1
|
Jiang W, Zhao Z, Zhao Q, He X, Chen H, Wu G, Zhang XX. Enantioselective Toxicity of Ibuprofen to Earthworms: Unraveling the Effect and Mechanism on Enhanced Toxicity of S-Ibuprofen Over R-Ibuprofen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:756-766. [PMID: 39707965 DOI: 10.1021/acs.est.4c08655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
With the global implementation of wastewater reuse, accurately assessing the soil ecological risk of chiral pollutants from wastewater necessitates a comprehensive understanding of their enantioselective toxicity to soil animals. Ibuprofen (IBU) is the most prevalent chiral pharmaceutical in municipal wastewater. However, its enantioselective toxicity toward soil animals and the underlying mechanism remain largely unknown. In this study, the toxicity of IBU enantiomers, S-IBU and R-IBU, to earthworms was evaluated at environmentally relevant concentrations (10 and 100 μg/L), simulating wastewater reuse for irrigation. The results demonstrated that IBU adversely affects the growth, reproduction, regeneration, defense systems, and metabolic processes of earthworms, with S-IBU exhibiting stronger toxic effects than R-IBU. The bioavailability assessment revealed that S-IBU was more readily absorbed by earthworms and converted to its enantiomer within earthworms than R-IBU. This is consistent with molecular docking results showing that S-IBU had stronger affinities for functional proteins associated with xenobiotic transport and transformation. The findings of this study highlight that S-IBU poses a higher risk than R-IBU to soil organisms under wastewater reuse scenarios and that the chirality of chemical pollutants in wastewater deserves more attention when implementing wastewater reuse. In addition, our study underscores that the differences in bioavailability and bioactivity may account for the enantioselective toxicity of chiral pollutants.
Collapse
Affiliation(s)
- Wenqi Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zeyu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qi Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, China
| | - Haonan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
da Silva Viana de Souza H, Kumar A, Nugegoda D. Multigenerational effects of individual and binary mixtures of two commonly used NSAIDs on Daphnia carinata. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-024-02824-1. [PMID: 39755989 DOI: 10.1007/s10646-024-02824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 01/07/2025]
Abstract
Pharmaceuticals, including non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen (IBU) and naproxen (NPX), are widely used for medical purposes but have also become prevalent environmental contaminants. However, there is limited understanding of their effects on aquatic organisms, especially regarding multigenerational and mixture exposures. This study aimed to evaluate the toxicological impacts of ibuprofen and naproxen, individually and in combination, on three generations of Daphnia carinata, a freshwater organism. Daphnids were exposed to environmentally relevant concentrations of ibuprofen and naproxen (0.1, 0.5, 2.5 µg/L and 0.1 + 0.1, 0.1 + 0.5, 2.5 + 2.5 µg/L) throughout multiple generations. The endpoints assessed were reproduction, body size, reproduction recovery, and behaviour. The results revealed that ibuprofen and naproxen negatively impacted reproduction, reducing reproduction output across generations. Additionally, daphnids exhibited changes in body size, with significant alterations observed in the F2 and F3 generations. Male individuals and ephippium were also present at all concentrations throughout all generations. Although reproduction recovery could not be observed in daphnids after one generation in clean water, the average number of neonates was higher in a few treatments in generation F4 compared to generation F3. In addition, binary mixtures of the drugs showed synergistic effects on daphnids' reproduction for most generations. The multigenerational approach provided valuable insights into the long-term effects of these NSAIDs on reproduction success and population dynamics. This study contributes to understanding the ecotoxicity of ibuprofen and naproxen in aquatic organisms, particularly in a multigenerational context and in the presence of mixture exposures.
Collapse
Affiliation(s)
| | - Anupama Kumar
- CSIRO Environment, Waite Road, Urrbrae, SA, 5064, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research group, School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Jourdan J, El Toum Abdel Fadil S, Oehlmann J, Hupało K. Rapid development of increased neonicotinoid tolerance in non-target freshwater amphipods. ENVIRONMENT INTERNATIONAL 2024; 183:108368. [PMID: 38070438 DOI: 10.1016/j.envint.2023.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/25/2024]
Abstract
The comprehensive assessment of the long-term impacts of constant exposure to pollutants on wildlife populations remains a relatively unexplored area of ecological risk assessment. Empirical evidence to suggest that multigenerational exposure affects the susceptibility of organisms is scarce, and the underlying mechanisms in the natural environment have yet to be fully understood. In this study, we first examined the arthropod candidate species, Gammarus roeselii that - unlike closely related species - commonly occurs in many contaminated river systems of Central Europe. This makes it a suitable study organism to investigate the development of tolerances and phenotypic adaptations along pollution gradients. In a 96-h acute toxicity assay with the neonicotinoid thiacloprid, we indeed observed a successive increase in tolerance in populations coming from contaminated regions. This was accompanied by a certain phenotypic change, with increased investment into reproduction. To address the question of whether these changes are plastic or emerged from longer lasting evolutionary processes, we conducted a multigeneration experiment in the second part of our study. Here, we used closely-related Hyalella azteca and pre-exposed them for multiple generations to sublethal concentrations of thiacloprid in a semi-static design (one week renewal of media containing 0.1 or 1.0 µg/L thiacloprid). The pre-exposed individuals were then used in acute toxicity assays to see how quickly such adaptive responses can develop. Over only two generations, the tolerance to the neonicotinoid almost doubled, suggesting developmental plasticity as a plausible mechanism for the rapid adaptive response to strong selection factors such as neonicotinoid insecticides. It remains to be discovered whether the plasticity of rapidly developed tolerance is species-specific and explains why closely related species - which may not have comparable adaptive response capabilities - disappear in polluted habitats. Overall, our findings highlight the neglected role of developmental plasticity during short- and long-term exposure of natural populations to pollution. Moreover, our results show that even pollutant levels seven times lower than concentrations found in the study region have a clear impact on the developmental trajectories of non-target species.
Collapse
Affiliation(s)
- Jonas Jourdan
- Department Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13 D-60438, Frankfurt am Main, Germany.
| | - Safia El Toum Abdel Fadil
- Department Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany; Faculty of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20 D-21033, Hamburg, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13 D-60438, Frankfurt am Main, Germany
| | - Kamil Hupało
- Department of Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Ratnayake OC, Chotiwan N, Saavedra-Rodriguez K, Perera R. The buzz in the field: the interaction between viruses, mosquitoes, and metabolism. Front Cell Infect Microbiol 2023; 13:1128577. [PMID: 37360524 PMCID: PMC10289420 DOI: 10.3389/fcimb.2023.1128577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 06/28/2023] Open
Abstract
Among many medically important pathogens, arboviruses like dengue, Zika and chikungunya cause severe health and economic burdens especially in developing countries. These viruses are primarily vectored by mosquitoes. Having surmounted geographical barriers and threat of control strategies, these vectors continue to conquer many areas of the globe exposing more than half of the world's population to these viruses. Unfortunately, no medical interventions have been capable so far to produce successful vaccines or antivirals against many of these viruses. Thus, vector control remains the fundamental strategy to prevent disease transmission. The long-established understanding regarding the replication of these viruses is that they reshape both human and mosquito host cellular membranes upon infection for their replicative benefit. This leads to or is a result of significant alterations in lipid metabolism. Metabolism involves complex chemical reactions in the body that are essential for general physiological functions and survival of an organism. Finely tuned metabolic homeostases are maintained in healthy organisms. However, a simple stimulus like a viral infection can alter this homeostatic landscape driving considerable phenotypic change. Better comprehension of these mechanisms can serve as innovative control strategies against these vectors and viruses. Here, we review the metabolic basis of fundamental mosquito biology and virus-vector interactions. The cited work provides compelling evidence that targeting metabolism can be a paradigm shift and provide potent tools for vector control as well as tools to answer many unresolved questions and gaps in the field of arbovirology.
Collapse
Affiliation(s)
- Oshani C. Ratnayake
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nunya Chotiwan
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Karla Saavedra-Rodriguez
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
5
|
Liu S, Chen D, Wang Z, Zhang M, Zhu M, Yin M, Zhang T, Wang X. Shifts of bacterial community and molecular ecological network in activated sludge system under ibuprofen stress. CHEMOSPHERE 2022; 295:133888. [PMID: 35134395 DOI: 10.1016/j.chemosphere.2022.133888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
The major objectives of this study were to explore the long-term effects of ibuprofen (IBP) on nutrient removal, community compositions, and microbial interactions of the activated sludge system. The results showed that 1 mg/L IBP had no inhibitory effects on the removal of organic matters and nutrients. IBP significantly reduced the microbial diversity and changed the bacterial community structure. Some denitrifiers (Denitratisoma and Hyphomicrobium) increased significantly, while NOB (Nitrospira) significantly decreased under IBP stress (P < 0.05). Furthermore, molecular ecological network analysis indicated that IBP reduced the overall network size and links, but led to a closer network with more efficient communication, which might be the strategy of microbes to survive under the stress of IBP and further maintain the performance stability. Different phylogenetic populations had different responses to IBP, as a closer subnetwork with more synergistic relations was observed in Chloroflexi and a looser subnetwork with more competitive relationships was detected in Proteobacteria. The topological roles of nodes significantly changed, and the putative keystone species decreased under the stress of IBP. This study broadens our knowledge of the long-term effects of IBP on the microbial community structure and the interactions between species in the activated sludge system.
Collapse
Affiliation(s)
- Shidi Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Daying Chen
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; School of Environmental Science and Engineering, Tianjin University, Tianjin, 300037, China
| | - Zhimin Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Minghan Zhu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meilin Yin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300037, China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
6
|
Abdelfattah EA, Renault D. Effect of different doses of the catecholamine epinephrine on antioxidant responses of larvae of the flesh fly Sarcophaga dux. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10408-10415. [PMID: 34523094 DOI: 10.1007/s11356-021-16325-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The production and use of pharmaceutical products have increased over the past decades, and several are considered potential or proved hazardous wastes. When contaminating the environment, they can severely impact biodiversity. The catecholamine epinephrine (adrenaline) is no exception. Epinephrine can be administered as growth promoter in cattle, and is used for anaphylaxis treatment in human. While a range of studies has examined the effects of this catecholamine on vertebrate tissues, and evidenced that it can disrupt the oxidative stress status, the effects epinephrine could have on insects have remained poorly considered. Here, we examined the physiological effects of different concentrations (0, 25, 50, and 100 μg/mL) of epinephrine on larvae of the flesh fly Sarcophaga dux. Following experimental treatments, levels of H2O2, GSH, CAT, GPx, and CEH were measured from the fat body, cuticle, gut, and hemolymph of 3rd instars. Significant differences are reported for these physiological endpoints among the considered body compartments, and epinephrine concentrations. Epinephrine treatments did not increase reactive oxygen species production (H2O2 amounts), except for gut tissues. Increased levels of GSH suggest that epinephrine may have enhanced glucose metabolism and flux towards the pentose phosphate pathway, while reducing glutamine oxidation. CAT activity was slightly increased when the concentration of epinephrine was higher. The decreased GPx activity in the fat body was consistent with GSH variations. In sum, the injection of epinephrine seemed to elicit the antioxidant response in S. dux larvae, in turn attenuating ROS production.
Collapse
Affiliation(s)
- Eman A Abdelfattah
- Entomology Department, Faculty of Science, Cairo University, 11221 Al Orman, Giza, Egypt.
| | - David Renault
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 263 Avenue du Gal Leclerc, 74205, F 35000, 35042, Rennes, CS, France.
- Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France.
| |
Collapse
|
7
|
Liu Y, Zheng X, Zhang S, Sun S. Enhanced removal of ibuprofen by heterogeneous photo-Fenton-like process over sludge-based Fe 3O 4-MnO 2 catalysts. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:291-304. [PMID: 35050884 DOI: 10.2166/wst.2021.612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heterogeneous photo-Fenton-like catalysts with low cost, little hazard, high effectiveness and facile separation from aqueous solution were highly desirable. In this study, sludge-based catalysts combining nano Fe3O4-MnO2 and sludge activated carbon were successfully synthesized by high-temperature calcination method and then characterized. These synthetic materials were applied to remove ibuprofen in the heterogeneous photo-Fenton process. The preparation conditions of sludge-based catalysts optimized by orthogonal experiments were 2.0 M of ZnCl2, a temperature of 500 °C, a pyrolysis time of 60 min, and a sludge ratio: Fe3O4-MnO2 of 25:2. In batch experiments, the optimal experimental conditions were determined as catalyst dosage of 0.4 g·L-1, hydrogen peroxide concentration of 3.0 mL·L-1, pH value of 3.3, and contact time of 2.5 h. The degradation rate sludge/Fe3O4-MnO2 catalyst to ibuprofen is up to 95%. The removal process of ibuprofen fitted the pseudo-second-order kinetic model, and the photocatalytic degradation process was the main factor controlling the reaction rate. The catalytic mechanism was proposed according to the Fourier transform infrared analysis and mass spectrometry product analysis; it was mainly attributed to the interaction between hydroxyl groups and benzene rings.
Collapse
Affiliation(s)
- Yanjun Liu
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China E-mail:
| | - Xiaoqian Zheng
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China E-mail:
| | - Shufen Zhang
- Comprehensive Management Service Center of Taian, Taian, Shandong 271018, China
| | - Shujuan Sun
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China E-mail:
| |
Collapse
|
8
|
Horvath TD, Dagan S, Scaraffia PY. Unraveling mosquito metabolism with mass spectrometry-based metabolomics. Trends Parasitol 2021; 37:747-761. [PMID: 33896683 PMCID: PMC8282712 DOI: 10.1016/j.pt.2021.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Nearly half a million people die annually due to mosquito-borne diseases. Despite aggressive mosquito population-control efforts, current strategies are limited in their ability to control these vectors. A better understanding of mosquito metabolism through modern approaches can contribute to the discovery of novel metabolic targets and/or regulators and lead to the development of better mosquito-control strategies. Currently, cutting-edge technologies such as gas or liquid chromatography-mass spectrometry-based metabolomics are considered 'mature technologies' in many life-science disciplines but are still an emerging area of research in medical entomology. This review primarily discusses recent developments and progress in the application of mass spectrometry-based metabolomics to answer multiple biological questions related to mosquito metabolism.
Collapse
Affiliation(s)
- Thomas D Horvath
- Department of Immunology and Pathology, Baylor College of Medicine, and Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Shai Dagan
- Israel Institute for Biological Research, Ness Ziona, Israel, 74100, Israel
| | - Patricia Y Scaraffia
- Department of Tropical Medicine and Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
9
|
Zoh MG, Gaude T, Prud'homme SM, Riaz MA, David JP, Reynaud S. Molecular bases of P450-mediated resistance to the neonicotinoid insecticide imidacloprid in the mosquito Ae. aegypti. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105860. [PMID: 34015756 DOI: 10.1016/j.aquatox.2021.105860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/06/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Resistance to chemical insecticides including pyrethroids, the main insecticide class used against mosquitoes, has re-kindled interest in the use of neonicotinoids. In this context, the present study aimed to characterize the molecular basis of neonicotinoid resistance in the mosquito Aedes aegypti. Resistance mechanisms were studied by combining transcriptomic and genomic data obtained from a laboratory strain selected at the larval stage after 30 generations of exposure to imidacloprid (Imida-R line). After thirty generations of selection, larvae of the Imida-R line showed an 8-fold increased resistance to imidacloprid and a significant cross-tolerance to the pyrethroids permethrin and deltamethrin. Cross-resistance to pyrethroids was only observed in adults when larvae were previously exposed to imidacloprid suggesting a low but inducible expression of resistance alleles at the adult stage. Resistance of the Imida-R line was associated with a slower larval development time in females. Multiple detoxification enzymes were over-transcribed in larvae in association with resistance including the P450s CYP6BB2, CYP9M9 and CYP6M11 previously associated with pyrethroid resistance. Some of them together with their redox partner NADPH P450 reductase were also affected by non-synonymous mutations associated with resistance. Combining genomic and transcriptomic data allowed identifying promoter variations associated with the up-regulation of CYP6BB2 in the resistant line. Overall, these data confirm the key role of P450s in neonicotinoid resistance in Ae. aegypti and their potential to confer cross-resistance to pyrethroids, raising concerns about the use of neonicotinoids for resistance management in this mosquito species.
Collapse
Affiliation(s)
- Marius Gonse Zoh
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Thierry Gaude
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | | | - Muhammad Asam Riaz
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha Pakistan.
| | - Jean-Philippe David
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| |
Collapse
|
10
|
Granatto CF, Grosseli GM, Sakamoto IK, Fadini PS, Varesche MBA. Methanogenic potential of diclofenac and ibuprofen in sanitary sewage using metabolic cosubstrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140530. [PMID: 32629260 DOI: 10.1016/j.scitotenv.2020.140530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Diclofenac (DCF) and ibuprofen (IBU) are widely used anti-inflammatory drugs and are frequently detected in wastewater from Wastewater Treatment Plants and in aquatic environments. In this study, the methanogenic potential (P) of anaerobic sludge subjected to DCF (7.11 ± 0.02 to 44.41 ± 0.05 mg L-1) and IBU (6.11 ± 0.01 to 42.61 ± 0.05 mg L-1), in sanitary sewage, was investigated in batch reactors. Cosubstrates (200 mg L-1 of organic matter) in the form of ethanol, methanol:ethanol and fumarate were tested separately for the removal of drugs. In the DCF assays, P was 6943 ± 121 μmolCH4, 9379 ± 259 μmolCH4, 9897 ± 212 μmolCH4 and 11,530 ± 368 μmolCH4 for control, fumarate, methanol:ethanol and ethanol conditions, respectively. In the IBU assays, under the same conditions, P was 6145 ± 101 μmolCH4, 6947 ± 66 μmolCH4, 8141 ± 191 μmolCH4and 10,583 ± 512 μmolCH4, respectively. Without cosubstrates, drug removal was below 18% for 43.10 ± 0.01 mgDCF L-1 and 43.12 ± 0.03 mgIBU L-1, respectively. Higher P and removal of DCF (28.24 ± 1.10%) and IBU (18.72 ± 1.60%) with ethanol was observed for 43.20 ± 0.01 mgDCF L-1 and 43.42 ± 0.03 mgIBU L-1, respectively. This aspect was better evidenced with DCF due to its molecular structure, a condition that resulted in a higher diversity of bacterial populations. Through the 16S rRNA sequencing, bacteria genera capable of performing aromatic ring cleavage, β-oxidation and oxidation of ethanol and fatty acids were identified. Higher relative abundance (>0.6%) was observed for Smithella, Sulfuricurvum and Synthophus for the Bacteria Domain and Methanosaeta (>79%) for the Archaea Domain. The use of ethanol favored greater mineralization of organic matter and greater methane production, which can directly assist in the metabolic pathways of microorganisms.
Collapse
Affiliation(s)
- Caroline F Granatto
- Department of Hydraulics and Sanitation Engineering, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, 13566-590 São Carlos, SP, Brazil..
| | - Guilherme M Grosseli
- Federal University of São Carlos, Washington Luiz Highway, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Isabel K Sakamoto
- Department of Hydraulics and Sanitation Engineering, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, 13566-590 São Carlos, SP, Brazil
| | - Pedro S Fadini
- Federal University of São Carlos, Washington Luiz Highway, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Maria Bernadete A Varesche
- Department of Hydraulics and Sanitation Engineering, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, 13566-590 São Carlos, SP, Brazil..
| |
Collapse
|
11
|
Inorganic Mercury and Methyl-Mercury Uptake and Effects in the Aquatic Plant Elodea nuttallii: A Review of Multi-Omic Data in the Field and in Controlled Conditions. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
(1) Background: Mercury is a threat for the aquatic environment. Nonetheless, the entrance of Hg into food webs is not fully understood. Macrophytes are both central for Hg entry in food webs and are seen as good candidates for biomonitoring and bioremediation; (2) Methods: We review the knowledge gained on the uptake and effects of inorganic Hg (IHg) and methyl-Hg (MMHg) in the macrophyte Elodea nuttallii found in temperate freshwaters; (3) Results: E. nuttallii bioaccumulates IHg and MMHg, but IHg shows a higher affinity to cell walls. At the individual level, IHg reduced chlorophyll, while MMHg increased anthocyanin. Transcriptomics and metabolomics in shoots revealed that MMHg regulated a higher number of genes than IHg. Proteomics and metabolomics in cytosol revealed that IHg had more effect than MMHg; (4) Conclusions: MMHg and IHg show different cellular toxicity pathways. MMHg’s main impact appears on the non-soluble compartment, while IHg’s main impact happens on the soluble compartment. This is congruent with the higher affinity of IHg with dissolved OM (DOM) or cell walls. E. nuttallii is promising for biomonitoring, as its uptake and molecular responses reflect exposure to IHg and MMHg. More generally, multi-omics approaches identify cellular toxicity pathways and the early impact of sublethal pollution.
Collapse
|
12
|
Jia Y, Yin L, Khanal SK, Zhang H, Oberoi AS, Lu H. Biotransformation of ibuprofen in biological sludge systems: Investigation of performance and mechanisms. WATER RESEARCH 2020; 170:115303. [PMID: 31751892 DOI: 10.1016/j.watres.2019.115303] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Ibuprofen (IBU), a common non-steroidal anti-inflammatory drug (NSAID), is widely used by humans for controlling fever and pain, and is frequently detected in the influent of wastewater treatment plants and different aquatic environments. In this study, the biotransformation of IBU in activated sludge (AS), anaerobic methanogenic sludge (AnMS) and sulfate-reducing bacteria (SRB)-enriched sludge systems was investigated at three different concentrations of 100, 500 and 1000 μg/L via a series of batch and continuous studies. IBU at concentration of 100 μg/L was effectively biodegraded by AS whereas AnMS and SRB-enriched sludge were less effective in IBU biodegradation at all concentrations tested. However, at higher IBU concentrations of 500 and 1000 μg/L, AS showed poor IBU biodegradation and chemical oxygen demand (COD) removal due to inhibition of aerobic heterotrophic bacteria (i.e., Candidatus Competibacter) by IBU and/or IBU biotransformation products. The microbial analyses showed that IBU addition shifted the microbial community structure in AS, AnMS and SRB-enriched sludge systems, however, the removals of COD, nitrogen and sulfur in both anaerobic sludge systems were not affected significantly (p > 0.05). The findings of this study provided a new insight into biotransformation of IBU in three important biological sludge systems.
Collapse
Affiliation(s)
- Yanyan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Linwan Yin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, USA
| | - Huiqun Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Akashdeep Singh Oberoi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China.
| |
Collapse
|
13
|
Ellepola N, Ogas T, Turner DN, Gurung R, Maldonado-Torres S, Tello-Aburto R, Patidar PL, Rogelj S, Piyasena ME, Rubasinghege G. A toxicological study on photo-degradation products of environmental ibuprofen: Ecological and human health implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109892. [PMID: 31732272 PMCID: PMC6893141 DOI: 10.1016/j.ecoenv.2019.109892] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Increasing quantities of pharmaceutical waste in the environment have disrupted the balance of ecosystems, and may have subsequent effects on human health. Although a handful of previous studies have shown the impacts of pharmaceutically active compounds on the environment, the toxicological effects of their degradation products remain largely unknown. In the current study, the photo-degradation products of environmental ibuprofen were assessed for both ecotoxicological and human health effects using a series of in vitro assays. Here, six of the major degradation products are synthesized with high purity (>98%) and characterized with 1HNMR, 13CNMR, FT-IR and HRMS. To evaluate human health effects, three gut microbiota species, Lactobacillus acidophilus, Enterococcus faecalis and Escherichia coli, and two human cell lines, HEK293T and HepG2, are exposed to various concentrations of ibuprofen and its degradation products. On L. acidophilus, the ibuprofen degradation product (±)-(2R,3R)-2-(4-isobutylphenyl)-5-methylhexan-3-ol shows a greater toxic effect while ibuprofen enhances its growth at lower concentrations. At higher concentrations, ibuprofen shows at least a 2-fold higher toxicity compared to that of its degradation products. However, E. faecalis shows little or no effect upon exposure to these compounds. An induction of the SOS response in E. coli is observed but limited to only ibuprofen and 4-acetylbenzoic acid. In human cell line studies, survival of both HEK293T and HepG2 cell lines is profoundly impaired by the photo-degradation products of (±)- (2R,3R)-2-(4-isobutylphenyl)-5-methylhexan-3-ol, (±)-(2R,3S)-2-(4-isobutylphenyl)-5-methylhexan-3-ol, and (±)-1-(4-(1-hydroxy-2methylpropyl)phenyl)ethan-1-one. In this work, the bioluminescence bacterium, Aliivibrio fischeri, is used as a model to assess environmental impact. Both ibuprofen and its degradation products inhibit the growth of this gram-negative bacteria with the primary compound showing the most significant impact. Overall, our results highlight that some of the degradation products of ibuprofen can be more toxic to human kidney cell line and liver cell line than the parent compound while ibuprofen can be more toxic to human gut microbiota and A. fischeri than ibuprofen degradation products.
Collapse
Affiliation(s)
- Nishanthi Ellepola
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Talysa Ogas
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Danielle N Turner
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Rubi Gurung
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Sabino Maldonado-Torres
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Rodolfo Tello-Aburto
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Praveen L Patidar
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Snezna Rogelj
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Menake E Piyasena
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Gayan Rubasinghege
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA.
| |
Collapse
|
14
|
Transgenerational hypocortisolism and behavioral disruption are induced by the antidepressant fluoxetine in male zebrafish Danio rerio. Proc Natl Acad Sci U S A 2018; 115:E12435-E12442. [PMID: 30530669 DOI: 10.1073/pnas.1811695115] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The global prevalence of depression is high during childbearing. Due to the associated risks to the mother and baby, the selective serotonin reuptake inhibitor fluoxetine (FLX) is often the first line of treatment. Given that FLX readily crosses the placenta, a fetus may be susceptible to the disruptive effects of FLX during this highly plastic stage of development. Here, we demonstrate that a 6-day FLX exposure to a fetus-relevant concentration at a critical developmental stage suppresses cortisol levels in the adult zebrafish (F0). This effect persists for three consecutive generations in the unexposed descendants (F1 to F3) without diminution and is more pronounced in males. We also show that the in vivo cortisol response of the interrenal (fish "adrenal") to an i.p. injection of adrenocorticotropic hormone was also reduced in the males from the F0 and F3 FLX lineages. Transcriptomic profiling of the whole kidney containing the interrenal cells revealed that early FLX exposure significantly modified numerous pathways closely associated with cortisol synthesis in the male adults from the F0 and F3 generations. We also show that the low cortisol levels are linked to significantly reduced exploratory behaviors in adult males from the F0 to F2 FLX lineages. This may be a cause for concern given the high prescription rates of FLX to pregnant women and the potential long-term negative impacts on humans exposed to these therapeutic drugs.
Collapse
|