1
|
Bai Y, Yang X, Chen J, Shen B. The removal of toluene by thermoscatalytic oxidation using CeO 2-based catalysts:a review. CHEMOSPHERE 2024; 351:141253. [PMID: 38242517 DOI: 10.1016/j.chemosphere.2024.141253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
Volatile organic compounds (VOCs) pose a serious threat to human health and the ecological environment. Thermal catalytic oxidation based on cerium dioxide based (CeO2-based) catalysts is widely used in the degradation of toluene. However, new problems and challenges such as how to reduce the energy consumption during catalytic oxidation, improve the anti-poisoning performance of catalysts, and enhance the multi-species synergistic catalytic ability of catalysts continue to emerge. On this basis, we systematically summarize the current status of research progress on the thermocatalytic oxidation of toluene based on CeO2-based catalysts. Firstly, we summarized the rules on how to improve the catalytic performance and anti-poisoning performance of CeO2-based catalysts; Secondly, we discussed the effect of light reaction conditions on the thermal coupled catalytic oxidation of toluene; In addition to this, we explored the current status of synergistic multi-pollutant degradation, mainly of toluene; Finally, we summarized the mechanism of catalytic oxidation of toluene by combining theoretical simulation calculations, in-situ infrared analyses, and other means. We present the promising applications of CeO2-based catalysts in the catalytic oxidation of toluene, and hope that these summaries will provide an important reference for the catalytic treatment of VOCs.
Collapse
Affiliation(s)
- Yang Bai
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Xu Yang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiateng Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
2
|
Xu C, Frigo-Vaz B, Goering J, Wang P. Gas-phase degradation of VOCs using supported bacteria biofilms. Biotechnol Bioeng 2023; 120:1323-1333. [PMID: 36775904 DOI: 10.1002/bit.28348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Herein we report the use of Pseudomonas putida F1 biofilms grown on carbonized cellulosic fibers to achieve biodegradation of airborne volatile organic compounds (VOCs) in the absence of any bulk aqueous-phase media. It is believed that direct exposure of gaseous VOC substrates to biomass may eliminate aqueous-phase mass transfer resistance and facilitate VOC capture and degradation. When tested with toluene vapor as a model VOC, the supported biofilm could grow optimally at 300 p.p.m. toluene and 80% relative humidity, with a specific growth rate of 0.425 day-1 . During long-term VOC biodegradation tests in a tubular packed bed reactor, biofilms achieved a toluene degradation rate of 2.5 mg gDCW -1 h-1 during the initial growth phase. Interestingly, the P. putida F1 film kept biodegrading activity even at the stationary nongrowth phase. The supported biofilms with a biomass loading of 20% (wt) could degrade toluene at a rate of 1.9 mg gDCW -1 h-1 during the stationary phase, releasing CO2 at a rate of 6.4 mg gDCW -1 h-1 at the same time (indicating 100% conversion of substrate carbon to CO2 ). All of these observations promised a new type of "dry" biofilm reactors for efficient degradation of toxic VOCs without involving a large amount of water.
Collapse
Affiliation(s)
- Chao Xu
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA.,Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Benjamin Frigo-Vaz
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA.,Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Joshua Goering
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA.,Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
3
|
Catalytic reduction of NO and oxidation of dichloroethane over α-MnO2 catalysts: properties-reactivity relationship. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
4
|
Shi L, Xue J, Xiao W, Wang P, Long M, Bi Q. Efficient degradation of VOCs using semi-coke activated carbon loaded ternary Z-scheme heterojunction photocatalyst BiVO 4-BiPO 4-g-C 3N 4 under visible light irradiation. Phys Chem Chem Phys 2022; 24:22987-22997. [PMID: 36125252 DOI: 10.1039/d2cp03606a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coal chemical industry generates large amounts of solid waste and volatile organic compounds (VOCs). In this study, the solid waste semi-coke powder obtained in the semi-coke production process was used as a raw material to prepare high-specific surface area semi-coke activated carbon (SAC) by a carbonization and activation process, and a ternary z-scheme heterojunction photocatalyst with high catalytic performance was loaded for synergistic treatment by adsorption and photodegradation to achieve waste treatment with waste. The prepared semi-coke activated carbon has a specific surface area of 619.27 m2 g-1, which can achieve effective adsorption of VOCs. The ternary z-scheme heterojunction photocatalyst BiPO4-BiVO4-g-C3N4 (PVCN) was supported on a semi-coke activated carbon substrate by a one-step sol-gel method. Based on the synergistic effect of adsorption and photocatalysis, the obtained PVCN/SAC material can degrade toluene by 85.6% within 130 minutes under simulated sunlight irradiation, which is 2.43 times that of pure photocatalyst. The rate of degrading toluene can be increased by 4.43 times. Capture experiments showed that superoxide radicals (˙O2-) and hydroxyl radicals (˙OH) were the key active species in the degradation pathway. Even after five cycles, the material maintained 81.6% of the degradation performance. In this work, we deeply investigate the mechanism of semi-coke activated carbon as a matrix for enhancing photocatalytic degradation performance. The findings of this work provide new insights into the efficient degradation of VOCs and provide a good theoretical basis for the development of high-performance photocatalysts.
Collapse
Affiliation(s)
- Long Shi
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Juanqin Xue
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Wen Xiao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Peng Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Mingyang Long
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Qiang Bi
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
5
|
Khan AM, Gharasoo M, Wick LY, Thullner M. Phase-specific stable isotope fractionation effects during combined gas-liquid phase exchange and biodegradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119737. [PMID: 35817302 DOI: 10.1016/j.envpol.2022.119737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Stable isotope fractionation of toluene under dynamic phase exchange was studied aiming at ascertaining the effects of gas-liquid partitioning and biodegradation of toluene stable isotope composition in liquid-air phase exchange reactors (Laper). The liquid phase consisted of a mixture of aqueous minimal media, a known amount of a mixture of deuterated (toluene-d) and non-deuterated toluene (toluene-h), and bacteria of toluene degrading strain Pseudomonas putida KT2442. During biodegradation experiments, the liquid and air-phase concentrations of both toluene isotopologues were monitored to determine the observable stable isotope fractionation in each phase. The results show a strong fractionation in both phases with apparent enrichment factors beyond -800‰. An offset was observed between enrichment factors in the liquid and the gas phase with gas-phase values showing a stronger fractionation in the gas than in the liquid phase. Numerical simulation and parameter fitting routine was used to challenge hypotheses to explain the unexpected experimental data. The numerical results showed that either a very strong, yet unlikely, fractionation of the phase exchange process or a - so far unreported - direct consumption of gas phase compounds by aqueous phase microorganisms could explain the observed fractionation effects. The observed effect can be of relevance for the analysis of volatile contaminant biodegradation using stable isotope analysis in unsaturated subsurface compartments or other environmental compartment containing a gas and a liquid phase.
Collapse
Affiliation(s)
- Ali M Khan
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Mehdi Gharasoo
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Lukas Y Wick
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin Thullner
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany.
| |
Collapse
|
6
|
Chen S, Ma L, Wang Y. Kinetic isotope effects of C and N indicate different transformation mechanisms between atzA- and trzN-harboring strains in dechlorination of atrazine. Biodegradation 2022; 33:207-221. [PMID: 35257297 DOI: 10.1007/s10532-022-09977-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/18/2022] [Indexed: 11/02/2022]
Abstract
Compound-specific stable isotope analysis provides an alternative method to insight into the biotransformation mechanisms of diffuse organic pollutants in the environment, e.g., the endocrine disruptor herbicide atrazine. Biotic hydrolysis process catalyzed by chlorohydrolase AtzA and TrzN plays an important role in the detoxification of atrazine, while the catalytic mechanism of AtzA is still speculative. To investigate the catalytic mechanism of AtzA and answer whether both enzymes catalyze hydrolytic dechlorination of atrazine by the same mechanism, in this study, apparent kinetic isotope effects (AKIE) for carbon and nitrogen were observed by three atzA-harboring bacterial isolates and their membrane-free extracts. The AKIEs obtained from atzA-harboring bacterial isolates (AKIEC = 1.021 ± 0.010, AKIEN = 0.992 ± 0.003) were statistically different from that of trzN-harboring strains (AKIEC = 1.040 ± 0.006, AKIEN = 0.983 ± 0.006), confirming the different activation mechanisms of atrazine preceding to nucleophilic aromatic substitution of Cl atom in actual enzymatic reaction catalyzed by AtzA and TrzN, despite the limitation of variable dual-element isotope plots. The lower degree of normal carbon and inverse nitrogen isotope fractionation observed from atzA-harboring strains, suggesting AtzA catalyzing hydrolytic dechlorination of atrazine by coordination of Cl and one aromatic N to the Fe2+ drawing electron density from carbon-chlorine bond that facilitating the nucleophilic attack, rather than in TrzN case that protonation of aromatic N increasing nucleophilic substitution of Cl atom. This study suggests considering the potential influences of phylogenetic diversity of bacterial isolates and evolution of enzymes on the applications of CSIA method in future study.
Collapse
Affiliation(s)
- Songsong Chen
- College of Architecture and Urban Planning, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Limin Ma
- College of Environmental Science and Engineering, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China.
| | - Yuncai Wang
- College of Architecture and Urban Planning, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
7
|
Halloran LJS, Vakili F, Wanner P, Shouakar-Stash O, Hunkeler D. Sorption- and diffusion-induced isotopic fractionation in chloroethenes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147826. [PMID: 34134359 DOI: 10.1016/j.scitotenv.2021.147826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Isotopic fractionation of groundwater contaminants can occur due to degradation, diffusion and sorption. Of these, only degradation has been extensively explored, yet diffusive isotopic fractionation (DIF) and sorptive isotopic fractionation (SIF) can have significant effects on the isotopic enrichment of groundwater contaminants. Understanding how to mathematically describe and model these processes is vital to the correct interpretation of compound-specific isotope analysis (CSIA) data in the field. Here, models for these physical fractionation processes are developed and described, including the definition of a sorption enrichment factor. These models are then implemented numerically using inverse and finite-element methods to investigate two scenarios, diffusion-sorption and diffusion-sorption-advection, that have been measured in the laboratory. Concentration, δ37Cl, and δ2H data from cis-dichloroethene (cDCE) and trichloroethene (TCE) are used as inputs to the models. Unknown transport parameters including diffusive fractionation exponents are determined from an inverse modelling approach. DIF is shown to have a stronger influence on chlorine isotopologues than on hydrogen isotopologues. For both cDCE and TCE, the sorption enrichment factor of chlorine is found to be negative while that of hydrogen is positive. The presented approach and results provide novel tools and insight into DIF and SIF and underline that these processes should be taken into account when using CSIA to assess contaminant fate.
Collapse
Affiliation(s)
- Landon J S Halloran
- Centre d'hydrogéologie et de géothermie (CHYN), Université de Neuchâtel, Neuchâtel, Switzerland.
| | - Fatemeh Vakili
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Philipp Wanner
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Orfan Shouakar-Stash
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada; Isotope Tracer Technologies Inc., Waterloo, Ontario, Canada
| | - Daniel Hunkeler
- Centre d'hydrogéologie et de géothermie (CHYN), Université de Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
8
|
Watzinger A, Hager M, Reichenauer T, Soja G, Kinner P. Unravelling the process of petroleum hydrocarbon biodegradation in different filter materials of constructed wetlands by stable isotope fractionation and labelling studies. Biodegradation 2021; 32:343-359. [PMID: 33860902 PMCID: PMC8134294 DOI: 10.1007/s10532-021-09942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
Maintaining and supporting complete biodegradation during remediation of petroleum hydrocarbon contaminated groundwater in constructed wetlands is vital for the final destruction and removal of contaminants. We aimed to compare and gain insight into biodegradation and explore possible limitations in different filter materials (sand, sand amended with biochar, expanded clay). These filters were collected from constructed wetlands after two years of operation and batch experiments were conducted using two stable isotope techniques; (i) carbon isotope labelling of hexadecane and (ii) hydrogen isotope fractionation of decane. Both hydrocarbon compounds hexadecane and decane were biodegraded. The mineralization rate of hexadecane was higher in the sandy filter material (3.6 µg CO2 g-1 day-1) than in the expanded clay (1.0 µg CO2 g-1 day-1). The microbial community of the constructed wetland microcosms was dominated by Gram negative bacteria and fungi and was specific for the different filter materials while hexadecane was primarily anabolized by bacteria. Adsorption / desorption of petroleum hydrocarbons in expanded clay was observed, which might not hinder but delay biodegradation. Very few cases of hydrogen isotope fractionation were recorded in expanded clay and sand & biochar filters during decane biodegradation. In sand filters, decane was biodegraded more slowly and hydrogen isotope fractionation was visible. Still, the range of observed apparent kinetic hydrogen isotope effects (AKIEH = 1.072-1.500) and apparent decane biodegradation rates (k = - 0.017 to - 0.067 day-1) of the sand filter were low. To conclude, low biodegradation rates, small hydrogen isotope fractionation, zero order mineralization kinetics and lack of microbial biomass growth indicated that mass transfer controlled biodegradation.
Collapse
Affiliation(s)
- Andrea Watzinger
- Institute of Soil Research, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences, Konrad Lorenz-Strasse 24, 3430, Tulln, Austria.
- Environmental Resources & Technologies, Energy Department, AIT - Austrian Institute of Technology GmbH, Konrad Lorenz-Strasse 24, 3430, Tulln, Austria.
| | - Melanie Hager
- Institute of Soil Research, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences, Konrad Lorenz-Strasse 24, 3430, Tulln, Austria
- Environmental Resources & Technologies, Energy Department, AIT - Austrian Institute of Technology GmbH, Konrad Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Thomas Reichenauer
- Environmental Resources & Technologies, Energy Department, AIT - Austrian Institute of Technology GmbH, Konrad Lorenz-Strasse 24, 3430, Tulln, Austria
- Bioresources, Center of Health & Bioresources, AIT - Austrian Institute of Technology GmbH, Konrad Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Gerhard Soja
- Environmental Resources & Technologies, Energy Department, AIT - Austrian Institute of Technology GmbH, Konrad Lorenz-Strasse 24, 3430, Tulln, Austria
- Institute for Chemical and Energy Engineering, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria
| | - Paul Kinner
- Environmental Resources & Technologies, Energy Department, AIT - Austrian Institute of Technology GmbH, Konrad Lorenz-Strasse 24, 3430, Tulln, Austria
| |
Collapse
|
9
|
Tong Y, Berens MJ, Ulrich BA, Bolotin J, Strehlau JH, Hofstetter TB, Arnold WA. Exploring the Utility of Compound-Specific Isotope Analysis for Assessing Ferrous Iron-Mediated Reduction of RDX in the Subsurface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6752-6763. [PMID: 33900746 DOI: 10.1021/acs.est.0c08420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Subsurface contamination with the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) at ordnance production and testing sites is a problem because of the persistence, mobility, and toxicity of RDX and the formation of toxic products under anoxic conditions. While the utility of compound-specific isotope analysis for inferring natural attenuation pathways from stable isotope ratios has been demonstrated, the stable isotope fractionation for RDX reduction by iron-bearing minerals remains unknown. Here, we evaluated N and C isotope fractionation of RDX during reduction by Fe(II) associated with Fe minerals and natural sediments and applied N isotope ratios to the assessment of mineral-catalyzed RDX reduction in a contaminant plume and in sediment columns treated by in situ chemical reduction. Laboratory studies revealed that RDX was reduced to nitroso compounds without denitration and the concomitant ring cleavage. Fe(II)/iron oxide mineral-catalyzed reactions exhibited N isotope enrichment factors, εN, between -6.3±0.3‰ and -8.2±0.2‰, corresponding to an apparent 15N kinetic isotope effect of 1.04-1.05. The observed variations of the δ15N of ∼15‰ in RDX from groundwater samples suggested an extent of reductive transformation of 85% at an ammunition plant. Conversely, we observed masking of N isotope fractionation after RDX reduction in laboratory flow-through systems, which was presumably due to limited accessibility to reactive Fe(II).
Collapse
Affiliation(s)
- Yiran Tong
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - Matthew J Berens
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - Bridget A Ulrich
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Jakov Bolotin
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Jennifer H Strehlau
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - Thomas B Hofstetter
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| |
Collapse
|
10
|
Jiang Y, Huang S, Lei Z, Xu R. Removal of Methyl Ethyl Ketone and Sec-Butanol from Hydrogen by Absorption with Ionic Liquids. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yifan Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuai Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhigang Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruinian Xu
- College of Environment and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|