1
|
Malinowski N, Morgan MJ, Wylie J, Walsh T, Domingos S, Metcalfe S, Kaksonen AH, Barnhart EP, Mueller R, Peyton BM, Puzon GJ. Prokaryotic microbial ecology as an ecosurveillance tool for eukaryotic pathogen colonisation: Meiothermus and Naegleria fowleri. WATER RESEARCH 2024; 254:121426. [PMID: 38471203 DOI: 10.1016/j.watres.2024.121426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Naegleria fowleri has been detected in drinking water distribution systems (DWDS) in Australia, Pakistan and the United States and is the causative agent of the highly fatal disease primary amoebic meningoencephalitis. Previous small scale field studies have shown that Meiothermus may be a potential biomarker for N. fowleri. However, correlations between predictive biomarkers in small sample sizes often breakdown when applied to larger more representative datasets. This study represents one of the largest and most rigorous temporal investigations of Naegleria fowleri colonisation in an operational DWDS in the world and measured the association of Meiothermus and N. fowleri over a significantly larger space and time in the DWDS. A total of 232 samples were collected from five sites over three-years (2016-2018), which contained 29 positive N. fowleri samples. Two specific operational taxonomic units assigned to M. chliarophilus and M. hypogaeus, were significantly associated with N. fowleri presence. Furthermore, inoculation experiments demonstrated that Meiothermus was required to support N. fowleri growth in field-collected biofilms. This validates Meiothermus as prospective biological tool to aid in the identification and surveillance of N. fowleri colonisable sites.
Collapse
Affiliation(s)
- Natalia Malinowski
- CSIRO Environment, Floreat Park, WA, Australia; Water Corporation of Western Australia, Leederville, WA, Australia
| | | | - Jason Wylie
- CSIRO Environment, Floreat Park, WA, Australia
| | - Tom Walsh
- CSIRO Environment, Canberra, ACT, Australia
| | - Sergio Domingos
- Water Corporation of Western Australia, Leederville, WA, Australia
| | | | | | - Elliott P Barnhart
- U.S. Geological Survey, Wyoming-Montana Water Science Center, Helena, Montana (MT), USA
| | - Rebecca Mueller
- Centre for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Brent M Peyton
- Centre for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | | |
Collapse
|
2
|
Barnhart E, Kinsey SM, Wright PR, Caldwell SL, Hill V, Kahler A, Mattioli M, Cornman RS, Iwanowicz D, Eddy Z, Halonen S, Mueller R, Peyton BM, Puzon GJ. Naegleria fowleri Detected in Grand Teton National Park Hot Springs. ACS ES&T WATER 2024; 4:628-637. [PMID: 38356928 PMCID: PMC10862551 DOI: 10.1021/acsestwater.3c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024]
Abstract
The free-living thermophilic amoeba Naegleria fowleri (N. fowleri) causes the highly fatal disease primary amoebic meningoencephalitis. The environmental conditions that are favorable to the growth and proliferation of N. fowleri are not well-defined, especially in northern regions of the United States. In this study, we used culture-based methods and multiple molecular approaches to detect and analyzeN. fowleri and other Naegleria spp. in water, sediment, and biofilm samples from five hot spring sites in Grand Teton National Park, Wyoming, U.S.A. These results provide the first detections of N. fowleri in Grand Teton National Park and provide new insights into the distribution of pathogenic N. fowleri and other nonpathogenic Naegleria spp. in natural thermal water systems in northern latitudes.
Collapse
Affiliation(s)
- Elliott
P. Barnhart
- U.S.
Geological Survey, Wyoming/Montana Water Science Center, 3162 Bozeman Ave., Helena, Montana 59601, United States
| | - Stacy M. Kinsey
- U.S.
Geological Survey, Wyoming/Montana Water Science Center, 3162 Bozeman Ave., Helena, Montana 59601, United States
| | - Peter R. Wright
- U.S.
Geological Survey, Wyoming/Montana Water Science Center, 3162 Bozeman Ave., Helena, Montana 59601, United States
| | - Sara L. Caldwell
- U.S.
Geological Survey, Wyoming/Montana Water Science Center, 3162 Bozeman Ave., Helena, Montana 59601, United States
| | - Vince Hill
- U.S.
Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, Georgia 30333, United States
| | - Amy Kahler
- U.S.
Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, Georgia 30333, United States
| | - Mia Mattioli
- U.S.
Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, Georgia 30333, United States
| | - Robert S. Cornman
- U.S.
Geological Survey, Fort Collins Science Center, 2150 Centre Ave., Bldg. C, Fort Collins, Colorado 80526, United States
| | - Deborah Iwanowicz
- U.S.
Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road, Kearneysville, West Virginia 25430, United States
| | - Zachary Eddy
- U.S.
Geological Survey, Wyoming/Montana Water Science Center, 3162 Bozeman Ave., Helena, Montana 59601, United States
| | - Sandra Halonen
- Department
of Microbiology & Cell Biology, Montana
State University, P.O. Box 173520, Bozeman, Montana 59717, United States
| | - Rebecca Mueller
- Western Regional
Research Center, U.S. Department of Agriculture
Agricultural Research Service, 800 Buchanan St., Albany, California 94710, United States
| | - Brent M. Peyton
- Center
for Biofilm Engineering, Chemical and Biochemical Engineering Department, Montana State University, 366 Barnard Hall, Bozeman Montana 59717, United States
| | - Geoffrey J Puzon
- CSIRO
Environment, Private
Bag No. 5, Wembley, Western
Australia 6913, Australia
| |
Collapse
|
3
|
Ward L, Sherchan SP. Surveillance of Naegleria fowleri in Louisiana's public water systems. JOURNAL OF WATER AND HEALTH 2023; 21:1627-1631. [PMID: 38017594 PMCID: wh_2023_040 DOI: 10.2166/wh.2023.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The free-living amoeba Naegleria fowleri (Nf) inhabits soil and natural waters worldwide: it is thermophilic and thrives at temperatures up to 45 °C and in a multitude of environments. Three deaths in Louisiana were attributed to primary amoebic meningoencephalitis (PAM) caused by Nf infection in 2011 and 2013. Following these incidents, public water systems are now monitored for the presence of Nf in Louisiana. From 2014 to 2018, 29% (27/93) of samples collected showed positive for Nf and 68% (63/93) showed all thermophilic amoeba culture. Ten raw water sources and 17 distribution water systems tested positive. The year 2017 showed the highest number of samples with Nf (n = 10) followed by nine samples in 2015. As climate change increases surface water temperatures, continued testing for Nf prevalence will be an important facet of water monitoring and will need to extend into locations farther north than the current most common range.
Collapse
Affiliation(s)
- Lauren Ward
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, USA; Center of Research Excellence in Wastewater based Epidemiology, Morgan State University, Baltimore, MD, USA E-mail:
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, USA; Center of Research Excellence in Wastewater based Epidemiology, Morgan State University, Baltimore, MD, USA
| |
Collapse
|
4
|
Zurita-Artaloitia JM, Rivera J, Vinuesa P. Extensive Cryptic Diversity and Ecological Associations Uncovered among Mexican and Global Collections of Naegleria and Vermamoeba Species by 18S Ribosomal DNA, Internal Transcribed Spacer, and Cytochrome Oxidase Subunit I Sequence Analysis. Microbiol Spectr 2023; 11:e0379522. [PMID: 36943092 PMCID: PMC10100766 DOI: 10.1128/spectrum.03795-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/26/2023] [Indexed: 03/23/2023] Open
Abstract
Free-living amoebae (FLA) are phagocytic protists that play crucial roles in microbial communities as significant microbial grazers. However, our current knowledge of their diversity, ecology, and population genetic structures is marginal due to the shallow and biased sampling of ecosystems and the use of few, poorly resolving molecular markers. Thirty-two FLA were isolated from soil and water samples collected across representative ecosystems of the State of Morelos in Central Mexico, including the drinking water distribution system (DWDS) from the state capital. We classified our isolates as members of Acanthamoeba, Vermamoeba, Naegleria, and Tetramitus by 18S ribosomal DNA (rDNA) sequencing. Vermamoeba isolates were recovered exclusively from the DWDS samples. In contrast, Naegleria strains displayed a broad distribution in soil and water samples across the natural ecosystems. We used a combination of phylogenetic and population genetic analyses of internal transcribed spacer (ITS) and cytochrome oxidase subunit I (COI) sequences from our isolates and a comprehensive set of reference sequences to analyze the currently known diversity of Naegleria spp. Significant associations were uncovered between the most prevalent lineages of Naegleria and Vermamoeba and broad ecological and geographical variables at regional and global levels. The population structure and cryptic diversity within the Naegleria galeacystis-Naegleria americana and Vermamoeba vermiformis species complexes were thoroughly analyzed. Our results prove that the genus Vermamoeba, which was previously thought to consist of only one species, actually encompasses at least seven widely distributed species, as indicated by consistent evidence from Bayesian phylogenetics, two species-delimitation programs, and population genetics analyses. IMPORTANCE Our study sheds new light on the population genetic structure of V. vermiformis and diverse Naegleria species. Using improved molecular markers and advanced analytical approaches, we discovered that N. americana, previously considered a single species, actually contains multiple distinct lineages, as revealed by COI sequencing. These lineages are highly differentiated, with little gene flow between them. Our findings demonstrate that the genus Vermamoeba holds multiple cryptic species, requiring a significant taxonomic revision in light of multilocus sequence analyses. These results advance our understanding of the ecology, molecular systematics, and biogeography of these genera and species complexes at both regional and global scales. This study has significant implications for diagnosing amoebal infections and evaluating health risks associated with FLA in domestic and recreational waters.
Collapse
Affiliation(s)
| | - Javier Rivera
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
5
|
Miko S, Cope JR, Hlavsa MC, Ali IKM, Brown TW, Collins JP, Greeley RD, Kahler AM, Moore KO, Roundtree AV, Roy S, Sanders LL, Shah V, Stuteville HD, Mattioli MC. A Case of Primary Amebic Meningoencephalitis Associated with Surfing at an Artificial Surf Venue: Environmental Investigation. ACS ES&T WATER 2023; 3:1126-1133. [PMID: 37213412 PMCID: PMC10193442 DOI: 10.1021/acsestwater.2c00592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Naegleria fowleri is a thermophilic ameba found in freshwater that causes primary amebic meningoencephalitis (PAM) when it enters the nose and migrates to the brain. In September 2018, a 29-year-old man died of PAM after traveling to Texas. We conducted an epidemiologic and environmental investigation to identify the water exposure associated with this PAM case. The patient's most probable water exposure occurred while surfing in an artificial surf venue. The surf venue water was not filtered or recirculated; water disinfection and water quality testing were not documented. N. fowleri and thermophilic amebae were detected in recreational water and sediment samples throughout the facility. Codes and standards for treated recreational water venues open to the public could be developed to address these novel venues. Clinicians and public health officials should also consider novel recreational water venues as a potential exposure for this rare amebic infection.
Collapse
Affiliation(s)
- Shanna Miko
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30333
| | - Jennifer R. Cope
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30333
| | - Michele C. Hlavsa
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30333
| | - Ibne Karim M. Ali
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30333
| | - Travis W. Brown
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30333
| | - Jennifer P. Collins
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30333
| | | | - Amy M. Kahler
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30333
| | - Kathleen O. Moore
- Texas Department of State Health Services, P.O. Box 149347, Austin, TX 78714-9347
| | - Alexis V. Roundtree
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30333
- Chenega Enterprise System & Solutions, 609 Independence Parkway Suite 210, Chesapeake, VA 23320
| | - Shantanu Roy
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30333
| | - Lacey L. Sanders
- Waco-McLennan County Public Health District; 225 W Waco Dr, Waco, TX 76707
| | - Vaidehi Shah
- Waco-McLennan County Public Health District; 225 W Waco Dr, Waco, TX 76707
| | - Haylea D. Stuteville
- Texas Department of State Health Services, P.O. Box 149347, Austin, TX 78714-9347
| | - Mia C. Mattioli
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30333
| |
Collapse
|
6
|
Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, Miller HC, Morgan MJ, Tsaousis AD, Velle K, Vargová R, Záhonová K, Najle SR, MacIntyre G, Muller N, Wittwer M, Zysset-Burri DC, Eliáš M, Slamovits CH, Weirauch MT, Fritz-Laylin L, Marciano-Cabral F, Puzon GJ, Walsh T, Chiu C, Dacks JB. Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri. BMC Biol 2021; 19:142. [PMID: 34294116 PMCID: PMC8296547 DOI: 10.1186/s12915-021-01078-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The opportunistic pathogen Naegleria fowleri establishes infection in the human brain, killing almost invariably within 2 weeks. The amoeba performs piece-meal ingestion, or trogocytosis, of brain material causing direct tissue damage and massive inflammation. The cellular basis distinguishing N. fowleri from other Naegleria species, which are all non-pathogenic, is not known. Yet, with the geographic range of N. fowleri advancing, potentially due to climate change, understanding how this pathogen invades and kills is both important and timely. RESULTS Here, we report an -omics approach to understanding N. fowleri biology and infection at the system level. We sequenced two new strains of N. fowleri and performed a transcriptomic analysis of low- versus high-pathogenicity N. fowleri cultured in a mouse infection model. Comparative analysis provides an in-depth assessment of encoded protein complement between strains, finding high conservation. Molecular evolutionary analyses of multiple diverse cellular systems demonstrate that the N. fowleri genome encodes a similarly complete cellular repertoire to that found in free-living N. gruberi. From transcriptomics, neither stress responses nor traits conferred from lateral gene transfer are suggested as critical for pathogenicity. By contrast, cellular systems such as proteases, lysosomal machinery, and motility, together with metabolic reprogramming and novel N. fowleri proteins, are all implicated in facilitating pathogenicity within the host. Upregulation in mouse-passaged N. fowleri of genes associated with glutamate metabolism and ammonia transport suggests adaptation to available carbon sources in the central nervous system. CONCLUSIONS In-depth analysis of Naegleria genomes and transcriptomes provides a model of cellular systems involved in opportunistic pathogenicity, uncovering new angles to understanding the biology of a rare but highly fatal pathogen.
Collapse
Affiliation(s)
- Emily K Herman
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Alex Greninger
- Laboratory Medicine and Medicine / Infectious Diseases, UCSF-Abbott Viral Diagnostics and Discovery Center, UCSF Clinical Microbiology Laboratory UCSF School of Medicine, San Francisco, USA
- Department of Laboratory Medicine, University of Washington Medical Center, Montlake, USA
| | - Mark van der Giezen
- Centre for Organelle Research, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Michael L Ginger
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| | - Inmaculada Ramirez-Macias
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Department of Cardiology, Hospital Clinico Universitario Virgen de la Arrixaca. Instituto Murciano de Investigación Biosanitaria. Centro de Investigación Biomedica en Red-Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Haylea C Miller
- CSIRO Land and Water, Centre for Environment and Life Sciences, Private Bag No.5, Wembley, Western Australia 6913, Australia
- CSIRO, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, WA, Australia
| | - Matthew J Morgan
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| | | | - Katrina Velle
- Department of Biology, University of Massachusetts, Amherst, UK
| | - Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Kristína Záhonová
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Sebastian Rodrigo Najle
- Institut de Biologia Evolutiva (UPF-CSIC), Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Catalonia, Spain
| | - Georgina MacIntyre
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Norbert Muller
- Institute of Parasitology, Vetsuisse Faculty Bern, University of Bern, Bern, Switzerland
| | - Mattias Wittwer
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland
| | - Denise C Zysset-Burri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Canada
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | | | - Francine Marciano-Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Geoffrey J Puzon
- CSIRO Land and Water, Centre for Environment and Life Sciences, Private Bag No.5, Wembley, Western Australia 6913, Australia
| | - Tom Walsh
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| | - Charles Chiu
- Laboratory Medicine and Medicine / Infectious Diseases, UCSF-Abbott Viral Diagnostics and Discovery Center, UCSF Clinical Microbiology Laboratory UCSF School of Medicine, San Francisco, USA
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Department of Life Sciences, The Natural History Museum, London, UK.
| |
Collapse
|
7
|
Zhou X, Zhang K, Zhang T, Cen C, Pan R. Biotransformation of halophenols into earthy-musty haloanisoles: Investigation of dominant bacterial contributors in drinking water distribution systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123693. [PMID: 33264884 DOI: 10.1016/j.jhazmat.2020.123693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/18/2020] [Accepted: 08/08/2020] [Indexed: 06/12/2023]
Abstract
Microorganisms in drinking water distribution systems (DWDSs) can O-methylate toxic halophenols (HPs) into earthy-musty haloanisoles (HAs). However, the dominant HA-producing bacterial species and their O-methylation properties are still unknown. In this study, eight bacterial strains from DWDS were isolated and the community abundances of the related genera in bulk water and biofilms as well as their O-methylation properties were investigated. Among the genera discovered in this study, Sphingomonas and Pseudomonas are dominant and play important roles in DWDSs. All bacteria could simultaneously convert five HPs to the corresponding HAs. Two Sphingomonas ursincola strains mainly produced 2,3,6-trichloroanisole (2,3,6-TCA) (2.48 × 10-9-1.18 × 10-8 ng/CFU), 2,4,6-trichloroanisole (2,4,6-TCA) (8.12 × 10-10-3.11 × 10-9 ng/CFU) and 2,4,6-tribromoanisole (2,4,6-TBA) (2.95 × 10-9-3.21 × 10-9 ng/CFU), while two Pseudomonas moraviensis strains preferred to generate 2-monochloroanisole (2-MCA) (1.19 × 10-9-3.70 × 10-9 ng/CFU) and 2,4-dichloroanisole (2,4-DCA) (3.81 × 10-9-1.20 × 10-8 ng/CFU). Among the chloramphenicol-susceptible strains, four strains contained inducible O-methyltransferases (OMTs), while the O-methylations of the others were expressed constitutively. All bacteria could use S-adenosyl methionine as methyl donor. Potential taste and odor (T & O) risks of five HAs in DWDS followed an order of 2,4,6-TBA > 2,4,6-TCA > 2,3,6-TCA > 2,4-DCA > 2-MCA. The recommended 2,4,6-TCP criteria for T & O control is 0.003-0.07 mg/L.
Collapse
Affiliation(s)
- Xinyan Zhou
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kejia Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Tuqiao Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Cheng Cen
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Renjie Pan
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|
8
|
Maciver SK, McLaughlin PJ, Apps DK, Piñero JE, Lorenzo-Morales J. Opinion: Iron, Climate Change and the ‘Brain Eating Amoeba’ Naegleria fowleri. Protist 2021. [DOI: 10.1016/j.protis.2020.125791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Stahl LM, Olson JB. Environmental abiotic and biotic factors affecting the distribution and abundance of Naegleria fowleri. FEMS Microbiol Ecol 2020; 97:6006869. [PMID: 33242082 PMCID: PMC8068756 DOI: 10.1093/femsec/fiaa238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Naegleria fowleri is a free-living protozoan that resides in soil and freshwater. Human intranasal amoebae exposure through water or potentially dust particles can culminate in primary amoebic meningoencephalitis, which generally causes death. While many questions remain regarding pathogenesis, the microbial ecology of N. fowleri is even less understood. This review outlines current knowledge of the environmental abiotic and biotic factors that affect the distribution and abundance of N. fowleri. Although the impacts of some abiotic factors remain poorly investigated or inconclusive, N. fowleri appears to have a wide pH range, low salinity tolerance and thermophilic preference. From what is known about biotic factors, the amoebae preferentially feed upon bacteria and are preyed upon by other free-living amoebae. Additional laboratory and environmental studies are needed to fill in knowledge gaps, which are crucial for surveillance and management of N. fowleri in freshwaters. As surface water temperatures increase with climate change, it is likely that this amoeba will pose a greater threat to human health, suggesting that identifying its abiotic and biotic preferences is critical to mitigating this risk.
Collapse
Affiliation(s)
- Leigha M Stahl
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Julie B Olson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
10
|
Gonçalves DDS, Ferreira MDS, Guimarães AJ. Extracellular Vesicles from the Protozoa Acanthamoeba castellanii: Their Role in Pathogenesis, Environmental Adaptation and Potential Applications. Bioengineering (Basel) 2019; 6:bioengineering6010013. [PMID: 30717103 PMCID: PMC6466093 DOI: 10.3390/bioengineering6010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/22/2019] [Accepted: 01/26/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous compartments of distinct cellular origin and biogenesis, displaying different sizes and include exosomes, microvesicles, and apoptotic bodies. The EVs have been described in almost every living organism, from simple unicellular to higher evolutionary scale multicellular organisms, such as mammals. Several functions have been attributed to these structures, including roles in energy acquisition, cell-to-cell communication, gene expression modulation and pathogenesis. In this review, we described several aspects of the recently characterized EVs of the protozoa Acanthamoeba castellanii, a free-living amoeba (FLA) of emerging epidemiological importance, and compare their features to other parasites' EVs. These A. castellanii EVs are comprised of small microvesicles and exosomes and carry a wide range of molecules involved in many biological processes like cell signaling, carbohydrate metabolism and proteolytic activity, such as kinases, glucanases, and proteases, respectively. Several biomedical applications of these EVs have been proposed lately, including their use in vaccination, biofuel production, and the pharmaceutical industry, such as platforms for drug delivery.
Collapse
Affiliation(s)
- Diego de Souza Gonçalves
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Rio de Janeiro 24210-130, Brazil.
| | - Marina da Silva Ferreira
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-970, Brazil.
| | - Allan J Guimarães
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Rio de Janeiro 24210-130, Brazil.
| |
Collapse
|
11
|
Ren K, Xue Y, Rønn R, Liu L, Chen H, Rensing C, Yang J. Dynamics and determinants of amoeba community, occurrence and abundance in subtropical reservoirs and rivers. WATER RESEARCH 2018; 146:177-186. [PMID: 30243060 DOI: 10.1016/j.watres.2018.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Free-living amoebae are widespread in freshwater ecosystems. Although many studies have investigated changes in their communities across space, the temporal variability and the drivers of community changes across different habitat types are poorly understood. A total of 108 surface water samples were collected on a seasonal basis from four reservoirs and two rivers in Xiamen city, subtropical China. We used high throughput sequencing and qPCR methods to explore the occurrence and abundance of free-living amoebae. In total, 335 amoeba OTUs were detected, and only 32 OTUs were shared by reservoir and river habitats. The reservoirs and rivers harbored unique amoebae communities and exhibited distinct seasonal patterns in community composition. High abundance of the 18S rRNA gene of Acanthamoeba was observed in spring and summer, whereas the abundance was low in autumn and winter. In addition, the abundance of Hartmannella was significantly higher when isolated from reservoirs in summer/autumn and from river in spring/summer. Moreover, the temporal patterns of amoebae communities were significantly associated with water temperature, indicating that temperature is an important variable controlling the ecological dynamics of amoebae populations. However, our comparative analysis indicated that both environmental selection, and neutral processes, significantly contributed to amoeba community assembly. The genera detected here include pathogenic species and species that can act as vectors for microbial pathogens, which can cause human infections.
Collapse
Affiliation(s)
- Kexin Ren
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuanyuan Xue
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Regin Rønn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Arctic Station, University of Copenhagen, Qeqertarsuaq, Greenland; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lemian Liu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and the Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
12
|
Miller HC, Morgan MJ, Walsh T, Wylie JT, Kaksonen AH, Puzon GJ. Preferential feeding in Naegleria fowleri; intracellular bacteria isolated from amoebae in operational drinking water distribution systems. WATER RESEARCH 2018; 141:126-134. [PMID: 29783165 DOI: 10.1016/j.watres.2018.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
The amoeba Naegleria fowleri is the causative agent of the highly fatal disease, primary amoebic meningoencephalitis, and estimated to cause 16 deaths per year in the United States alone. Colonisation of drinking water distribution systems (DWDSs) by the N. fowleri is a significant public health issue. Understanding the factors which enable this pathogen to colonise and thrive in DWDSs is critical for proper management. The microbial ecology within DWDSs may influence the ability of N. fowleri to colonise DWDSs by facilitating the availability of an appropriate food source. Using biofilm samples obtained from operational DWDSs, 16S rRNA amplicon metabarcoding was combined with genus-specific PCR and Sanger sequencing of intracellular associated bacteria from isolated amoeba and their parental biofilms to identify Meiothermus chliarophilus as a potential food source for N. fowleri. Meiothermus was confirmed as a food source for N. fowleri following successful serial culturing of axenic N. fowleri with M. chliarophilus or M. ruber as the sole food source. The ability to identify environmental and ecological conditions favourable to N. fowleri colonisation, including the detection of appropriate food sources such as Meiothermus, could provide water utilities with a predictive tool for managing N. fowleri colonisation within the DWDS.
Collapse
Affiliation(s)
- Haylea C Miller
- CSIRO Land and Water, Private Bag No.5, Wembley, Western Australia 6913, Australia; School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Matthew J Morgan
- CSIRO Land and Water, Black Mountain Laboratories, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Tom Walsh
- CSIRO Land and Water, Black Mountain Laboratories, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Jason T Wylie
- CSIRO Land and Water, Private Bag No.5, Wembley, Western Australia 6913, Australia
| | - Anna H Kaksonen
- CSIRO Land and Water, Private Bag No.5, Wembley, Western Australia 6913, Australia; School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Geoffrey J Puzon
- CSIRO Land and Water, Private Bag No.5, Wembley, Western Australia 6913, Australia.
| |
Collapse
|