christian Ammon
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Microbial Genome Research, Inhoffenstraße 7B, 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany; Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Rebenring 56, 38106 Braunschweig, Germany
| | - Nadine Thiel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Microbial Genome Research, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - David Janke
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Senthilathiban Swaminathan
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Roger Funk
- Leibniz Centre for Agricultural Landscape Research (ZALF), Working group Landscape Pedology, Eberswalder Straße 84, 15374 Müncheberg, Germany
| | - Steffen Münch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Working group Landscape Pedology, Eberswalder Straße 84, 15374 Müncheberg, Germany
| | - Uwe Rösler
- Freie Universität Berlin, Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Paul Siller
- Freie Universität Berlin, Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Barbara Amon
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany; University of Zielona Góra, Faculty of Civil Engineering, Architecture and Environmental Engineering, ul. Prof. Z. Szafrana 1, 65-516 Zielona Góra, Poland
| | - André J A Aarnink
- Wageningen University and Research, Department Livestock and Environment, De Elst 1, 6708, WD, Wageningen, the Netherlands
| | - Thomas Amon
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany; Freie Universität Berlin, Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| |
Collapse
|
13
|
Rocha-Melogno L, Ginn O, Bailey ES, Soria F, Andrade M, Bergin MH, Brown J, Gray GC, Deshusses MA. Bioaerosol sampling optimization for community exposure assessment in cities with poor sanitation: A one health cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139495. [PMID: 32425257 PMCID: PMC7233250 DOI: 10.1016/j.scitotenv.2020.139495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 05/20/2023]
Abstract
Evidence of exposure to enteric pathogens through the air and associated risk of infection is scarce in the literature outside of animal- or human-waste handling settings. Cities with poor sanitation are important locations to investigate this aerial exposure pathway as their rapid growth will pose unprecedented challenges in waste management. To address this issue, simple surveillance methods are needed. Therefore, the objectives of this study were to optimize a community exposure bioaerosol surveillance strategy for urban outdoor locations with poor sanitation, and to determine which bioaerosols could contribute to exposure. Passive and active bioaerosol sampling methods were used to characterize the fate and transport of sanitation-related bioaerosols during the rainy and dry seasons in La Paz, Bolivia. Median coliform bacteria fluxes were 71 CFU/(m2 × h) during the rainy season and 64 CFU/(m2 × h) during the dry season, with 38% of the dry season samples testing positive for E. coli. Wind speed, relative humidity and UVB irradiance were identified as significant covariates to consider in bioaerosol transport models in La Paz. Active sampling yielded one positive sample (10%) for human adenovirus (HadV) and one sample (10%) for influenza A virus during the rainy season. HadV was detected at the site with the highest bacterial flux. Four samples (8%) were positive for influenza A virus in the dry season. These findings suggest that aerosols can contribute to community exposure to potentially pathogenic microorganisms in cities with poor sanitation. The use of passive sampling, despite its limitations, can provide quantitative data on microorganisms' viability within realistic timeframes of personal exposure.
Collapse
Affiliation(s)
- Lucas Rocha-Melogno
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, United States
- Duke Global Health Institute, Duke University, Durham, NC 27710, United States
| | - Olivia Ginn
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Emily S Bailey
- Duke Global Health Institute, Duke University, Durham, NC 27710, United States
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, United States
| | - Freddy Soria
- Centro de Investigación en Agua, Energía y Sostenibilidad, Universidad Católica Boliviana San Pablo, La Paz, Bolivia
| | - Marcos Andrade
- Laboratory for Atmospheric Physics, Institute for Physics Research, Universidad Mayor de San Andres, La Paz, Bolivia
- Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD, United States
| | - Michael H Bergin
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, United States
| | - Joe Brown
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Gregory C Gray
- Duke Global Health Institute, Duke University, Durham, NC 27710, United States
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, United States
- Global Health Research Center, Duke-Kunshan University, Kunshan, China
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | - Marc A Deshusses
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, United States
- Duke Global Health Institute, Duke University, Durham, NC 27710, United States
| |
Collapse
|
14
|
A Pilot Study to Assess Inhalation Exposures among Sugarcane Workers in Guatemala: Implications for Chronic Kidney Disease of Unknown Origin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165708. [PMID: 32784623 PMCID: PMC7459472 DOI: 10.3390/ijerph17165708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Background: Sugarcane workers in Central America experience a heavy burden of chronic kidney disease of unknown origin. We conducted a pilot study among worker proxies in Guatemala to characterize exposures to particulate matter, silica, heavy metals, and glyphosate, as well as to examine potential nephrotoxic exposures. Methods: Air, soil, and ash samples were collected and analyzed using scanning electron microscopy, X-ray diffraction, inductively coupled plasma mass spectrometry, and an enzyme-linked immunosorbent assay. Results: The average mass concentration for particulate matter (PM)2.5 and PM100 exposures were 360 µg/m3 (range: 32 to 1500 µg/m3) and 555 µg/m3 (range: 229 to 1170 µg/m3), respectively. The elemental composition of particles was largely silicon. The amount of crystalline silica was below 5 μg, yet the percentage of total silica was ~17% by weight. Putatively, the silica was in the amorphous form. Concentrations of aluminum and calcium ranged from 2–7 μg/m3. Glyphosate was not detectable in analyzed air samples but was detectable at concentrations ranging from 81–165 ppb in soil samples. Conclusion: Sugarcane workers are exposed to high concentrations of particulate matter. Future studies should investigate the potential role of silica, heavy metals, and agrochemicals in the etiology of chronic kidney disease in this population.
Collapse
|
15
|
Root KS, Magzamen S, Sharp JL, Reynolds SJ, Van Dyke M, Schaeffer JW. Application of the Environmental Relative Moldiness Index in Indoor Marijuana Grow Operations. Ann Work Expo Health 2020; 64:728-744. [PMID: 32706020 DOI: 10.1093/annweh/wxaa071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/15/2020] [Accepted: 06/17/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Indoor marijuana grow operations (IMGOs) are increasing due to legalization of recreational and medicinal cannabis at the state level. However, the potential exposures of IMGO workers have not been well studied. Mold exposure has been identified as a major occupational health concern. Mold-specific quantitative polymerase chain reaction (MSQPCR) can provide quantitative exposure data for fungi at the species level. The purpose of this study was to characterize the airborne fungal burden using MSQPCR and to evaluate the applicability of an airborne Environmental Relative Moldiness Index (ERMI) in IMGOs. METHODS Air and dust samples were collected inside and outside the IMGOs and then analyzed via MSQPCR. These data were then used to calculate IMGO-specific ERMI scores. Culturable air samples were collected on agar plates and analyzed via microscopy. Differences were evaluated between indoor and outdoor concentrations, as well as between air and dust samples. The agreement between MSQPCR and culture-based methods was also evaluated. RESULTS Based on the geometric means for non-zero values of each fungal species across all IMGOs, the total airborne concentration was approximately 9100 spore equivalent (SE) m-3 with an interquartile range (IQR) of 222 SE m-3. The indoor/outdoor ratio of geometric means across all 36 species per IMGO ranged from 0.4 to 6.2. Significantly higher indoor concentrations of fungal species, including Aspergillus spp., were observed. An average airborne ERMI score of 7 (IQR = 7.6) indicated a relatively high burden of mold across a majority of operations. The ERMI scores were driven by the high concentrations of Group 1 species with a mean of 15.8 and an IQR of 13. There were 63 additional species identified in the culturable air samples not included in the ERMI. CONCLUSIONS High concentrations of airborne fungi were identified in IMGOs. Our evaluation of the ERMI based on MSQPCR as a rapid diagnostic and risk assessment tool for industrial hygienists in the IMGO setting is equivocal. ERMI did not identify all relevant fungal species associated with this specific occupational environment. We identified several issues with using the ERMI calculation. At this time, the catalog of fungal species needs to optimized for the occupational setting to ensure adequate coverage, especially for those species expected to be found in this burgeoning industry. Further research is necessary to elucidate the link between the ERMI score of airborne samples, worker exposure and health effects in grows to generate an acceptable index score for use in occupational exposure assessments.
Collapse
Affiliation(s)
- Kyle S Root
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.,Department of Epidemiology, Colorado School of Public Health, Denver, CO, USA
| | - Julia L Sharp
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Stephen J Reynolds
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.,Department of Environmental and Occupational Health, Colorado School of Public Health, Denver, CO, USA
| | - Michael Van Dyke
- Department of Environmental and Occupational Health, Colorado School of Public Health, Denver, CO, USA
| | - Joshua W Schaeffer
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.,Department of Environmental and Occupational Health, Colorado School of Public Health, Denver, CO, USA
| |
Collapse
|
16
|
Associations Between Bioaerosol Exposures and Lung Function Changes Among Dairy Workers in Colorado. J Occup Environ Med 2020; 62:424-430. [DOI: 10.1097/jom.0000000000001856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Liu D, Mariman R, Gerlofs-Nijland ME, Boere JF, Folkerts G, Cassee FR, Pinelli E. Microbiome composition of airborne particulate matter from livestock farms and their effect on innate immune receptors and cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1298-1307. [PMID: 31726559 DOI: 10.1016/j.scitotenv.2019.06.217] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
Patients with respiratory diseases in rural areas have been reported to have enhanced responsiveness to ambient particulate matter (PM). In addition to the physical and chemical components, ambient PM can contain microorganisms or parts thereof, referred here as BioPM, that can also contribute to the adverse health effects. This study aimed to characterize the microbial composition of BioPM originating from livestock, and to investigate whether these BioPM can trigger the activation of innate receptors and cells. Coarse (PM2.5-10 μm) and fine (PM<2.5 μm) BioPM samples were collected from indoor chicken, pig and goat farms using the versatile aerosol concentration enrichment system (VACES) connected to a Biosampler. The fungal and bacterial communities were assessed with an amplicon based approach using Next Generation Sequencing (NGS). In parallel, HEK-Blue cells expressing different pattern recognition receptors (Toll like receptors (TLR) 2, 3, 4, 5, 7, 8, 9 and NOD 1, 2) and a human monocytic cell line (MM6) were exposed to BioPM samples from these sites. Distinct airborne microbiota profiles associated with the corresponding animal farm were observed. Moreover, the various BioPM contained mainly ligands for TLR2 and TLR4 resulting in a concentration-dependent increase of pro-inflammatory cytokine secreted by MM6 cells. In addition, we show for the first time that only the pig-derived BioPM induced TLR5 activation. These findings suggest that animal farm specific BioPM trigger distinct inflammatory responses, which may contribute to airway diseases in humans.
Collapse
Affiliation(s)
- Dingyu Liu
- National Institute for Public Health and the Environment, Bilthoven, Netherlands; Institute for Risk Assessment Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Rob Mariman
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | - John F Boere
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, Bilthoven, Netherlands; Institute for Risk Assessment Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Elena Pinelli
- National Institute for Public Health and the Environment, Bilthoven, Netherlands.
| |
Collapse
|
18
|
Schultz AA, Peppard P, Gangnon RE, Malecki KMC. Residential proximity to concentrated animal feeding operations and allergic and respiratory disease. ENVIRONMENT INTERNATIONAL 2019; 130:104911. [PMID: 31238264 DOI: 10.1016/j.envint.2019.104911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Air emissions from concentrated animal feeding operations (CAFO) have been associated with respiratory and allergic symptoms among farm workers, primarily on swine farms. Despite the increasing prevalence of CAFOs, few studies have assessed respiratory health implications among residents living near CAFOs and few have looked at the health impacts of dairy CAFOs. OBJECTIVES The goal of this study was to examine objective and subjective measures of respiratory and allergic health among rural residents living near dairy CAFOs in a general population living in the Upper Midwest of the United States. METHODS Data were from the 2008-2016 Survey of the Health of Wisconsin (SHOW) cohort (n = 5338), a representative, population based sample of rural adults (age 18+). The association between distance to the nearest CAFO and the prevalence of self-reported physician-diagnosed allergies, asthma, episodes of asthma in the last 12 months, and asthma medication use was examined using logistic regression, adjusting for covariates and sampling design. Similarly, the association between distance to the nearest CAFO and lung function, measured using spirometry, was examined using multivariate linear regression. Restricted cubic splines accounted for nonlinear relationships between distance to the nearest CAFO and the aforementioned outcomes. RESULTS Living 1.5 miles from a CAFO was associated with increased odds of self-reported nasal allergies (OR = 2.08; 95% CI: 1.38, 3.14), lung allergies (OR = 2.72; 95% CI: 1.59, 4.66), asthma (OR = 2.67; 95% CI: 1.39, 5.13), asthma medication (OR = 3.31; 95% CI: 1.65 6.62), and uncontrolled asthma, reported as an asthma episode in last 12 months (OR = 2.34; 95% CI: 1.11, 4.92) when compared to living 5 miles from a CAFO. Predicted FEV1 was 7.72% (95% CI: -14.63, -0.81) lower at a residential distance 1.5 miles from a CAFO when compared with a residence distance of 3 miles from a CAFO. CONCLUSIONS Results suggest CAFOs may be an important source of adverse air quality associated with reduced respiratory and allergic health among rural residents living in close proximity to a CAFO.
Collapse
Affiliation(s)
- Amy A Schultz
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Paul Peppard
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Ron E Gangnon
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, United States of America; Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, WI, United States of America
| | - Kristen M C Malecki
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, United States of America.
| |
Collapse
|
19
|
Chen M, Qiu T, Sun Y, Song Y, Wang X, Gao M. Diversity of tetracycline- and erythromycin-resistant bacteria in aerosols and manures from four types of animal farms in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24213-24222. [PMID: 31230244 DOI: 10.1007/s11356-019-05672-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Confined animal feeding operations generate high levels of airborne antibiotic-resistant bacteria, including pathogenic strains that may pollute the local environment or pose a health risk to both animals and workers. However, the communities of airborne antibiotic-resistant bacteria in such operations are not fully understood, especially in fine particles that penetrate deeply into the respiratory system. To address these gaps, manures and aerosols from inside and outside of animal houses were collected, and the characteristics of antibiotic-resistant bacteria were analyzed using Illumina MiSeq sequencing to amplify the V3-V4 region of bacterial 16S rRNA. The results indicated that animal species was the main factor that influenced the bacterial community of both manure and aerosol samples, while antibiotic selection was the major factor that influenced the bacterial community of aerosol samples from the inside of animal houses. An obvious clustering difference was detected between manure and aerosol samples. No significant difference in both alpha- and beta-diversity indices was detected between fine and coarse particles. As a key genus, Staphylococcus was found to drive the difference in the bacterial community of tetracycline-resistant bacteria to total culturable bacteria and erythromycin-resistant bacteria and also the difference in the bacterial community from aerosol to manure samples. Current data would help in evaluating the risk to human and livestock health and tracing the source of airborne antibiotic-resistant bacteria in animal farms.
Collapse
Affiliation(s)
- Mo Chen
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, China
| | - Tianlei Qiu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, China
| | - Yanmei Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, China
| | - Yuan Song
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China.
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Xuming Wang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, China
| | - Min Gao
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, China.
| |
Collapse
|
20
|
de
Rooij MMT, Hoek G, Schmitt H, Janse I, Swart A, Maassen CBM, Schalk M, Heederik DJJ, Wouters IM. Insights into Livestock-Related Microbial Concentrations in Air at Residential Level in a Livestock Dense Area. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7746-7758. [PMID: 31081619 PMCID: PMC6611074 DOI: 10.1021/acs.est.8b07029] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 05/21/2023]
Abstract
Microbial air pollution from livestock farms has raised concerns regarding public health. Little is known about airborne livestock-related microbial levels in residential areas. We aimed to increase insights into this issue. Air measurements were performed in 2014 and 2015 at 61 residential sites in The Netherlands. Quantitative-PCR was used to assess DNA concentrations of selected bacteria (commensals: Escherichia coli and Staphylococcus spp.; a zoonotic pathogen: Campylobacter jejuni) and antimicrobial resistance (AMR) genes ( tetW, mecA) in airborne dust. Mixed models were used to explore spatial associations (temporal adjusted) with livestock-related characteristics of the surroundings. DNA from commensals and AMR genes was detectable even at sites furthest away from farms (1200 m), albeit at lower levels. Concentrations, distinctly different between sites, were strongly associated with the density of farms in the surroundings especially with poultry and pigs. C. jejuni DNA was less prevalent (42% of samples positive). Presence of C. jejuni was solely associated with poultry (OR: 4.7 (95% CI: 1.7-14), high versus low poultry density). Residential exposure to livestock-related bacteria and AMR genes was demonstrated. Identified associations suggest contribution of livestock farms to microbial air pollution in general and attribution differences between farm types. This supports the plausibility of recent studies showing health effects in relation to residential proximity to farms.
Collapse
Affiliation(s)
- Myrna M. T. de
Rooij
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
- Phone: +31302532539; e-mail:
| | - Gerard Hoek
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Heike Schmitt
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Ingmar Janse
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Arno Swart
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Catharina B. M. Maassen
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Marjolijn Schalk
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Dick J. J. Heederik
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Inge M. Wouters
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
21
|
Fan C, Li Y, Liu P, Mu F, Xie Z, Lu R, Qi Y, Wang B, Jin C. Characteristics of airborne opportunistic pathogenic bacteria during autumn and winter in Xi'an, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:834-845. [PMID: 30978545 DOI: 10.1016/j.scitotenv.2019.03.412] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 05/23/2023]
Abstract
Bacteria are ubiquitous throughout the earth's lower atmosphere. Bacteria, especially pathogenic bacteria, play an important role in human health. The diversity, composition, and dynamics of airborne bacteria has been widely studied; however, the characteristics of pathogenic bacteria remain poorly understood. In this study, a high throughput sequencing method was used to explore the airborne opportunistic pathogenic bacteria during autumn and winter in Xi'an, China. An aggregated boosted tree (ABT) was developed to determine the relative influence of environmental factors on the proportions of opportunistic pathogenic bacteria. Results showed that significantly more opportunistic pathogenic bacteria were found in winter than in autumn, and more opportunistic pathogenic bacteria were found in fine particulate matters (<2.5 μm) than in PM10 (<10 μm). However, the composition of opportunistic pathogenic bacteria varied in autumn and winter. PM was the main factor affecting the proportions of opportunistic pathogenic bacteria, and air contaminants (PM, sulfur dioxide, nitrogen oxide, carbon monoxide, and ozone) influenced the proportion of opportunistic pathogenic bacteria more than meteorological factors (relative humidity, temperature, and wind speed). Different factors may be responsible for the variances in opportunistic pathogenic bacterial communities in different seasons. This study may provide a reference to support the control of pathogenic bacteria in urban environments during haze events.
Collapse
Affiliation(s)
- Chunlan Fan
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Yanpeng Li
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Xi'an 710054, PR China.
| | - Pengxia Liu
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Feifei Mu
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Zhengsheng Xie
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Rui Lu
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Yuzhen Qi
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Beibei Wang
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Cheng Jin
- School of Architecture, Chang'an University, Xi'an 710054, China
| |
Collapse
|
22
|
Lam Y, Fry JP, Nachman KE. Applying an environmental public health lens to the industrialization of food animal production in ten low- and middle-income countries. Global Health 2019; 15:40. [PMID: 31196114 PMCID: PMC6567672 DOI: 10.1186/s12992-019-0479-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/09/2019] [Indexed: 01/22/2023] Open
Abstract
Background Industrial food animal production (IFAP) is characterized by dense animal housing, high throughput, specialization, vertical integration, and corporate consolidation. Research in high-income countries has documented impacts on public health, the environment, and animal welfare. IFAP is proliferating in some low- and middle-income countries (LMICs), where increased consumption of animal-source foods has occurred alongside rising incomes and efforts to address undernutrition. However, in these countries IFAP’s negative externalities could be amplified by inadequate infrastructure and resources to document issues and implement controls. Methods Using UN FAOSTAT data, we selected ten LMICs where food animal production is expanding and assessed patterns of IFAP growth. We conducted a mixed methods review to explore factors affecting growth, evidence of impacts, and information gaps; we searched several databases for sources in English, Spanish, and Portuguese. Data were extracted from 450+ sources, comprising peer-reviewed literature, government documents, NGO reports, and news articles. Results In the selected LMICs, not only has livestock production increased, but the nature of expansion appears to have involved industrialized methods, to varying extents based on species and location. Expansion was promoted in some countries by explicit government policies. Animal densities, corporate structure, and pharmaceutical reliance in some areas mirrored conditions found in high-income countries. There were many reported weaknesses in regulation and capacity for enforcement surrounding production and animal welfare. Global trade increasingly influences movement of and access to inputs such as feed. There was a nascent, compelling body of scientific literature documenting IFAP’s negative environmental and public health externalities in some countries. Conclusions LMICs may be attracted to IFAP for economic development and food security, as well as the potential for increasing access to animal-source foods and the role these foods can play in alleviating undernutrition. IFAP, however, is resource intensive. Industrialized production methods likely result in serious negative public health, environmental, and animal welfare impacts in LMICs. To our knowledge, this is the first systematic effort to assess IFAP trends through an environmental public health lens for a relatively large group of LMICs. It contributes to the literature by outlining urgent research priorities aimed at informing national and international decisions about the future of food animal production and efforts to tackle global undernutrition.
Collapse
Affiliation(s)
- Yukyan Lam
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, 111 Market Place, Suite 840, Baltimore, MD, 21202, USA
| | - Jillian P Fry
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, 111 Market Place, Suite 840, Baltimore, MD, 21202, USA.,Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA.,Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
| | - Keeve E Nachman
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, 111 Market Place, Suite 840, Baltimore, MD, 21202, USA. .,Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA. .,Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA. .,Risk Sciences and Public Policy Institute, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., W7007, Baltimore, MD, 21205, USA.
| |
Collapse
|
23
|
Xie J, Jin L, He T, Chen B, Luo X, Feng B, Huang W, Li J, Fu P, Li X. Bacteria and Antibiotic Resistance Genes (ARGs) in PM 2.5 from China: Implications for Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:963-972. [PMID: 30525504 DOI: 10.1021/acs.est.8b04630] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Airborne transmission is one of the environmental dissemination pathways of antibiotic resistance genes (ARGs), and has critical implications for human exposure through inhalation. In this study, we focused on three regions of China to reveal some unique spatiotemporal features of airborne bacteria and ARGs in fine aerosols (PM2.5): (1) greater seasonal variations in the abundance of bacteria and ARGs in temperate urban Beijing than in the subtropical urban areas of the Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions, with regional disparities in bacterial communities; (2) geographical fingerprints of ARG profiles independent of seasonal cycles and land-use gradients within each region; (3) region-independent associations between the targeted ARGs and limited bacterial genera; (4) common correlations between ARGs and mobile genetic elements (MGEs) across regions; and (5) PM2.5 at the higher end of ARG enrichment across various environmental and human media. The spatiotemporally differentiated bacterial communities and ARG abundances, and the compositions, mobility, and potential hosts of ARGs in the atmosphere have strong implications for human inhalational exposure over spatiotemporal scales. By comparing other contributing pathways for the intake of ARGs (e.g., drinking water and food ingestion) in China and the U.S.A., we identified the region-specific importance of inhalation in China as well as country-specific exposure scenarios. Our study thus highlights the significance of inhalation as an integral part of the aggregate exposure pathways of environmentally disseminated ARGs, which, in turn, may help in the formulation of adaptive strategies to mitigate the exposure risks in China and beyond.
Collapse
Affiliation(s)
- Jiawen Xie
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
| | - Ling Jin
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
| | - Tangtian He
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
| | - Baowei Chen
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences , Sun Yat-sen University , Guangzhou 510275 , China
| | - Xiaosan Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology , Nanjing University of Information Science and Technology , Nanjing 210044 , China
| | - Baihuan Feng
- Department of Occupational and Environmental Health , Peking University School of Public Health, and Peking University Institute of Environmental Medicine , Beijing 100871 , China
| | - Wei Huang
- Department of Occupational and Environmental Health , Peking University School of Public Health, and Peking University Institute of Environmental Medicine , Beijing 100871 , China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Pingqing Fu
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
| |
Collapse
|
24
|
Pfister H, Madec L, Cann PL, Costet N, Chouvet M, Jouneau S, Vernhet L. Factors determining the exposure of dairy farmers to thoracic organic dust. ENVIRONMENTAL RESEARCH 2018; 165:286-293. [PMID: 29758401 DOI: 10.1016/j.envres.2018.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Bronchial respiratory diseases are more common in dairy farmers than in the general population, perhaps because the repeated inhalation of organic dust contributes to the development of these disorders. However, the factors determining the exposure of farmers to particles that can enter the lower bronchial tract and interact with it, i.e. the thoracic fraction of the inhalable dust, remain to be identified. We therefore measured the exposure of dairy farmers to thoracic organic dust and identified the farm features and tasks that increased exposure. We measured thoracic particles (n = 110) and farm characteristics and occupational tasks in 29 Brittany dairy farms. The mean (GM) (geometric standard deviation, GSD) concentration of thoracic dust in air inhaled by farmers was 0.24 mg/m3 (2.8) and the concentrations of endotoxins, Gram-positive bacteria and fungi in the thoracic fraction were 128 EU/m3 (4.0), 960 CFU/m3 (6.3) and 690 CFU/m3 (5.4), respectively. Model-based estimates of the association between exposure, farm features and tasks indicated that manual grain and feed handling and mechanical bedding spreading significantly increased exposure to thoracic dust, endotoxins, bacteria and fungi. Exposure to bacteria and fungi was reduced by cowsheds divided into cubicles, whereas using automatic muck scrappers in alleyway and automatic milking tended to increase exposure to bacteria and endotoxins. Finally, exposure to endotoxin and fungi were reduced by warmer farm buildings and well-ventilated buildings having walls with large openings. In conclusions, major occupational tasks and specific farm features determine the exposure of Breton dairy farmers to thoracic organic dust.
Collapse
Affiliation(s)
- Hugo Pfister
- Institut technique des gaz et de l'air, Saint-Grégoire, France; Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Laurent Madec
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France; EHESP School of Public Health, Department of Environmental and Occupational Health and Sanitary Engineering, Rennes, France
| | - Pierre Le Cann
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France; EHESP School of Public Health, Department of Environmental and Occupational Health and Sanitary Engineering, Rennes, France
| | - Nathalie Costet
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Martine Chouvet
- Institut technique des gaz et de l'air, Saint-Grégoire, France
| | - Stéphane Jouneau
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France; Service de Pneumologie, Centre de compétences des maladies pulmonaires rares de Bretagne, Hôpital Pontchaillou, Rennes, France
| | - Laurent Vernhet
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
25
|
Davidson ME, Schaeffer J, Clark ML, Magzamen S, Brooks EJ, Keefe TJ, Bradford M, Roman-Muniz N, Mehaffy J, Dooley G, Poole JA, Mitloehner FM, Reed S, Schenker MB, Reynolds SJ. Personal exposure of dairy workers to dust, endotoxin, muramic acid, ergosterol, and ammonia on large-scale dairies in the high plains Western United States. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2018; 15:182-193. [PMID: 29157144 PMCID: PMC8641559 DOI: 10.1080/15459624.2017.1403610] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Dairy workers experience a high degree of bioaerosol exposure, composed of an array of biological and chemical constituents, which have been tied to adverse health effects. A better understanding of the variation in the magnitude and composition of exposures by task is needed to inform worker protection strategies. To characterize the levels and types of exposures, 115 dairy workers grouped into three task categories on nine farms in the high plains Western United States underwent personal monitoring for inhalable dust, endotoxin, 3-hydroxy fatty acids (3-OHFA), muramic acid, ergosterol, and ammonia through one work shift. Eighty-nine percent of dairy workers were exposed to endotoxin at concentrations exceeding the recommended exposure guidelines (adjusted for a long work shift). The proportion of workers with exposures exceeding recommended guidelines was lower for inhalable dust (12%), and ammonia (1%). Ergosterol exposures were only measurable on 28% of samples, primarily among medical workers and feed handlers. Milking parlor workers were exposed to significantly higher inhalable dust, endotoxin, 3-OHFA, ammonia, and muramic acid concentrations compared to workers performing other tasks. Development of large modern dairies has successfully made progress in reducing worker exposures and lung disease prevalence. However, exposure to endotoxin, dust, and ammonia continues to present a significant risk to worker health on North American dairies, especially for workers in milking parlors. This study was among the first to concurrently evaluate occupational exposure to assayable endotoxin (lipid A), 3-hydroxy fatty acids or 3-OHFA (a chemical measure of cell bound and noncell-bound endotoxins), muramic acid, ergosterol, and ammonia among workers on Western U.S. dairies. There remains a need for cost-effective, culturally acceptable intervention strategies integrated in OHS Risk Management and production systems to further optimize worker health and farm productivity.
Collapse
Affiliation(s)
- Margaret E Davidson
- a Department of Environmental & Radiological Health Sciences , Colorado State University , Fort Collins , Colorado
- b High Plains Intermountain Center for Agricultural Health and Safety , Colorado State University , Fort Collins , Colorado
- f Edith Cowan University , Perth , Western Australila , Australia
| | - Joshua Schaeffer
- a Department of Environmental & Radiological Health Sciences , Colorado State University , Fort Collins , Colorado
- b High Plains Intermountain Center for Agricultural Health and Safety , Colorado State University , Fort Collins , Colorado
| | - Maggie L Clark
- a Department of Environmental & Radiological Health Sciences , Colorado State University , Fort Collins , Colorado
- b High Plains Intermountain Center for Agricultural Health and Safety , Colorado State University , Fort Collins , Colorado
| | - Sheryl Magzamen
- a Department of Environmental & Radiological Health Sciences , Colorado State University , Fort Collins , Colorado
- b High Plains Intermountain Center for Agricultural Health and Safety , Colorado State University , Fort Collins , Colorado
| | - Elizabeth J Brooks
- a Department of Environmental & Radiological Health Sciences , Colorado State University , Fort Collins , Colorado
- b High Plains Intermountain Center for Agricultural Health and Safety , Colorado State University , Fort Collins , Colorado
| | - Thomas J Keefe
- a Department of Environmental & Radiological Health Sciences , Colorado State University , Fort Collins , Colorado
- b High Plains Intermountain Center for Agricultural Health and Safety , Colorado State University , Fort Collins , Colorado
| | - Mary Bradford
- a Department of Environmental & Radiological Health Sciences , Colorado State University , Fort Collins , Colorado
- b High Plains Intermountain Center for Agricultural Health and Safety , Colorado State University , Fort Collins , Colorado
| | - Noa Roman-Muniz
- a Department of Environmental & Radiological Health Sciences , Colorado State University , Fort Collins , Colorado
- c Department of Animal Science , Colorado State University, Colorado State University , Fort Collins , Colorado
| | - John Mehaffy
- a Department of Environmental & Radiological Health Sciences , Colorado State University , Fort Collins , Colorado
- b High Plains Intermountain Center for Agricultural Health and Safety , Colorado State University , Fort Collins , Colorado
| | - Gregory Dooley
- a Department of Environmental & Radiological Health Sciences , Colorado State University , Fort Collins , Colorado
- b High Plains Intermountain Center for Agricultural Health and Safety , Colorado State University , Fort Collins , Colorado
| | - Jill A Poole
- d University of Nebraska Medical Center , Omaha , Nebraska
| | - Frank M Mitloehner
- e Western Center for Agricultural Health and Safety , UC Davis , Davis , California
| | - Sue Reed
- f Edith Cowan University , Perth , Western Australila , Australia
| | - Marc B Schenker
- e Western Center for Agricultural Health and Safety , UC Davis , Davis , California
| | - Stephen J Reynolds
- a Department of Environmental & Radiological Health Sciences , Colorado State University , Fort Collins , Colorado
- b High Plains Intermountain Center for Agricultural Health and Safety , Colorado State University , Fort Collins , Colorado
- f Edith Cowan University , Perth , Western Australila , Australia
| |
Collapse
|
26
|
de Rooij MMT, Heederik DJJ, van Nunen EJHM, van Schothorst IJ, Maassen CBM, Hoek G, Wouters IM. Spatial Variation of Endotoxin Concentrations Measured in Ambient PM 10 in a Livestock-Dense Area: Implementation of a Land-Use Regression Approach. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:017003. [PMID: 29329101 PMCID: PMC6014694 DOI: 10.1289/ehp2252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Results from studies on residential health effects of livestock farming are inconsistent, potentially due to simple exposure proxies used (e.g., livestock density). Accuracy of these proxies compared with measured exposure concentrations is unknown. OBJECTIVES We aimed to assess spatial variation of endotoxin in PM10 (particulate matter ≤10μm) at residential level in a livestock-dense area, compare simple livestock exposure proxies to measured endotoxin concentrations, and evaluate whether land-use regression (LUR) can be used to explain spatial variation of endotoxin. METHODS The study area (3,000 km2) was located in Netherlands. Ambient PM10 was collected at 61 residential sites representing a variety of surrounding livestock-related characteristics. Three to four 2-wk averaged samples were collected at each site. A local reference site was used for temporal variation adjustment. Samples were analyzed for PM10 mass by weighing and for endotoxin by using the limulus amebocyte lysate assay. Three LUR models were developed, first a model based on general livestock-related GIS predictors only, followed by models that also considered species-specific predictors and farm type-specific predictors. RESULTS Variation in concentrations measured between sites was substantial for endotoxin and more limited for PM10 (coefficient of variation: 43%, 8%, respectively); spatial patterns differed considerably. Simple exposure proxies were associated with endotoxin concentrations although spatial variation explained was modest (R2<26%). LUR models using a combination of animal-specific livestock-related characteristics performed markedly better, with up to 64% explained spatial variation. CONCLUSION The considerable spatial variation of ambient endotoxin concentrations measured in a livestock-dense area can largely be explained by LUR modeling based on livestock-related characteristics. Application of endotoxin LUR models seems promising for residential exposure estimation within health studies. https://doi.org/10.1289/EHP2252.
Collapse
Affiliation(s)
- Myrna M T de Rooij
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Dick J J Heederik
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Erik J H M van Nunen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Isabella J van Schothorst
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Catharina B M Maassen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Gerard Hoek
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Inge M Wouters
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|