1
|
Østerstrøm FF, Carter TJ, Shaw DR, Abbatt JPD, Abeleira A, Arata C, Bottorff BP, Cardoso-Saldaña FJ, DeCarlo PF, Farmer DK, Goldstein AH, Ruiz LH, Kahan TF, Mattila JM, Novoselac A, Stevens PS, Reidy E, Rosales CMF, Wang C, Zhou S, Carslaw N. Modelling indoor radical chemistry during the HOMEChem campaign. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:188-201. [PMID: 39688182 DOI: 10.1039/d4em00628c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In the indoor environment, occupants are exposed to air pollutants originating from continuous indoor sources and exchange with the outdoor air, with the highest concentration episodes dominated by activities performed indoors such as cooking and cleaning. Here we use the INdoor CHEMical model in Python (INCHEM-Py) constrained by measurements from the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign, to investigate the impact of a bleach cleaning event and cooking on indoor air chemistry. Measurements of the concentrations of longer-lived organic and inorganic compounds, as well as measured photolysis rates, have been used as input for the model, and the modelled hydroxyl (OH) radicals, hydroperoxyl radicals, and nitrous acid (HONO) concentrations compared to the measured values. The peak modelled OH, , and HONO concentrations during cooking and cleaning activities are about 30%, 10%, and 30% higher than the observations, respectively, within experimental uncertainties. We have determined rates for the rapid loss of HONO formed through cooking activities onto a wet surface during the cleaning events and also for the subsequent slow release of HONO from the cleaned surface back into the gas-phase. Using INCHEM-Py we have also predicted peak concentrations of chlorine (Cl) atoms, (0.75-2.3) × 105 atom per cm3 at the time of cleaning. Model predictions of the Cl atom and OH radical reactivities were also explored, showing high Cl atom reactivity throughout the day, peaking around 5000-9000 s-1. The OH reactivity was found to increase from a background value close to urban outdoor levels of 20-40 s-1, to levels exceeding observations in outdoor polluted areas following cooking and cleaning activities (up to 160 s-1). This underlines the high oxidation capacity of the indoor atmospheric environment through determining the abundance of volatile organic compounds.
Collapse
Affiliation(s)
| | - Toby J Carter
- Department of Environment and Geography, University of York, York, UK.
| | - David R Shaw
- Department of Environment and Geography, University of York, York, UK.
| | | | - Andrew Abeleira
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Caleb Arata
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Brandon P Bottorff
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| | | | - Peter F DeCarlo
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Allen H Goldstein
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
- Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| | - James M Mattila
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Atila Novoselac
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, TX, USA
| | - Philip S Stevens
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
- O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN, USA
| | - Emily Reidy
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| | - Colleen Marciel F Rosales
- O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN, USA
| | - Chen Wang
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - Shan Zhou
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, York, UK.
| |
Collapse
|
2
|
Lakey PSJ, Shiraiwa M. Kinetic multilayer models for surface chemistry in indoor environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39526590 DOI: 10.1039/d4em00549j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Multiphase interactions and chemical reactions at indoor surfaces are of particular importance due to their impact on air quality in indoor environments with high surface to volume ratios. Kinetic multilayer models are a powerful tool to simulate various gas-surface interactions including partitioning, diffusion and multiphase chemistry of indoor compounds by treating mass transport and chemical reactions in a number of model layers in the gas and condensed phases with a flux-based approach. We have developed a series of kinetic multilayer models that have been applied to describe multiphase chemistry and interactions indoors. They include the K2-SURF model treating the reversible adsorption of volatile organic compounds on surfaces, the KM-BL model treating diffusion through an indoor surface boundary layer, the KM-FILM model treating organic film formation by multi-layer adsorption and film growth by absorption of indoor compounds, and the KM-SUB-Skin-Clothing model treating reactions of ozone with skin lipids in skin and clothing. We also developed the effective mass accommodation coefficient that can treat surface partitioning by effectively taking into account kinetic limitations of bulk diffusion. In this study we provide detailed instructions and code annotations of these models for the model user. Example sensitivity simulations that investigate the impact of input parameters are presented to help with familiarization to the codes. The user can adapt the codes as required to model experimental and indoor field campaign measurements, can use the codes to gain insights into important reactions and processes, and can extrapolate to new conditions that may not be accessible by measurements.
Collapse
Affiliation(s)
- Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, CA92697, USA.
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, CA92697, USA.
| |
Collapse
|
3
|
Crilley LR, Ditto JC, Lao M, Zhou Z, Abbatt JPD, Chan AWH, VandenBoer TC. Commercial kitchen operations produce a diverse range of gas-phase reactive nitrogen species. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39484695 DOI: 10.1039/d4em00491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Gas-phase reactive nitrogen species (Nr) are important drivers of indoor air quality. Cooking and cleaning are significant direct sources indoors, whose emissions will vary depending on activity and materials used. Commercial kitchens experience regular high volumes of both cooking and cleaning, making them ideal study locations for exploring emission factors from these sources. Here, we present a total Nr (tNr) budget and contributions of key species NO, NO2, acidic Nr (primarily HONO) and basic Nr (primarily NH3) using novel instrumentation in a commercial kitchen over a two-week period. In general, highest tNr was observed in the morning and driven compositionally by NO, indicative of cooking events in the kitchen. The observed HONO and basic Nr levels were unexpectedly stable throughout the day, despite the dynamic and high air change rate in the kitchen. After summing the measured NOx, HONO and Nr,base fractions, there was on average 5 ppbv of Nr unaccounted for, expected to be dominated by neutral Nr species. Using co-located measurements from a proton transfer reaction mass spectrometer (PTR-MS), we propose the identities for these major Nr species from cooking and cleaning that contributed to Nr,base and the neutral fraction of tNr. When focused specifically on cooking events in the kitchen, a vast array of N-containing species was observed by the PTR-MS. Reproducibly, oxygenated N-containing class ions (C1-12H3-24O1-4N1-3), consistent with the known formulae of amides, were observed during meat cooking and may be good cooking tracers. During cleaning, an unexpectedly high level of chloramines was observed, with monochloramine dominating the profile, as emitted directly from HOCl based cleaners or through surface reactions with reduced-N species. For many species within the tNr budget, including HONO, acetonitrile and basic Nr species, we observed stable levels day and night despite the high air change rate during the day (>27 h-1). The stable levels for these species point to large surface reservoirs which act as a significant indoor source, that will be transported outdoors with ventilation.
Collapse
Affiliation(s)
| | - Jenna C Ditto
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
- Department of Chemistry, University of Toronto, Canada
| | - Melodie Lao
- Department of Chemistry, York University, Canada.
| | - Zilin Zhou
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | | | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
- Department of Chemistry, University of Toronto, Canada
| | | |
Collapse
|
4
|
Souza PAF, Kroptavich CR, Zhou S, Kahan TF. Oxidant concentrations and photochemistry in a vehicle cabin. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39058373 DOI: 10.1039/d4em00319e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Indoor air quality (IAQ) in vehicles can be important to people's health, especially for those whose occupations require them to spend extensive time in vehicles. To date, research on vehicle IAQ has primarily focused on direct emissions as opposed to chemistry happening in vehicle cabins. In this work, we conducted time-resolved measurements of the oxidants and oxidant precursors ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), and nitrous acid (HONO) inside the cabin of a 2012 Toyota Rav4 under varying ventilation conditions (i.e., car off, car on with passive ventilation, car on with mechanical ventilation via the recirculating fan, and car on with mechanical ventilation via the direct fan). Ozone levels inside the vehicle were significantly lower than outdoors under most conditions, and were approximately half the outdoor levels when the direct fan was in operation. Nitric oxide and NO2 concentrations were very low both inside the vehicle and outdoors. Nitrous acid levels in the vehicle were lower than reported values in other indoor environments, though much higher than expected outdoor levels. We also investigated the potential for photochemical production of radicals in the vehicle. Time- and wavelength-resolved solar irradiance spectra were collected, and steady state hydroxyl radical (OH) and nitrate radical (NO3) concentrations were calculated. Steady state OH concentrations were predicted to be similar to those in air masses in residences illuminated by sunlight, suggesting the importance of HONO photolysis in vehicles. Conversely, nitrate radicals (NO3) were not considered significant indoor oxidants in our study due to rapid titration by NO. Overall, our findings emphasize the importance of both air exchange and photochemistry in shaping the composition of air inside vehicles.
Collapse
Affiliation(s)
- Pedro A F Souza
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | - Shan Zhou
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Tara F Kahan
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
5
|
Farmer DK, Vance ME, Poppendieck D, Abbatt J, Alves MR, Dannemiller KC, Deeleepojananan C, Ditto J, Dougherty B, Farinas OR, Goldstein AH, Grassian VH, Huynh H, Kim D, King JC, Kroll J, Li J, Link MF, Mael L, Mayer K, Martin AB, Morrison G, O'Brien R, Pandit S, Turpin BJ, Webb M, Yu J, Zimmerman SM. The chemical assessment of surfaces and air (CASA) study: using chemical and physical perturbations in a test house to investigate indoor processes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 38953218 DOI: 10.1039/d4em00209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The Chemical Assessment of Surfaces and Air (CASA) study aimed to understand how chemicals transform in the indoor environment using perturbations (e.g., cooking, cleaning) or additions of indoor and outdoor pollutants in a well-controlled test house. Chemical additions ranged from individual compounds (e.g., gaseous ammonia or ozone) to more complex mixtures (e.g., a wildfire smoke proxy and a commercial pesticide). Physical perturbations included varying temperature, ventilation rates, and relative humidity. The objectives for CASA included understanding (i) how outdoor air pollution impacts indoor air chemistry, (ii) how wildfire smoke transports and transforms indoors, (iii) how gases and particles interact with building surfaces, and (iv) how indoor environmental conditions impact indoor chemistry. Further, the combined measurements under unperturbed and experimental conditions enable investigation of mitigation strategies following outdoor and indoor air pollution events. A comprehensive suite of instruments measured different chemical components in the gas, particle, and surface phases throughout the study. We provide an overview of the test house, instrumentation, experimental design, and initial observations - including the role of humidity in controlling the air concentrations of many semi-volatile organic compounds, the potential for ozone to generate indoor nitrogen pentoxide (N2O5), the differences in microbial composition between the test house and other occupied buildings, and the complexity of deposited particles and gases on different indoor surfaces.
Collapse
Affiliation(s)
- Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Marina E Vance
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | | | - Jon Abbatt
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Michael R Alves
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Karen C Dannemiller
- Department of Civil, Environmental, and Geodetic Engineering, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, USA
- Sustainability Institute, The Ohio State University, Columbus, OH, USA
| | | | - Jenna Ditto
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Brian Dougherty
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Olivia R Farinas
- Department of Civil, Environmental, and Geodetic Engineering, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, USA
| | - Allen H Goldstein
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Han Huynh
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Deborah Kim
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Jon C King
- Department of Civil, Environmental, and Geodetic Engineering, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, USA
| | - Jesse Kroll
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jienan Li
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Michael F Link
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Liora Mael
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | - Kathryn Mayer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Andrew B Martin
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | - Glenn Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rachel O'Brien
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shubhrangshu Pandit
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Marc Webb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Jie Yu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
6
|
Deng H, Qiu J, Zhang R, Xu J, Qu Y, Wang J, Liu Y, Gligorovski S. Ozone Chemistry on Greasy Glass Surfaces Affects the Levels of Volatile Organic Compounds in Indoor Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8393-8403. [PMID: 38691770 DOI: 10.1021/acs.est.3c08196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The chemistry of ozone (O3) on indoor surfaces leads to secondary pollution, aggravating the air quality in indoor environments. Here, we assess the heterogeneous chemistry of gaseous O3 with glass plates after being 1 month in two different kitchens where Chinese and Western styles of cooking were applied, respectively. The uptake coefficients of O3 on the authentic glass plates were measured in the dark and under UV light irradiation typical for indoor environments (320 nm < λ < 400 nm) at different relative humidities. The gas-phase product compounds formed upon reactions of O3 with the glass plates were evaluated in real time by a proton-transfer-reaction quadrupole-interface time-of-flight mass spectrometer. We observed typical aldehydes formed by the O3 reactions with the unsaturated fatty acid constituents of cooking oils. The formation of decanal, 6-methyl-5-hepten-2-one (6-MHO), and 4-oxopentanal (4-OPA) was also observed. The employed dynamic mass balance model shows that the estimated mixing ratios of hexanal, octanal, nonanal, decanal, undecanal, 6-MHO, and 4-OPA due to O3 chemistry with authentic grime-coated kitchen glass surfaces are higher in the kitchen where Chinese food was cooked compared to that where Western food was cooked. These results show that O3 chemistry on greasy glass surfaces leads to enhanced VOC levels in indoor environments.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Qiu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Runqi Zhang
- Department of Materials Environmental Engineering, Shanxi Polytechnic College, Shanxi 237016, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuekun Qu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jixuan Wang
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yingjun Liu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
7
|
Liu C, Liang L, Xu W, Ma Q. A review of indoor nitrous acid (HONO) pollution: Measurement techniques, pollution characteristics, sources, and sinks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171100. [PMID: 38387565 DOI: 10.1016/j.scitotenv.2024.171100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Indoor air quality is of major concern for human health and well-being. Nitrous acid (HONO) is an emerging indoor pollutant, and its indoor mixing ratios are usually higher than outdoor levels, ranging from a few to tens of parts per billion (ppb). HONO exhibits adverse effects to human health due to its respiratory toxicity and mutagenicity. Additionally, HONO can easily undergo photodissociation by ultraviolet light to produce hydroxyl radicals (OH•), which in turn trigger a series of further photochemical oxidation reactions of primary or secondary pollutants. The accumulation of indoor HONO can be attributed to both direct emissions from combustion sources, such as cooking, and secondary formation resulting from enhanced heterogeneous reactions of NOx on indoor surfaces. During the day, the primary sink of indoor HONO is photolysis to OH• and NO. Moreover, adsorption and/or reaction on indoor surfaces, and diffusion to the outside atmosphere contribute to HONO loss both during the day and at night. The level of indoor HONO is also affected by human occupancy, which can influence household factors such as temperature, humidity, light irradiation, and indoor surfaces. This comprehensive review article summarized the research progress on indoor HONO pollution based on indoor air measurements, laboratory studies, and model simulations. The environmental and health effects were highlighted, measurement techniques were summarized, pollution levels, sources and sinks, and household influencing factors were discussed, and the prospects in the future were proposed.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Linlin Liang
- Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Wanyun Xu
- Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Zhou Z, Crilley LR, Ditto JC, VandenBoer TC, Abbatt JPD. Chemical Fate of Oils on Indoor Surfaces: Ozonolysis and Peroxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15546-15557. [PMID: 37647222 DOI: 10.1021/acs.est.3c04009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Unsaturated triglycerides found in food and skin oils are reactive in ambient air. However, the chemical fate of such compounds has not been well characterized in genuine indoor environments. Here, we monitored the aging of oil coatings on glass surfaces over a range of environmental conditions, using mass spectrometry, nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) techniques. Upon room air exposure (up to 17 ppb ozone), the characteristic ozonolysis products, secondary ozonides, were observed on surfaces near the cooking area of a commercial kitchen, along with condensed-phase aldehydes. In an office setting, ozonolysis is also the dominant degradation pathway for oil films exposed to air. However, for indoor enclosed spaces such as drawers, the depleted air flow makes lipid autoxidation more favorable after an induction period of a few days. Forming hydroperoxides as the major primary products, this radical-mediated peroxidation behavior is accelerated by indoor direct sunlight, but the initiation step in dark settings is still unclear. These results are in accord with radical measurements, indicating that indoor photooxidation facilitates radical formation on surfaces. Overall, many intermediate and end products observed are reactive oxygen species (ROS) that may induce oxidative stress in human bodies. Given that these species can be widely found on both food and household surfaces, their toxicological properties are worth further attention.
Collapse
Affiliation(s)
- Zilin Zhou
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Leigh R Crilley
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Jenna C Ditto
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | | | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
9
|
Li J, Link MF, Pandit S, Webb MH, Mayer KJ, Garofalo LA, Rediger KL, Poppendieck DG, Zimmerman SM, Vance ME, Grassian VH, Morrison GC, Turpin BJ, Farmer DK. The persistence of smoke VOCs indoors: Partitioning, surface cleaning, and air cleaning in a smoke-contaminated house. SCIENCE ADVANCES 2023; 9:eadh8263. [PMID: 37831770 PMCID: PMC10575580 DOI: 10.1126/sciadv.adh8263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Wildfires are increasing in frequency, raising concerns that smoke can permeate indoor environments and expose people to chemical air contaminants. To study smoke transformations in indoor environments and evaluate mitigation strategies, we added smoke to a test house. Many volatile organic compounds (VOCs) persisted days following the smoke injection, providing a longer-term exposure pathway for humans. Two time scales control smoke VOC partitioning: a faster one (1.0 to 5.2 hours) that describes the time to reach equilibrium between adsorption and desorption processes and a slower one (4.8 to 21.2 hours) that describes the time for indoor ventilation to overtake adsorption-desorption equilibria in controlling the air concentration. These rates imply that vapor pressure controls partitioning behavior and that house ventilation plays a minor role in removing smoke VOCs. However, surface cleaning activities (vacuuming, mopping, and dusting) physically removed surface reservoirs and thus reduced indoor smoke VOC concentrations more effectively than portable air cleaners and more persistently than window opening.
Collapse
Affiliation(s)
- Jienan Li
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael F. Link
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Shubhrangshu Pandit
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Marc H. Webb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathryn J. Mayer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Lauren A. Garofalo
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Katelyn L. Rediger
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | - Marina E. Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Vicki H. Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Glenn C. Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Barbara J. Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Delphine K. Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
10
|
Lakey PSJ, Cummings BE, Waring MS, Morrison GC, Shiraiwa M. Effective mass accommodation for partitioning of organic compounds into surface films with different viscosities. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1464-1478. [PMID: 37560969 DOI: 10.1039/d3em00213f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Indoor surfaces can act as reservoirs and reaction media influencing the concentrations and type of species that people are exposed to indoors. Mass accommodation and partitioning are impacted by the phase state and viscosity of indoor surface films. We developed the kinetic multi-layer model KM-FILM to simulate organic film formation and growth, but it is computationally expensive to couple such comprehensive models with indoor air box models. Recently, a novel effective mass accommodation coefficient (αeff) was introduced for efficient and effective treatments of gas-particle partitioning. In this study, we extended this approach to a film geometry with αeff as a function of penetration depth into the film, partitioning coefficient, bulk diffusivity, and condensed-phase reaction rate constant. Comparisons between KM-FILM and the αeff method show excellent agreement under most conditions, but with deviations before the establishment of quasi-equilibrium within the penetration depth. We found that the deposition velocity of species and overall film growth are impacted by bulk diffusivity in highly viscous films (Db ∼<10-15 cm2 s-1). Reactions that lead to non-volatile products can increase film thicknesses significantly, with the extent of film growth being dependent on the gas-phase concentration, rate coefficient, partitioning coefficient and diffusivity. Amorphous semisolid films with Db > ∼10-17-10-19 cm2 s-1 can be efficient SVOC reservoirs for compounds with higher partitioning coefficients as they can be released back to the gas phase over extended periods of time, while glassy solid films would not be able to act as reservoirs as gas-film partitioning is impeded.
Collapse
Affiliation(s)
- Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | - Bryan E Cummings
- Department of Civil, Architectural and Environmental Engineering, Drexel University, PA 19104, USA
| | - Michael S Waring
- Department of Civil, Architectural and Environmental Engineering, Drexel University, PA 19104, USA
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
11
|
Xiang W, Wang W, Du L, Zhao B, Liu X, Zhang X, Yao L, Ge M. Toxicological Effects of Secondary Air Pollutants. Chem Res Chin Univ 2023; 39:326-341. [PMID: 37303472 PMCID: PMC10147539 DOI: 10.1007/s40242-023-3050-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 06/13/2023]
Abstract
Secondary air pollutants, originating from gaseous pollutants and primary particulate matter emitted by natural sources and human activities, undergo complex atmospheric chemical reactions and multiphase processes. Secondary gaseous pollutants represented by ozone and secondary particulate matter, including sulfates, nitrates, ammonium salts, and secondary organic aerosols, are formed in the atmosphere, affecting air quality and human health. This paper summarizes the formation pathways and mechanisms of important atmospheric secondary pollutants. Meanwhile, different secondary pollutants' toxicological effects and corresponding health risks are evaluated. Studies have shown that secondary pollutants are generally more toxic than primary ones. However, due to their diverse source and complex generation mechanism, the study of the toxicological effects of secondary pollutants is still in its early stages. Therefore, this paper first introduces the formation mechanism of secondary gaseous pollutants and focuses mainly on ozone's toxicological effects. In terms of particulate matter, secondary inorganic and organic particulate matters are summarized separately, then the contribution and toxicological effects of secondary components formed from primary carbonaceous aerosols are discussed. Finally, secondary pollutants generated in the indoor environment are briefly introduced. Overall, a comprehensive review of secondary air pollutants may shed light on the future toxicological and health effects research of secondary air pollutants.
Collapse
Affiliation(s)
- Wang Xiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Bin Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024 P. R. China
| | - Xingyang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Li Yao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| |
Collapse
|
12
|
Xu X, Pang H, Liu C, Wang K, Loisel G, Li L, Gligorovski S, Li X. Real-time measurements of product compounds formed through the reaction of ozone with breath exhaled VOCs. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2237-2248. [PMID: 36472140 DOI: 10.1039/d2em00339b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Human presence can affect indoor air quality because of secondary organic compounds formed upon reactions between gaseous oxidant species, e.g., ozone (O3), hydroxyl radicals (OH), and chemical compounds from skin, exhaled breath, hair and clothes. We assess the gas-phase product compounds generated by reactions of gaseous O3 with volatile organic compounds (VOCs) from exhaled human breath by real time analysis using a high-resolution quadrupole-orbitrap mass spectrometer (HRMS) coupled to a secondary electrospray ionization (SESI) source. Based on the product compounds identified we propose a reaction mechanism initiated by O3 oxidation of the most common breath constituents, isoprene, α-terpinene and ammonia (NH3). The reaction of O3 with isoprene and α-terpinene generates ketones and aldehydes such as 3,4-dihydroxy-2-butanone, methyl vinyl ketone, 3-carbonyl butyraldehyde, formaldehyde and toxic compounds such as 3-methyl furan. Formation of compounds with reduced nitrogen containing functional groups such as amines, imines and imides is highly plausible through NH3 initiated cleavage of the C-O bond. The detected gas-phase product compounds suggest that human breath can additionally affect indoor air quality through the formation of harmful secondary products and future epidemiological studies should evaluate the potential health effects of these compounds.
Collapse
Affiliation(s)
- Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Chao Liu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Kangyi Wang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Lei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| |
Collapse
|
13
|
Yang D, Liu Q, Wang S, Bozorg M, Liu J, Nair P, Balaguer P, Song D, Krause H, Ouazia B, Abbatt JPD, Peng H. Widespread formation of toxic nitrated bisphenols indoors by heterogeneous reactions with HONO. SCIENCE ADVANCES 2022; 8:eabq7023. [PMID: 36459560 PMCID: PMC10936053 DOI: 10.1126/sciadv.abq7023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
With numerous structurally diverse indoor contaminants, indoor transformation chemistry has been largely unexplored. Here, by integrating protein affinity purification and nontargeted mass spectrometry analysis (PUCA), we identified a substantial class of previously unrecognized indoor transformation products formed through gas-surface reactions with nitrous acid (HONO). Through the PUCA, we identified a noncommercial compound, nitrated bisphenol A (BPA), from house dust extracts strongly binding to estrogen-related receptor γ. The compound was detected in 28 of 31 house dust samples with comparable concentrations (ND to 0.30 μg/g) to BPA. Via exposing gaseous HONO to surface-bound BPA, we demonstrated it likely forms via a heterogeneous indoor chemical transformation that is highly selective toward bisphenols with electron-rich aromatic rings. We used 15N-nitrite for in situ labeling and found 110 nitration products formed from indoor contaminants with distinct aromatic moieties. This study demonstrates a previously unidentified class of chemical reactions involving indoor HONO, which should be incorporated into the risk evaluation of indoor contaminants, particularly bisphenols.
Collapse
Affiliation(s)
- Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Qifan Liu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Sizhi Wang
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Matin Bozorg
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jiabao Liu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Pranav Nair
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Patrick Balaguer
- IRCM, INSERM U1194, Université de Montpellier, ICM, Montpellier, France
| | - Datong Song
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Henry Krause
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | | | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Deng H, Xu X, Wang K, Xu J, Loisel G, Wang Y, Pang H, Li P, Mai Z, Yan S, Li X, Gligorovski S. The Effect of Human Occupancy on Indoor Air Quality through Real-Time Measurements of Key Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15377-15388. [PMID: 36279129 DOI: 10.1021/acs.est.2c04609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The primarily emitted compounds by human presence, e.g., skin and volatile organic compounds (VOCs) in breath, can react with typical indoor air oxidants, ozone (O3), and hydroxyl radicals (OH), leading to secondary organic compounds. Nevertheless, our understanding about the formation processes of the compounds through reactions of indoor air oxidants with primary emitted pollutants is still incomplete. In this study we performed real-time measurements of nitrous acid (HONO), nitrogen oxides (NOx = NO + NO2), O3, and VOCs to investigate the contribution of human presence and human activity, e.g., mopping the floor, to secondary organic compounds. During human occupancy a significant increase was observed of 1-butene, isoprene, and d-limonene exhaled by the four adults in the room and an increase of methyl vinyl ketone/methacrolein, methylglyoxal, and 3-methylfuran, formed as secondary compounds through reactions of OH radicals with isoprene. Intriguingly, the level of some compounds (e.g., m/z 126, 6-methyl-5-hepten-2-one, m/z 152, dihydrocarvone, and m/z 194, geranyl acetone) formed through reactions of O3 with the primary compounds was higher in the presence of four adults than during the period of mopping the floor with commercial detergent. These results indicate that human presence can additionally degrade the indoor air quality.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
| | - Kangyi Wang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Zebin Mai
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou510530, China
| | - Shichao Yan
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou510530, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou510632, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou510640, China
| |
Collapse
|
15
|
Bottorff B, Wang C, Reidy E, Rosales C, Farmer DK, Vance ME, Abbatt JPD, Stevens P. Comparison of Simultaneous Measurements of Indoor Nitrous Acid: Implications for the Spatial Distribution of Indoor HONO Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13573-13583. [PMID: 36137564 PMCID: PMC9535926 DOI: 10.1021/acs.est.2c02196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Despite its importance as a radical precursor and a hazardous pollutant, the chemistry of nitrous acid (HONO) in the indoor environment is not fully understood. We present results from a comparison of HONO measurements from a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) and a laser photofragmentation/laser-induced fluorescence (LP/LIF) instrument during the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign. Experiments during HOMEChem simulated typical household activities and provided a dynamic range of HONO mixing ratios. The instruments measured HONO at different locations in a house featuring a typical air change rate (ACR) (0.5 h-1) and an enhanced mixing rate (∼8 h-1). Despite the distance between the instruments, measurements from the two instruments agreed to within their respective uncertainties (slope = 0.85, R2 = 0.92), indicating that the lifetime of HONO is long enough for it to be quickly distributed indoors, although spatial gradients occurred during ventilation periods. This suggests that emissions of HONO from any source can mix throughout the house and can contribute to OH radical production in sunlit regions, enhancing the oxidative capacity indoors. Measurement discrepancies were likely due to interferences with the LP/LIF instrument as well as calibration uncertainties associated with both instruments.
Collapse
Affiliation(s)
- Brandon Bottorff
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- O’Neill
School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Chen Wang
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School
of Environment Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Emily Reidy
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Colleen Rosales
- O’Neill
School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
- Air
Quality Research Center, University of California
Davis, Davis, California 95616, United States
| | - Delphine K. Farmer
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Marina E. Vance
- Department
of Mechanical Engineering, University of
Colorado Boulder, Boulder, Colorado 80309, United States
| | | | - Philip
S. Stevens
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- O’Neill
School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
16
|
Pandit S, Grassian VH. Gas-Phase Nitrous Acid (HONO) Is Controlled by Surface Interactions of Adsorbed Nitrite (NO 2-) on Common Indoor Material Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12045-12054. [PMID: 36001734 PMCID: PMC9454260 DOI: 10.1021/acs.est.2c02042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Nitrous acid (HONO) is a household pollutant exhibiting adverse health effects and a major source of indoor OH radicals under a variety of lighting conditions. The present study focuses on gas-phase HONO and condensed-phase nitrite and nitrate formation on indoor surface thin films following heterogeneous hydrolysis of NO2, in the presence and absence of light, and nitrate (NO3-) photochemistry. These thin films are composed of common building materials including zeolite, kaolinite, painted walls, and cement. Gas-phase HONO is measured using an incoherent broadband cavity-enhanced ultraviolet absorption spectrometer (IBBCEAS), whereby condensed-phase products, adsorbed nitrite and nitrate, are quantified using ion chromatography. All of the surface materials used in this study can store nitrogen oxides as nitrate, but only thin films of zeolite and cement can act as condensed-phase nitrite reservoirs. For both the photo-enhanced heterogeneous hydrolysis of NO2 and nitrate photochemistry, the amount of HONO produced depends on the material surface. For zeolite and cement, little HONO is produced, whereas HONO is the major product from kaolinite and painted wall surfaces. An important result of this study is that surface interactions of adsorbed nitrite are key to HONO formation, and the stronger the interaction of nitrite with the surface, the less gas-phase HONO produced.
Collapse
|
17
|
Or VW, Alves MR, Wade M, Schwab S, Corsi RL, Grassian VH. Nanoscopic Study of Water Uptake on Glass Surfaces with Organic Thin Films and Particles from Exposure to Indoor Cooking Activities: Comparison to Model Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1594-1604. [PMID: 35061386 DOI: 10.1021/acs.est.1c06260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water uptake by thin organic films and organic particles on glass substrates at 80% relative humidity was investigated using atomic force microscopy-infrared (AFM-IR) spectroscopy. Glass surfaces exposed to kitchen cooking activities show a wide variability of coverages from organic particles and organic thin films. Water uptake, as measured by changes in the volume of the films and particles, was also quite variable. A comparison of glass surfaces exposed to kitchen activities to model systems shows that they can be largely represented by oxidized oleic acid and carboxylate groups on long and medium hydrocarbon chains (i.e., fatty acids). Overall, we demonstrate that organic particles and thin films that cover glass surfaces can take up water under indoor-relevant conditions but that the water content is not uniform. The spatial heterogeneity of the changes in these aged glass surfaces under dry (5%) and wet (80%) conditions is quite marked, highlighting the need for studies at the nano- and microscale.
Collapse
Affiliation(s)
- Victor W Or
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Michael R Alves
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Michael Wade
- Department of Civil, Architectural and Environmental Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarah Schwab
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Richard L Corsi
- Department of Civil, Architectural and Environmental Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- College of Engineering, University of California, Davis, Davis, California 95616, United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
18
|
Zhou S, Kahan TF. Spatiotemporal characterization of irradiance and photolysis rate constants of indoor gas-phase species in the UTest house during HOMEChem. INDOOR AIR 2022; 32:e12964. [PMID: 34854500 DOI: 10.1111/ina.12966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/20/2021] [Accepted: 11/14/2021] [Indexed: 05/25/2023]
Abstract
We made intensive measurements of wavelength-resolved spectral irradiance in a test house during the HOMEChem campaign and report diurnal profiles and two-dimensional spatial distribution of photolysis rate constants (J) of several important indoor photolabile gases. Results show that sunlight entering through windows, which was the dominant source of ultraviolet (UV) light in this house, led to clear diurnal cycles, and large time- and location-dependent variations in local gas-phase photochemical activity. Local J values of several key indoor gases under direct solar illumination were 1.8-7.4 times larger-and more strongly dependent on time, solar zenith angle, and incident angle of sunlight relative to the window-than under diffuse sunlight. Photolysis rate constants were highly spatially heterogeneous and fast photochemical reactions in the gas phase were generally confined to within tens of cm of the region that were directly sunlit. Opening windows increased UV photon fluxes by 3 times and increased predicted local hydroxyl radical (OH) concentrations in the sunlit region by 4.5 times to 3.2 × 107 molec cm-3 due to higher J values and increased contribution from O3 photolysis. These results can be used to improve the treatment of photochemistry in indoor chemistry models and are a valuable resource for future studies that use the publicly available HOMEChem measurements.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
19
|
Nodeh-Farahani D, Bentley JN, Crilley LR, Caputo CB, VandenBoer TC. A boron dipyrromethene (BODIPY) based probe for selective passive sampling of atmospheric nitrous acid (HONO) indoors. Analyst 2021; 146:5756-5766. [PMID: 34515696 DOI: 10.1039/d1an01089a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
People spend up to 90% of their time indoors, and yet our understanding of indoor air quality and the chemical processes driving it are poorly understood, despite levels of key pollutants typically being higher indoors compared to outdoors. Nitrous acid (HONO) is a species that drives these indoor chemical processes, with potentially detrimental health effects. In this work, a BODIPY-based probe was synthesized with the aim of developing the first selective passive sampler for atmospheric HONO. Our probe and its products are easily detected by UV-Vis spectroscopy with molar extinct coefficients of 37 863 and 33 787 M-1 cm-1, respectively, and a detection limit of 14.8 ng mL-1. When protonated, the probe fluoresces with a quantum yield of 33%, which is turned off upon reaction. The synthesized BODIPY probe was characterized using NMR and UV-Vis spectroscopy. Products were characterized by UV-Vis and ultra high-resolution mass spectrometry. The reaction kinetics of the probe with nitrite was studied using UV-Vis spectroscopy, which had a pseudo-first-order rate of k = 7.7 × 10-4 s-1. The rapid reaction makes this probe suitable for targeted ambient sampling of HONO. This was investigated through a proof-of-concept experiment with gaseous HONO produced by a custom high-purity calibration source delivering the sample to the BODIPY probe in an acidic aqueous solution in clean air and a real indoor air matrix. The probe showed quantitative uptake of HONO in both cases to form the same products observed from reaction with nitrite, with no indication of interferences from ambient NO or NO2. The chemical and physical characteristics of the probe therefore make it ideal for use in passive samplers for selective sampling of HONO from the atmosphere.
Collapse
Affiliation(s)
| | - Jordan N Bentley
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada.
| | - Leigh R Crilley
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada.
| | | | | |
Collapse
|
20
|
Zhou S, Kowal SF, Cregan AR, Kahan TF. Factors affecting wavelength-resolved ultraviolet irradiance indoors and their impacts on indoor photochemistry. INDOOR AIR 2021; 31:1187-1198. [PMID: 33373097 DOI: 10.1111/ina.12784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/13/2020] [Accepted: 12/08/2020] [Indexed: 05/25/2023]
Abstract
We measured wavelength-resolved ultraviolet (UV) irradiance in multiple indoor environments and quantified the effects of variables such as light source, solar angles, cloud cover, window type, and electric light color temperature on indoor photon fluxes. The majority of the 77 windows and window samples investigated completely attenuated sunlight at wavelengths shorter than 320 nm; despite variations among individual windows leading to differences in indoor HONO photolysis rate constants (JHONO ) and local hydroxyl radical (OH) concentrations of up to a factor of 50, wavelength-resolved transmittance was similar between windows in residential and non-residential buildings. We report mathematical relationships that predict indoor solar UV irradiance as a function of solar zenith angle, incident angle of sunlight on windows, and distance from windows and surfaces for direct and diffuse sunlight. Using these relationships, we predict elevated indoor steady-state OH concentrations (0.80-7.4 × 106 molec cm-3 ) under illumination by direct and diffuse sunlight and fluorescent tubes near windows or light sources. However, elevated OH concentrations at 1 m from the source are only predicted under direct sunlight. We predict that reflections from indoor surfaces will have minor contributions to room-averaged indoor UV irradiance. These results may improve parameterization of indoor chemistry models.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Shawn F Kowal
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | - Alyssa R Cregan
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
21
|
Depoorter A, Kalalian C, Emmelin C, Lorentz C, George C. Indoor heterogeneous photochemistry of furfural drives emissions of nitrous acid. INDOOR AIR 2021; 31:682-692. [PMID: 33020975 DOI: 10.1111/ina.12758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/28/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
People spend approximately 80% of their time indoor, making the understanding of the indoor chemistry an important task for safety. The high surface-area-to-volume ratio characteristic of indoor environments leads the semi-volatile organic compounds (sVOCs) to deposit on the surfaces. Using a long path absorption photometer (LOPAP), this work investigates the formation of nitrous acid (HONO) through the photochemistry of adsorbed nitrate anions and its enhancement by the presence of furfural. Using a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS), this work also investigates the surface emissions of VOCs from irradiated films of furfural and a mix of furfural and nitrate anions. Among the emitted VOCs, 2(5H)-furanone/2-Butenedial was observed at high concentrations, leading to maleic anhydride formation after UV irradiation. Moreover, the addition of potassium nitrate to the film formed NOx and HONO concentrations up to 10 ppb, which scales to ca. 4 ppb for realistic indoor conditions. This work helps to understand the high levels of HONO and NOx measured indoors.
Collapse
Affiliation(s)
| | - Carmen Kalalian
- Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Corinne Emmelin
- Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Chantal Lorentz
- Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
22
|
O'Brien RE, Li Y, Kiland KJ, Katz EF, Or VW, Legaard E, Walhout EQ, Thrasher C, Grassian VH, DeCarlo PF, Bertram AK, Shiraiwa M. Emerging investigator series: chemical and physical properties of organic mixtures on indoor surfaces during HOMEChem. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:559-568. [PMID: 33870396 DOI: 10.1039/d1em00060h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic films on indoor surfaces serve as a medium for reactions and for partitioning of semi-volatile organic compounds and thus play an important role in indoor chemistry. However, the chemical and physical properties of these films are poorly characterized. Here, we investigate the chemical composition of an organic film collected during the HOMEChem campaign, over three cumulative weeks in the kitchen, using both Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) and offline Aerosol Mass Spectrometry (AMS). We also characterize the viscosity of this film using a model based on molecular formulas as well as poke-flow measurements. We find that the film contains organic material similar to cooking organic aerosol (COA) measured during the campaign using on-line AMS. However, the average molecular formula observed using FT-ICR MS is ∼C50H90O11, which is larger and more oxidized than fresh COA. Solvent extracted film material is a low viscous semisolid, with a measured viscosity <104 Pa s. This is much lower than the viscosity model predicts, which is parametrized with atmospherically relevant organic molecules, but sensitivity tests demonstrate that including unsaturation can explain the differences. The presence of unsaturation is supported by reactions of film material with ozone. In contrast to the solvent extract, manually removed material appears to be highly viscous, highlighting the need for continued work understanding both viscosity measurements as well as parameterizations for modeled viscosity of indoor organic films.
Collapse
Affiliation(s)
- Rachel E O'Brien
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA.
| | - Ying Li
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Kristian J Kiland
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Erin F Katz
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA
| | - Victor W Or
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Emily Legaard
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA.
| | - Emma Q Walhout
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA.
| | - Corey Thrasher
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA.
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA and Scripps Institution of Oceanography and Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Peter F DeCarlo
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Allan K Bertram
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
23
|
Jones SH, Hosse FPR, Yang X, Donaldson DJ. Loss of NO(g) to painted surfaces and its re-emission with indoor illumination. INDOOR AIR 2021; 31:566-573. [PMID: 32920844 PMCID: PMC7983918 DOI: 10.1111/ina.12741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/07/2020] [Accepted: 09/01/2020] [Indexed: 05/10/2023]
Abstract
Heterogeneous surface reactions play a key role in the chemistry of the indoor environment because of the large indoor surface-to-volume ratio. The presence of photocatalytic material in indoor paints may allow photochemical reactions to occur at wavelengths of light that are present indoors. One such potential reaction is the heterogeneous photooxidation of NO to HONO. NO(g) is commonly found indoors, originating from combustion sources, ventilation and infiltration of outdoor air. We studied the interaction of NO(g) with painted surfaces illuminated with indoor fluorescent and incandescent lighting. There is a loss of NO(g) to painted surfaces in the dark at both 0 and 50% RH. At 50% RH, there is a re-release of some of that NO(g) under illumination. The same behavior is observed for illumination of different colored paints. This is in contrast to what is seen with TiO2 as the substrate, where photoenhanced uptake of NO(g) and formation of NO2 (g) are observed. We hypothesize that the loss of NO(g) is due to adsorption and diffusion into the paint. The re-release of NO under illumination is thought to be due to photooxidation of NO to HONO on the painted surface at higher relative humidities and subsequent HONO photolysis.
Collapse
Affiliation(s)
| | | | - Xiaoying Yang
- Department of ChemistryUniversity of TorontoTorontoONCanada
| | - D. James Donaldson
- Department of ChemistryUniversity of TorontoTorontoONCanada
- Department of Physical and Environmental SciencesUniversity of Toronto ScarboroughTorontoONCanada
| |
Collapse
|
24
|
Klosterköther A, Kurtenbach R, Wiesen P, Kleffmann J. Determination of the emission indices for NO, NO 2 , HONO, HCHO, CO, and particles emitted from candles. INDOOR AIR 2021; 31:116-127. [PMID: 32650352 DOI: 10.1111/ina.12714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
In the present study, emission indices for NO, NO2 , HONO, HCHO, CO, particle mass, and particle numbers including particle size distributions for three different offering candles were determined. The candles investigated showed similar emission characteristics with emission indices (g/kg) in good agreement with former candle emission studies. An average HONO/NOx emission ratio of 6.6 ± 1.1% was obtained, which is much higher compared to most other combustion sources, indicating that candles may be a significant indoor source of this important trace gas. The particle size distributions indicate that the majority of the emitted particles are in the size range 7 - 15 nm. Three modes were observed during burning the candles with very different emission profiles: a "normal burning" mode characterized by low particle number emission rates and small particles; an initial "sooting" behavior after ignition, and a final "smoldering" phase upon candle extinction with higher particle number emission rates and larger particles. The particle emission upon extinction is dependent on the extinction method. The NOx emission indices were applied in a simple box model to calculate typical indoor NOx concentration levels from candle emissions, which were in excellent agreement with direct measurements in a typical indoor environment.
Collapse
Affiliation(s)
- Anja Klosterköther
- Institute for Atmospheric and Environmental Research, Bergische Universität Wuppertal, Wuppertal, Germany
| | - Ralf Kurtenbach
- Institute for Atmospheric and Environmental Research, Bergische Universität Wuppertal, Wuppertal, Germany
| | - Peter Wiesen
- Institute for Atmospheric and Environmental Research, Bergische Universität Wuppertal, Wuppertal, Germany
| | - Jörg Kleffmann
- Institute for Atmospheric and Environmental Research, Bergische Universität Wuppertal, Wuppertal, Germany
| |
Collapse
|
25
|
Liu J, Deng H, Lakey PSJ, Jiang H, Mekic M, Wang X, Shiraiwa M, Gligorovski S. Unexpectedly High Indoor HONO Concentrations Associated with Photochemical NO 2 Transformation on Glass Windows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15680-15688. [PMID: 33232600 DOI: 10.1021/acs.est.0c05624] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nitrous acid (HONO) is an important gaseous pollutant contributing to indoor air pollution because it causes adverse health effects and is the main source of hydroxyl radicals (OH). Here, we present direct measurements of HONO produced through light-induced heterogeneous reactions of NO2 with grime adsorbed on glass window. The uptake coefficients of NO2 [γ(NO2)] on the glass plates from the kitchen increased markedly from (2.3 ± 0.1) × 10-6 at 0% RH to (4.1 ± 0.5) × 10-6 at 90% RH. We report a significant quantity of daytime HONO produced in the kitchen, compared to the living room and bedroom. Kinetic modeling suggests that phase state and bulk diffusivity play important roles in the NO2 uptake; the best fit to the measured uptake coefficients is obtained with fixed diffusion coefficients. Photon scattering may be occurring at the surface of the films, leading to enhanced photon-excitation rates of polycyclic aromatic hydrocarbons. By taking these effects into account, the results from this study indicate that the HONO yields obtained in this study can explain the missing HONO in the photochemical models describing the indoor air chemistry.
Collapse
Affiliation(s)
- Jiangping Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Haoyu Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Majda Mekic
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
26
|
Wang C, Bottorff B, Reidy E, Rosales CMF, Collins DB, Novoselac A, Farmer DK, Vance ME, Stevens PS, Abbatt JPD. Cooking, Bleach Cleaning, and Air Conditioning Strongly Impact Levels of HONO in a House. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13488-13497. [PMID: 33064464 DOI: 10.1021/acs.est.0c05356] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The relative importance of common activities on indoor nitrous acid (HONO) mixing ratios was explored during high time resolution, month-long measurements by chemical ionization mass spectrometry in a previously unoccupied house. Indoor HONO varied from 0.2 to 84.0 ppb (mean: 5.5 ppb; median 3.8 ppb), an order of magnitude higher than simultaneously measured outdoor values, indicating important indoor sources. They agree well with simultaneous measurements of HONO by Laser-Photofragmentation/Laser-Induced Fluorescence. Before any combustion activities, the mixing ratio of 3.0 ± 0.3 ppb is indicative of secondary sources such as multiphase formation from NO2. Cooking (with propane gas), especially the use of an oven, led to significant enhancements up to 84 ppb, with elevated mixing ratios persisting for a few days due to slow desorption from indoor surface reservoirs. Floor bleach cleaning led to prolonged, substantial decreases of up to 71-90% due to reactive processes. Air conditioning modulated HONO mixing ratios driven by condensation to wet surfaces in the AC unit. Enhanced ventilation also significantly lowered mixing ratios. Other conditions including human occupancy, ozone addition, and cleaning with terpene, natural product, and vinegar cleaners had a much smaller influence on HONO background levels measured following these activities.
Collapse
Affiliation(s)
- Chen Wang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Brandon Bottorff
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Emily Reidy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Colleen Marciel F Rosales
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Douglas B Collins
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Atila Novoselac
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, Texas 78712, United States
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Marina E Vance
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Philip S Stevens
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | | |
Collapse
|
27
|
Zeng J, Mekic M, Xu X, Loisel G, Zhou Z, Gligorovski S, Li X. A Novel Insight into the Ozone-Skin Lipid Oxidation Products Observed by Secondary Electrospray Ionization High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13478-13487. [PMID: 33085459 DOI: 10.1021/acs.est.0c05100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Emissions of secondary products through reactions of oxidants, ozone (O3), and hydroxyl radical (·OH) with human skin lipids have become increasingly important in indoor environments. Here, we evaluate the secondary organic compounds formed through heterogeneous reactions of gaseous O3 with hand skin lipids by using a high-resolution quadrupole Orbitrap mass spectrometer coupled to a commercial secondary electrospray ionization (SESI) source. More than 600 ions were detected over a period of less than 40 min real-time measurements, among which 53 ions were characterized with a significant increasing trend in signal intensity at the presence of O3. Based on the detected ions, we suggest detailed reaction pathways initiated by ozone oxidation of squalene that results in primary and secondary ozonides; we noticed for the first time that these products may be further cleaved by direct reaction of nucleophilic ammonia (NH3), emitted from human skin. Finally, we estimate the fate of secondarily formed carbonyl compounds with respect to their gas-phase reactions with ·OH, O3, and NO3 and compared with their removal by air exchange rate (AER) with outdoors. The obtained results suggest that human presence is a source of an important number of organic compounds, which can significantly influence the air quality in indoor environments.
Collapse
Affiliation(s)
- Jiafa Zeng
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Majda Mekic
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 10069, China
| | - Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| |
Collapse
|
28
|
Cummings BE, Li Y, DeCarlo PF, Shiraiwa M, Waring MS. Indoor aerosol water content and phase state in U.S. residences: impacts of relative humidity, aerosol mass and composition, and mechanical system operation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2031-2057. [PMID: 33084679 DOI: 10.1039/d0em00122h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hygroscopic particulate matter (PM) constituents promote uptake of aerosol water (AW), depending on relative humidity (RH), which can constrain qualities such as organic aerosol (OA) phase state and inorganic aerosol (IA) deliquescence and efflorescence. This work provides a first incorporation of AW predictions into residential indoor PM simulations. The indoor model, IMAGES, which simulates factored OA concentrations and thermodynamics using the 2D-volatility basis set, was expanded to predict speciated IA concentrations, AW with κ-Köhler theory of hygroscopic growth, and OA phase state with glass transition temperatures. Since RH is the largest driver of AW and varies with meteorology, simulations were conducted using a database of historical ambient weather and pollution records spanning the sixteen U.S. climate zones, facilitating assessment of seasonal and regional trends. Over this diverse simulation set, the residential indoor AW mass was ∼10 to 100 times smaller than dry PM mass. This relative AW amount indoors was about ∼10 times smaller than outdoors, since indoor-emitted aerosol is likely less hygroscopic. The indoor OA phase state was typically semisolid, suggesting kinetic limitations might inhibit thermodynamic OA partitioning equilibrium from being established indoors. Residences in hot and humid climates during the summertime may have liquid indoor OA, while amorphous solid indoor OA can exist in cold climates. Deliquescence and efflorescence of recirculated IA within HVAC systems during cooling or heating, respectively, was also modeled. Oftentimes, two IA populations with different histories existing as wet or dry aerosol were generated by HVAC operation depending on indoor and outdoor environmental conditions and the HVAC operating mode.
Collapse
|
29
|
Or VW, Wade M, Patel S, Alves MR, Kim D, Schwab S, Przelomski H, O'Brien R, Rim D, Corsi RL, Vance ME, Farmer DK, Grassian VH. Glass surface evolution following gas adsorption and particle deposition from indoor cooking events as probed by microspectroscopic analysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1698-1709. [PMID: 32661531 DOI: 10.1039/d0em00156b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Indoor surfaces are extremely diverse and their interactions with airborne compounds and aerosols influence the lifetime and reactivity of indoor emissions. Direct measurements of the physical and chemical state of these surfaces provide insights into the underlying physical and chemical processes involving surface adsorption, surface partitioning and particle deposition. Window glass, a ubiquitous indoor surface, was placed vertically during indoor activities throughout the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign and then analyzed to measure changes in surface morphology and surface composition. Atomic force microscopy-infrared (AFM-IR) spectroscopic analyses reveal that deposition of submicron particles from cooking events is a contributor to modifying the chemical and physical state of glass surfaces. These results demonstrate that the deposition of glass surfaces can be an important sink for organic rich particles material indoors. These findings also show that particle deposition contributes enough organic matter from a single day of exposure equivalent to a uniform film up to two nanometers in thickness, and that the chemical distinctness of different indoor activities is reflective of the chemical and morphological changes seen in these indoor surfaces. Comparison of the experimental results to physical deposition models shows variable agreement, suggesting that processes not captured in physical deposition models may play a role in the sticking of particles on indoor surfaces.
Collapse
Affiliation(s)
- Victor W Or
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | - Michael Wade
- Department of Civil, Architectural and Environmental Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Sameer Patel
- Mechanical Engineering Department, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Michael R Alves
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | - Deborah Kim
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | - Sarah Schwab
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | - Hannah Przelomski
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23185, USA
| | - Rachel O'Brien
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23185, USA
| | - Donghyun Rim
- Department of Architectural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Richard L Corsi
- Maseeh College of Engineering & Computer Science, Portland State University, Portland, Oregon 97021, USA
| | - Marina E Vance
- Mechanical Engineering Department, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA. and Scripps Institution of Oceanography and Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
30
|
Nazaroff WW, Weschler CJ. Indoor acids and bases. INDOOR AIR 2020; 30:559-644. [PMID: 32233033 DOI: 10.1111/ina.12670] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 05/15/2023]
Abstract
Numerous acids and bases influence indoor air quality. The most abundant of these species are CO2 (acidic) and NH3 (basic), both emitted by building occupants. Other prominent inorganic acids are HNO3 , HONO, SO2 , H2 SO4 , HCl, and HOCl. Prominent organic acids include formic, acetic, and lactic; nicotine is a noteworthy organic base. Sources of N-, S-, and Cl-containing acids can include ventilation from outdoors, indoor combustion, consumer product use, and chemical reactions. Organic acids are commonly more abundant indoors than outdoors, with indoor sources including occupants, wood, and cooking. Beyond NH3 and nicotine, other noteworthy bases include inorganic and organic amines. Acids and bases partition indoors among the gas-phase, airborne particles, bulk water, and surfaces; relevant thermodynamic parameters governing the partitioning are the acid-dissociation constant (Ka ), Henry's law constant (KH ), and the octanol-air partition coefficient (Koa ). Condensed-phase water strongly influences the fate of indoor acids and bases and is also a medium for chemical interactions. Indoor surfaces can be large reservoirs of acids and bases. This extensive review of the state of knowledge establishes a foundation for future inquiry to better understand how acids and bases influence the suitability of indoor environments for occupants, cultural artifacts, and sensitive equipment.
Collapse
Affiliation(s)
- William W Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Charles J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- International Centre for Indoor Environment and Energy, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
31
|
Lunderberg DM, Kristensen K, Tian Y, Arata C, Misztal PK, Liu Y, Kreisberg N, Katz EF, DeCarlo PF, Patel S, Vance ME, Nazaroff WW, Goldstein AH. Surface Emissions Modulate Indoor SVOC Concentrations through Volatility-Dependent Partitioning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6751-6760. [PMID: 32379430 DOI: 10.1021/acs.est.0c00966] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Measurements by semivolatile thermal desorption aerosol gas chromatography (SV-TAG) were used to investigate how semivolatile organic compounds (SVOCs) partition among indoor reservoirs in (1) a manufactured test house under controlled conditions (HOMEChem campaign) and (2) a single-family residence when vacant (H2 campaign). Data for phthalate diesters and siloxanes suggest that volatility-dependent partitioning processes modulate airborne SVOC concentrations through interactions with surface-laden condensed-phase reservoirs. Airborne concentrations of SVOCs with vapor pressures in the range of C13 to C23 alkanes were observed to be correlated with indoor air temperature. Observed temperature dependencies were quantitatively similar to theoretical predictions that assumed a surface-air boundary layer with equilibrium partitioning maintained at the air-surface interface. Airborne concentrations of SVOCs with vapor pressures corresponding to C25 to C31 alkanes correlated with airborne particle mass concentration. For SVOCs with higher vapor pressures, which are expected to be predominantly gaseous, correlations with particle mass concentration were weak or nonexistent. During primary particle emission events, enhanced gas-phase emissions from condensed-phase reservoirs partitioned to airborne particles, contributing substantially to organic particulate matter. An emission event related to oven-usage was inferred to deposit siloxanes in condensed-phase reservoirs throughout the house, leading to the possibility of reemission during subsequent periods with high particle loading.
Collapse
Affiliation(s)
- David M Lunderberg
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Kasper Kristensen
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Yilin Tian
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Caleb Arata
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Pawel K Misztal
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Yingjun Liu
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Nathan Kreisberg
- Aerosol Dynamics Inc., Berkeley, California 94710, United States
| | - Erin F Katz
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Peter F DeCarlo
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sameer Patel
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Marina E Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - William W Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
32
|
Li M, Weschler CJ, Bekö G, Wargocki P, Lucic G, Williams J. Human Ammonia Emission Rates under Various Indoor Environmental Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5419-5428. [PMID: 32233434 DOI: 10.1021/acs.est.0c00094] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ammonia (NH3) is typically present at higher concentrations in indoor air (∼10-70 ppb) than in outdoor air (∼50 ppt to 5 ppb). It is the dominant neutralizer of acidic species in indoor environments, strongly influencing the partitioning of gaseous acidic and basic species to aerosols, surface films, and bulk water. We have measured NH3 emissions from humans in an environmentally controlled chamber. A series of experiments, each with four volunteers, quantified NH3 emissions as a function of temperature (25.1-32.6 °C), clothing (long-sleeved shirts/pants or T-shirts/shorts), age (teenagers, adults, and seniors), relative humidity (low or high), and ozone (<2 ppb or ∼35 ppb). Higher temperature and more skin exposure (T-shirts/shorts) significantly increased emission rates. For adults and seniors (long clothing), NH3 emissions are estimated to be 0.4 mg h-1 person-1 at 25 °C, 0.8 mg h-1 person-1 at 27 °C, and 1.4 mg h-1 person-1 at 29 °C, based on the temperature relationship observed in this study. Human NH3 emissions are sufficient to neutralize the acidifying impacts of human CO2 emissions. Results from this study can be used to more accurately model indoor and inner-city outdoor NH3 concentrations and associated chemistry.
Collapse
Affiliation(s)
- Mengze Li
- Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
| | - Charles J Weschler
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby 2800, Denmark
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Pawel Wargocki
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Gregor Lucic
- Picarro Inc., 3105 Patrick Henry Drive, Santa Clara, California 95054, United States
| | - Jonathan Williams
- Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
| |
Collapse
|
33
|
Mattila JM, Lakey PSJ, Shiraiwa M, Wang C, Abbatt JPD, Arata C, Goldstein AH, Ampollini L, Katz EF, DeCarlo PF, Zhou S, Kahan TF, Cardoso-Saldaña FJ, Ruiz LH, Abeleira A, Boedicker EK, Vance ME, Farmer DK. Multiphase Chemistry Controls Inorganic Chlorinated and Nitrogenated Compounds in Indoor Air during Bleach Cleaning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1730-1739. [PMID: 31940195 DOI: 10.1021/acs.est.9b05767] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We report elevated levels of gaseous inorganic chlorinated and nitrogenated compounds in indoor air while cleaning with a commercial bleach solution during the House Observations of Microbial and Environmental Chemistry field campaign in summer 2018. Hypochlorous acid (HOCl), chlorine (Cl2), and nitryl chloride (ClNO2) reached part-per-billion by volume levels indoors during bleach cleaning-several orders of magnitude higher than typically measured in the outdoor atmosphere. Kinetic modeling revealed that multiphase chemistry plays a central role in controlling indoor chlorine and reactive nitrogen chemistry during these periods. Cl2 production occurred via heterogeneous reactions of HOCl on indoor surfaces. ClNO2 and chloramine (NH2Cl, NHCl2, NCl3) production occurred in the applied bleach via aqueous reactions involving nitrite (NO2-) and ammonia (NH3), respectively. Aqueous-phase and surface chemistry resulted in elevated levels of gas-phase nitrogen dioxide (NO2). We predict hydroxyl (OH) and chlorine (Cl) radical production during these periods (106 and 107 molecules cm-3 s-1, respectively) driven by HOCl and Cl2 photolysis. Ventilation and photolysis accounted for <50% and <0.1% total loss of bleach-related compounds from indoor air, respectively; we conclude that uptake to indoor surfaces is an important additional loss process. Indoor HOCl and nitrogen trichloride (NCl3) mixing ratios during bleach cleaning reported herein are likely detrimental to human health.
Collapse
Affiliation(s)
- James M Mattila
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Pascale S J Lakey
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| | - Manabu Shiraiwa
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| | - Chen Wang
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Jonathan P D Abbatt
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Caleb Arata
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Department of Environmental Science, Policy, and Management , University of California , Berkeley , California 94720 , United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management , University of California , Berkeley , California 94720 , United States
- Department of Civil and Environmental Engineering , University of California , Berkeley , California 94720 , United States
| | - Laura Ampollini
- Department of Civil, Architectural, and Environmental Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Erin F Katz
- Department of Chemistry , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Peter F DeCarlo
- Department of Civil, Architectural, and Environmental Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
- Department of Chemistry , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Shan Zhou
- Department of Chemistry , Syracuse University , Syracuse , New York 13244 , United States
| | - Tara F Kahan
- Department of Chemistry , Syracuse University , Syracuse , New York 13244 , United States
- Department of Chemistry , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5C9 , Canada
| | - Felipe J Cardoso-Saldaña
- Center for Energy and Environmental Resources , The University of Texas at Austin , Austin , Texas 78758 , United States
| | - Lea Hildebrandt Ruiz
- Center for Energy and Environmental Resources , The University of Texas at Austin , Austin , Texas 78758 , United States
| | - Andrew Abeleira
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Erin K Boedicker
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Marina E Vance
- Department of Mechanical Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Delphine K Farmer
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
34
|
Wang C, Collins DB, Arata C, Goldstein AH, Mattila JM, Farmer DK, Ampollini L, DeCarlo PF, Novoselac A, Vance ME, Nazaroff WW, Abbatt JPD. Surface reservoirs dominate dynamic gas-surface partitioning of many indoor air constituents. SCIENCE ADVANCES 2020; 6:eaay8973. [PMID: 32128415 PMCID: PMC7030931 DOI: 10.1126/sciadv.aay8973] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/22/2019] [Indexed: 05/21/2023]
Abstract
Human health is affected by indoor air quality. One distinctive aspect of the indoor environment is its very large surface area that acts as a poorly characterized sink and source of gas-phase chemicals. In this work, air-surface interactions of 19 common indoor air contaminants with diverse properties and sources were monitored in a house using fast-response, on-line mass spectrometric and spectroscopic methods. Enhanced-ventilation experiments demonstrate that most of the contaminants reside in the surface reservoirs and not, as expected, in the gas phase. They participate in rapid air-surface partitioning that is much faster than air exchange. Phase distribution calculations are consistent with the observations when assuming simultaneous equilibria between air and large weakly polar and polar absorptive surface reservoirs, with acid-base dissociation in the polar reservoir. Chemical exposure assessments must account for the finding that contaminants that are fully volatile under outdoor air conditions instead behave as semivolatile compounds indoors.
Collapse
Affiliation(s)
- Chen Wang
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Douglas B. Collins
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | - Caleb Arata
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Allen H. Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - James M. Mattila
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Delphine K. Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Laura Ampollini
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - Peter F. DeCarlo
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
- Department of Chemistry, Drexel University, Philadelphia, PA, USA
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles St. Baltimore, MD 21218, USA
| | - Atila Novoselac
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, USA
| | - Marina E. Vance
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - William W. Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jonathan P. D. Abbatt
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Corresponding author.
| |
Collapse
|
35
|
Abbatt JPD, Wang C. The atmospheric chemistry of indoor environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:25-48. [PMID: 31712796 DOI: 10.1039/c9em00386j] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Through air inhalation, dust ingestion and dermal exposure, the indoor environment plays an important role in controlling human chemical exposure. Indoor emissions and chemistry can also have direct impacts on the quality of outdoor air. And so, it is important to have a strong fundamental knowledge of the chemical processes that occur in indoor environments. This review article summarizes our understanding of the indoor chemistry field. Using a molecular perspective, it addresses primarily the new advances that have occurred in the past decade or so and upon developments in our understanding of multiphase partitioning and reactions. A primary goal of the article is to contrast indoor chemistry to that which occurs outdoors, which we know to be a strongly gas-phase, oxidant-driven system in which substantial oxidative aging of gases and aerosol particles occurs. By contrast, indoor environments are dark, gas-phase oxidant concentrations are relatively low, and due to air exchange, only short times are available for reactive processing of gaseous and particle constituents. However, important gas-surface partitioning and reactive multiphase chemistry occur in the large surface reservoirs that prevail in all indoor environments. These interactions not only play a crucial role in controlling the composition of indoor surfaces but also the surrounding gases and aerosol particles, thus affecting human chemical exposure. There are rich research opportunities available if the advanced measurement and modeling tools of the outdoor atmospheric chemistry community continue to be brought indoors.
Collapse
Affiliation(s)
- Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| | - Chen Wang
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
36
|
Haines SR, Adams RI, Boor BE, Bruton TA, Downey J, Ferro AR, Gall E, Green BJ, Hegarty B, Horner E, Jacobs DE, Lemieux P, Misztal PK, Morrison G, Perzanowski M, Reponen T, Rush RE, Virgo T, Alkhayri C, Bope A, Cochran S, Cox J, Donohue A, May AA, Nastasi N, Nishioka M, Renninger N, Tian Y, Uebel-Niemeier C, Wilkinson D, Wu T, Zambrana J, Dannemiller KC. Ten questions concerning the implications of carpet on indoor chemistry and microbiology. BUILDING AND ENVIRONMENT 2019; 170:1-16. [PMID: 32055099 PMCID: PMC7017391 DOI: 10.1016/j.buildenv.2019.106589] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Carpet and rugs currently represent about half of the United States flooring market and offer many benefits as a flooring type. How carpets influence our exposure to both microorganisms and chemicals in indoor environments has important health implications but is not well understood. The goal of this manuscript is to consolidate what is known about how carpet impacts indoor chemistry and microbiology, as well as to identify the important research gaps that remain. After describing the current use of carpet indoors, questions focus on five specific areas: 1) indoor chemistry, 2) indoor microbiology, 3) resuspension and exposure, 4) current practices and future needs, and 5) sustainability. Overall, it is clear that carpet can influence our exposures to particles and volatile compounds in the indoor environment by acting as a direct source, as a reservoir of environmental contaminants, and as a surface supporting chemical and biological transformations. However, the health implications of these processes are not well known, nor how cleaning practices could be optimized to minimize potential negative impacts. Current standards and recommendations focus largely on carpets as a primary source of chemicals and on limiting moisture that would support microbial growth. Future research should consider enhancing knowledge related to the impact of carpet in the indoor environment and how we might improve the design and maintenance of this common material to reduce our exposure to harmful contaminants while retaining the benefits to consumers.
Collapse
Affiliation(s)
- Sarah R. Haines
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Environmental Health Sciences, College of Public Health, and Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Rachel I. Adams
- Plant & Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Brandon E. Boor
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | | | - John Downey
- Cleaning Industry Research Institute, Granville, OH, 43023, USA
| | - Andrea R. Ferro
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, 13699, USA
| | - Elliott Gall
- Department of Mechanical and Materials Engineering, Portland State University, Portland, OR, 97201, USA
| | - Brett J. Green
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, 26505, USA
| | - Bridget Hegarty
- Civil and Environmental Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elliott Horner
- UL Environment and Sustainability, Marietta, GA, 30067, USA
| | - David E. Jacobs
- National Center for Healthy Housing, Columbia, MD, 21044, USA
| | - Paul Lemieux
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Pawel K. Misztal
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Glenn Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Matthew Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Tiina Reponen
- Division of Environmental and Industrial Hygiene, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Rachael E. Rush
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, 26505, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Troy Virgo
- Shaw Industries, Inc., Dalton, GA, 30722-2128, USA
| | - Celine Alkhayri
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Ashleigh Bope
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Environmental Health Sciences, College of Public Health, and Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Samuel Cochran
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Environmental Health Sciences, College of Public Health, and Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jennie Cox
- Division of Environmental and Industrial Hygiene, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Allie Donohue
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Andrew A. May
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Nicholas Nastasi
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Environmental Health Sciences, College of Public Health, and Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Marcia Nishioka
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Nicole Renninger
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yilin Tian
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - Christina Uebel-Niemeier
- Division of Environmental and Industrial Hygiene, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, 45220, USA
| | | | - Tianren Wu
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jordan Zambrana
- Indoor Environments Division, Office of Air and Radiation, U.S. Environmental Protection Agency, Washington, DC, 20460, USA
| | - Karen C. Dannemiller
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, and Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
37
|
Won Y, Waring M, Rim D. Understanding the Spatial Heterogeneity of Indoor OH and HO 2 due to Photolysis of HONO Using Computational Fluid Dynamics Simulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14470-14478. [PMID: 31693359 DOI: 10.1021/acs.est.9b06315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Indoor photolysis of nitrous acid (HONO) generates hydroxyl radicals (OH), and since OH is fast reacting, it may be confined within the HONO-photolyzing indoor volume of light. This study investigated the HONO-photolysis-induced formation of indoor OH, the transformation of OH to hydroperoxy radicals (HO2), and resulting spatial distributions of those radicals and their oxidation products. To do so, a computational fluid dynamics (CFD) model framework was established to simulate HONO photolysis in a room and subsequent reactions associated with OH and HO2 under a typical range of indoor lighting and ventilation conditions. The results showed that OH and HO2 were essentially confined in the volume of HONO-photolyzing light, but oxidation products were relatively well distributed throughout the room. As the light volume increased, more total in-room OH was produced, thereby increasing oxidation product concentrations. Spatial distributions of OH and HO2 varied by the type of artificial light (e.g., fluorescent versus incandescent), due to differences in photon flux as a function of light source and the distance from the source. The HO2 generation rate and air change rate made notable impacts on product concentrations.
Collapse
Affiliation(s)
- Youngbo Won
- Department of Architectural Engineering , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Michael Waring
- Department of Civil, Architectural and Environmental Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Donghyun Rim
- Department of Architectural Engineering , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
38
|
Morrison G, Lakey PSJ, Abbatt J, Shiraiwa M. Indoor boundary layer chemistry modeling. INDOOR AIR 2019; 29:956-967. [PMID: 31461792 DOI: 10.1111/ina.12601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/29/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Ozone (O3 ) chemistry is thought to dominate the oxidation of indoor surfaces. We consider the hypothesis that reactions taking place within indoor boundary layers result in greater than anticipated hydroxyl radical (OH) deposition rates. We develop models that account for boundary layer mass-transfer phenomena, O3 -terpene chemistry and OH formation, removal, and deposition; we solve these analytically and by applying numerical methods. For an O3 -limonene system, we find that OH flux to a surface with an O3 reaction probability of 10-8 is 4.3 × 10-5 molec/(cm2 s) which is about 10 times greater than predicted by a traditional boundary layer theory. At very low air exchange rates the OH surface flux can be as much as 10% of that for O3 . This effect becomes less pronounced for more O3 -reactive surfaces. Turbulence intensity does not strongly influence the OH concentration gradient except for surfaces with an O3 reaction probability >10-4 . Although the O3 flux dominates OH flux under most conditions, OH flux can be responsible for as much as 10% of total oxidant uptake to otherwise low-reactivity surfaces. Further, OH chemistry differs from that for ozone; therefore, its deposition is important in understanding the chemical evolution of some indoor surfaces and surface films.
Collapse
Affiliation(s)
- Glenn Morrison
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | | | - Jonathan Abbatt
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, CA, USA
| |
Collapse
|
39
|
Zhang J, Chen J, Xue C, Chen H, Zhang Q, Liu X, Mu Y, Guo Y, Wang D, Chen Y, Li J, Qu Y, An J. Impacts of six potential HONO sources on HO x budgets and SOA formation during a wintertime heavy haze period in the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:110-123. [PMID: 31102812 DOI: 10.1016/j.scitotenv.2019.05.100] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
The Weather Research and Forecasting/Chemistry (WRF-Chem) model updated with six potential HONO sources (i.e., traffic, soil, biomass burning and indoor emissions, and heterogeneous reactions on aerosol and ground surfaces) was used to quantify the impact of the six potential HONO sources on the production and loss rates of OH and HO2 radicals and the concentrations of secondary organic aerosol (SOA) in the Beijing-Tianjin-Heibei (BTH) region of China during a winter heavy haze period of Nov. 29-Dec. 3, 2017. The updated WRF-Chem model well simulated the observed HONO concentrations at the Wangdu site, especially in the daytime, and well reproduced the observed diurnal variations of regional-mean O3 in the BTH region. The traffic emission source was an important HONO source during nighttime but not significant during daytime, heterogeneous reactions on ground/aerosol surfaces were important during nighttime and daytime. We found that the six potential HONO sources led to a significant enhancement in the dominant production and loss rates of HOx on the wintertime heavy haze and nonhaze days (particularly on the heavy haze day), an enhancement of 5-25 μg m-3 (75-200%) in the ground SOA in the studied heavy haze event, and an enhancement of 2-15 μg m-3 in the meridional-mean SOA on the heavy haze day, demonstrating that the six potential HONO sources accelerate the HOx cycles and aggravate haze events. HONO was the key precursor of primary OH in the BTH region in the studied wintertime period, and the photolysis of HONO produced a daytime mean OH production rate of 2.59 ppb h-1 on the heavy haze day, much higher than that of 0.58 ppb h-1 on the nonhaze day. Anthropogenic SOA dominated in the BTH region in the studied wintertime period, and its main precursors were xylenes (42%), BIGENE (31%) and toluene (21%).
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianmin Chen
- Environment Research Institute, Shandong University, Ji'nan, Shandong, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
| | - Chaoyang Xue
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui Chen
- Environment Research Institute, Shandong University, Ji'nan, Shandong, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China; Collaborative Innovation Center for Regional Environmental Quality, Beijing, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yujing Mu
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 36102, China
| | - Yitian Guo
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danyun Wang
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 100029, China
| | - Yong Chen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
| | - Jialin Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
| | - Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China.
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 36102, China.
| |
Collapse
|
40
|
Zhao H, Gall ET, Stephens B. Measuring the Building Envelope Penetration Factor for Ambient Nitrogen Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9695-9704. [PMID: 31322867 DOI: 10.1021/acs.est.9b02920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Much of human exposure to nitrogen oxides (NOx) of ambient origin occurs indoors. Reactions with materials inside building envelopes are expected to influence the amount of ambient NOx that infiltrates indoors. However, envelope penetration factors for ambient NOx constituents have never been measured. Here, we develop and apply methods to measure the penetration factor and indoor loss rates for ambient NOx constituents using time-resolved measurements in an unoccupied apartment unit. Multiple test methods and parameter estimation approaches were tested, including natural and artificial indoor NOx elevation with and without accounting for indoor oxidation reactions. Twelve of 16 tests yielded successful estimates of penetration factors and indoor loss rates. The penetration factor for NO was confirmed to be ∼1 and the mean (±s.d.) NO2 penetration factor was 0.72 ± 0.06 with a mean relative uncertainty of ∼15%. The mean (±s.d.) indoor NO2 loss rate was 0.27 ± 0.12 h-1, ranging 0.06-0.47 h-1, with strong correlations with indoor relative and absolute humidity. Indoor NO loss rates were strongly correlated with the estimated ozone concentration in infiltrating air. Results suggest that envelope penetration factors and loss rates for NOx constituents can be reasonably estimated across a wide range of conditions using these approaches.
Collapse
Affiliation(s)
- Haoran Zhao
- Department of Civil, Architectural, and Environmental Engineering , Illinois Institute of Technology , Alumni Memorial Hall 228E, 3201 South Dearborn Street , Chicago , Illinois 60616 , United States
| | - Elliott T Gall
- Department of Mechanical and Materials Engineering , Portland State University , Portland , Oregon 97201 , United States
| | - Brent Stephens
- Department of Civil, Architectural, and Environmental Engineering , Illinois Institute of Technology , Alumni Memorial Hall 228E, 3201 South Dearborn Street , Chicago , Illinois 60616 , United States
| |
Collapse
|
41
|
Zhou S, Young CJ, VandenBoer TC, Kahan TF. Role of location, season, occupant activity, and chemistry in indoor ozone and nitrogen oxide mixing ratios. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1374-1383. [PMID: 31225544 DOI: 10.1039/c9em00129h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the oxidizing environment indoors is important for predicting indoor air quality and its impact on human health. We made continuous time-resolved measurements (30 s) of several oxidants and oxidant precursors (collectively referred to as oxidant*): ozone (O3), nitric oxide (NO), and NO2* - the sum of nitrogen dioxide (NO2) and nitrous acid (HONO). These species were measured in three indoor environments - an occupied residence, a chemistry laboratory, and an academic office - in Syracuse, New York, during two seasons in 2017 and 2018. Oxidant* levels differed greatly between the residence, the lab and the office. Indoor-to-outdoor ratios (I/O) of O3 were 0.03 and 0.67 in the residence and office; I/ONO (I/ONO2*) were 11.70 (1.26) in the residence and 0.13 (1.70) in the office. Little seasonal variability was observed in the lab and office, but O3 and NO2* levels in the residence were greater in spring than in winter, while NO levels were lower. Human activities such as cooking and opening patio doors resulted in large changes in oxidant* mixing ratios in the residence. In situ chamber experiments demonstrated that the increase in O3 and NO2* levels during door-open periods was due to a combination of physical mixing between indoor and outdoor air, gas-phase production of NO2 from O3-NO chemistry, and heterogeneous formation of HONO on indoor surfaces. Our results also highlight the importance of chemistry (with NO, alkenes, and surfaces) in O3 mixing ratios in the residence, especially during door-open periods.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA
| | | | | | | |
Collapse
|
42
|
Liu J, Li S, Zeng J, Mekic M, Yu Z, Zhou W, Loisel G, Gandolfo A, Song W, Wang X, Zhou Z, Herrmann H, Li X, Gligorovski S. Assessing indoor gas phase oxidation capacity through real-time measurements of HONO and NO x in Guangzhou, China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1393-1402. [PMID: 31322150 DOI: 10.1039/c9em00194h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The hydroxyl radical (OH) is one of the most important oxidants controlling the oxidation capacity of the indoor atmosphere. One of the main OH sources indoors is the photolysis of nitrous acid (HONO). In this study, real-time measurements of HONO, nitrogen oxides (NOx) and ozone (O3) in an indoor environment in Guangzhou, China, were performed under two different conditions: (1) in the absence of any human activity and (2) in the presence of cooking. The maximum NOx and HONO levels drastically increased from 15 and 4 ppb in the absence of human activity to 135 and 40 ppb during the cooking event, respectively. The photon flux was determined for the sunlit room, which has a closed south-east oriented window. The photon flux was used to estimate the photolysis rate constants of NO2, J(NO2), and HONO, J(HONO), which span the range between 8 × 10-5 and 1.5 × 10-5 s-1 in the morning from 9:30 to 11:45, and 8.5 × 10-4 and 1.5 × 10-4 s-1 at noon, respectively. The OH concentrations calculated by photostationary state (PSS) approach, observed around noon, are very similar, i.e., 2.4 × 106 and 3.1 × 106 cm-3 in the absence of human activity and during cooking, respectively. These results suggest that under "high NOx" conditions (NOx higher than a few ppb) and with direct sunlight in the room, the NOx and HONO chemistry would be similar, independent of the geographic location of the indoor environment, which facilitates future modeling studies focused on indoor gas phase oxidation capacity.
Collapse
Affiliation(s)
- Jiangping Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hems RF, Wang C, Collins DB, Zhou S, Borduas-Dedekind N, Siegel JA, Abbatt JPD. Sources of isocyanic acid (HNCO) indoors: a focus on cigarette smoke. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1334-1341. [PMID: 30976776 DOI: 10.1039/c9em00107g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The sources and sinks of isocyanic acid (HNCO), a toxic gas, in indoor environments are largely uncharacterized. In particular, cigarette smoke has been identified as a significant source. In this study, controlled smoking of tobacco cigarettes was investigated in both an environmental chamber and a residence in Toronto, Canada using an acetate-CIMS. The HNCO emission ratio from side-stream cigarette smoke was determined to be 2.7 (±1.1) × 10-3 ppb HNCO/ppb CO. Side-stream smoke from a single cigarette introduced a large pulse of HNCO to the indoor environment, increasing the HNCO mixing ratio by up to a factor of ten from background conditions of 0.15 ppb. Although there was no evidence for photochemical production of HNCO from cigarette smoke in the residence, it was observed in the environmental chamber via oxidation by the hydroxyl radical (1.1 × 107 molecules per cm3), approximately doubling the HNCO mixing ratio after 30 minutes of oxidation. Oxidation of cigarette smoke by O3 (15 ppb = 4.0 × 1017 molecules per cm3) and photo-reaction with indoor fluorescent lights did not produce HNCO. By studying the temporal profiles of both HNCO and CO after smoking, it is inferred that gas-to-surface partitioning of HNCO acts as an indoor loss pathway. Even in the absence of smoking, the indoor HNCO mixing ratios in the Toronto residence were elevated compared to concurrent outdoor measurements by approximately a factor of two.
Collapse
Affiliation(s)
- Rachel F Hems
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| | | | | | | | | | | | | |
Collapse
|
44
|
Farmer DK, Vance ME, Abbatt JPD, Abeleira A, Alves MR, Arata C, Boedicker E, Bourne S, Cardoso-Saldaña F, Corsi R, DeCarlo PF, Goldstein AH, Grassian VH, Hildebrandt Ruiz L, Jimenez JL, Kahan TF, Katz EF, Mattila JM, Nazaroff WW, Novoselac A, O'Brien RE, Or VW, Patel S, Sankhyan S, Stevens PS, Tian Y, Wade M, Wang C, Zhou S, Zhou Y. Overview of HOMEChem: House Observations of Microbial and Environmental Chemistry. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1280-1300. [PMID: 31328749 DOI: 10.1039/c9em00228f] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The House Observations of Microbial and Environmental Chemistry (HOMEChem) study is a collaborative field investigation designed to probe how everyday activities influence the emissions, chemical transformations and removal of trace gases and particles in indoor air. Sequential and layered experiments in a research house included cooking, cleaning, variable occupancy, and window-opening. This paper describes the overall design of HOMEChem and presents preliminary case studies investigating the concentrations of reactive trace gases, aerosol particles, and surface films. Cooking was a large source of VOCs, CO2, NOx, and particles. By number, cooking particles were predominantly in the ultrafine mode. Organic aerosol dominated the submicron mass, and, while variable between meals and throughout the cooking process, was dominated by components of hydrocarbon character and low oxygen content, similar to cooking oil. Air exchange in the house ensured that cooking particles were present for only short periods. During unoccupied background intervals, particle concentrations were lower indoors than outdoors. The cooling coils of the house ventilation system induced cyclic changes in water soluble gases. Even during unoccupied periods, concentrations of many organic trace gases were higher indoors than outdoors, consistent with housing materials being potential sources of these compounds to the outdoor environment. Organic material accumulated on indoor surfaces, and exhibited chemical signatures similar to indoor organic aerosol.
Collapse
Affiliation(s)
- D K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA 80523.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shiraiwa M, Carslaw N, Tobias DJ, Waring MS, Rim D, Morrison G, Lakey PSJ, Kruza M, von Domaros M, Cummings BE, Won Y. Modelling consortium for chemistry of indoor environments (MOCCIE): integrating chemical processes from molecular to room scales. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1240-1254. [PMID: 31070639 DOI: 10.1039/c9em00123a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report on the development of a modelling consortium for chemistry in indoor environments that connects models over a range of spatial and temporal scales, from molecular to room scales and from sub-nanosecond to days, respectively. Our modeling approaches include molecular dynamics (MD) simulations, kinetic process modeling, gas-phase chemistry modeling, organic aerosol modeling, and computational fluid dynamics (CFD) simulations. These models are applied to investigate ozone reactions with skin and clothing, oxidation of volatile organic compounds and formation of secondary organic aerosols, and mass transport and partitioning of indoor species to surfaces. MD simulations provide molecular pictures of limonene adsorption on SiO2 and ozone interactions with the skin lipid squalene, providing kinetic parameters such as surface accommodation coefficient, desorption lifetime, and bulk diffusivity. These parameters then constrain kinetic process models, which resolve mass transport and chemical reactions in gas and condensed phases for analysis of experimental data. A detailed indoor chemical box model is applied to simulate α-pinene ozonolysis with improved representation of gas-particle partitioning. Application of 2D-volatility basis set reveals that OH-induced aging sometimes drives increases in indoor organic aerosol concentrations, due to organic mass functionalization and enhanced partitioning. CFD simulations show that concentrations of ozone and primary product change near the human surface rapidly, indicating non-uniform spatial distributions from the occupant surface to ambient air, while secondary ozone product is relatively well-mixed throughout the room. This development establishes a framework to integrate different modeling tools and experimental measurements, opening up an avenue for development of comprehensive and integrated models with representations of various chemistry in indoor environments.
Collapse
Affiliation(s)
- Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Young CJ, Zhou S, Siegel JA, Kahan TF. Illuminating the dark side of indoor oxidants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1229-1239. [PMID: 31173015 DOI: 10.1039/c9em00111e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The chemistry of oxidants and their precursors (oxidants*) plays a central role in outdoor environments but its importance in indoor air remains poorly understood. Ozone (O3) chemistry is important in some indoor environments and, until recently, ozone was thought to be the dominant oxidant indoors. There is now evidence that formation of the hydroxyl radical by photolysis of nitrous acid (HONO) and formaldehyde (HCHO) may be important indoors. In the past few years, high time-resolution measurements of oxidants* indoors have become more common and the importance of event-based release of oxidants* during activities such as cleaning has been proposed. Here we review the current understanding of oxidants* indoors, including drivers of the formation and loss of oxidants*, levels of oxidants* in indoor environments, and important directions for future research.
Collapse
Affiliation(s)
- Cora J Young
- Department of Chemistry, York University, Canada.
| | | | | | | |
Collapse
|
47
|
Ampollini L, Katz EF, Bourne S, Tian Y, Novoselac A, Goldstein AH, Lucic G, Waring MS, DeCarlo PF. Observations and Contributions of Real-Time Indoor Ammonia Concentrations during HOMEChem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8591-8598. [PMID: 31283200 DOI: 10.1021/acs.est.9b02157] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although ammonia (NH3) is usually found at outdoor concentrations of 1-5 ppb, indoor ammonia concentrations can be much higher. Indoor ammonia is strongly emitted from cleaning products, tobacco smoke, building materials, and humans. Because of ammonia's high reactivity, solubility in water, and tendency to sorb to a variety of surfaces, it is difficult to measure, and thus a comprehensive evaluation of indoor ammonia concentrations remains an understudied topic. During HOMEChem, which was a comprehensive indoor chemistry study occurring in a test house during June 2018, the real-time concentration of ammonia indoors was measured using cavity ring-down spectroscopy. A mean unoccupied background concentration of 32 ppb was observed, with further enhancements of ammonia occurring during cooking, cleaning, and occupancy activities, reaching maximum concentrations during these activities of 130, 1592, and 99 ppb, respectively. Furthermore, ammonia concentrations were strongly influenced by indoor temperatures and heating, ventilation, and air conditioning (HVAC) operation. In the absence of activity-based sources, the HVAC operation was the main modulator of ammonia concentration indoors.
Collapse
Affiliation(s)
| | | | - Stephen Bourne
- Department of Civil, Architectural, and Environmental Engineering , University of Texas at Austin , 1 University Station C1752 , Austin , Texas 78712-1076 , United States
| | | | - Atila Novoselac
- Department of Civil, Architectural, and Environmental Engineering , University of Texas at Austin , 1 University Station C1752 , Austin , Texas 78712-1076 , United States
| | | | - Gregor Lucic
- Picarro Inc. , 3105 Patrick Henry Drive , Santa Clara , California 95054 , United States
| | | | | |
Collapse
|
48
|
Abstract
Indoor surfaces provide a plentiful and varied substrate on which multiphase reactions can occur which can be important to the chemical makeup of the indoor environment. Here, we attempt to characterise real indoor surface films via water uptake behaviour and ionic composition. We show that water uptake by indoor films is different than that observed outdoors, and can vary according to room use, building characteristics, and season. Similarly, preliminary investigation into the ionic composition of the films showed that they varied according to the room in which they were collected. This study highlights the importance of different types of soiling to multiphase chemistry, especially those reactions controlled by relative humidity or adsorbed water.
Collapse
|
49
|
Cummings BE, Waring MS. Predicting the importance of oxidative aging on indoor organic aerosol concentrations using the two-dimensional volatility basis set (2D-VBS). INDOOR AIR 2019; 29:616-629. [PMID: 30861195 DOI: 10.1111/ina.12552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Organic aerosol (OA) is chemically dynamic, continuously evolving by oxidative chemistry, for instance, via hydroxyl radical (OH) reactions. Studies have explored this evolution (so-called OA aging) in the atmosphere, but none have investigated it indoors. Aging organic molecules in both particle and gas-phases undergo changes in oxygen content and volatility, which may ultimately either enhance or reduce the condensed-phase OA concentration (COA ). This work models OH-induced aging using the two-dimensional volatility basis set (2D-VBS) within an indoor model and explores its significance on COA relative to prior modeling methodologies which neglect aging transformations. Lagrangian, time-averaged, and transient indoor simulations were conducted. The time-averaged simulations included a Monte Carlo procedure and sensitivity analysis, using input distributions typical of U.S. residences. Results demonstrate that indoors, aging generally leads to COA augmentation. The extent to which this is significant is conditional upon several factors, most notably temperature, OH exposure, and OA mass loading. Time-averaged COA was affected minimally in typical residences (<5% increase). However, some plausible cases may cause stronger COA enhancements, such as in a sunlit room where photolysis facilitates significant OH production (~20% increase), or during a transient OH-producing cleaning event (~35% peak increase).
Collapse
Affiliation(s)
- Bryan E Cummings
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, Pennsylvania
| | - Michael S Waring
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
50
|
McGrath DT, Ryan MD, MacInnis JJ, VandenBoer TC, Young CJ, Katz MJ. Selective decontamination of the reactive air pollutant nitrous acid via node-linker cooperativity in a metal-organic framework. Chem Sci 2019; 10:5576-5581. [PMID: 31293741 PMCID: PMC6553375 DOI: 10.1039/c9sc01357a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Nitrous acid (HONO) is a reservoir of NO x and an emerging pollutant having direct impacts on air quality, both in- and outdoors, as well as on human health. In this work, the amine-functionalized metal-organic framework (MOF), UiO-66-NH2, was investigated due to its potential to selectively decontaminate nitrous acid at environmentally relevant concentrations. UiO-66-NH2 proved to be effective in the removal of nitrous acid from a continuous gaseous stream. This is observed via the formation of an aryl diazonium salt that subsequently converts to a phenol with a concomitant release of nitrogen gas. This process is preceded via the formation of the nitrosonium cation (likely protonation from an acidic proton on the node). Thus, UiO-66-NH2 is capable of selectively converting the pollutant nitrous acid to benign products.
Collapse
Affiliation(s)
- Devon T McGrath
- Department of Chemistry , Memorial University of Newfoundland , St. John's , NL , Canada .
| | - Michaela D Ryan
- Department of Chemistry , Memorial University of Newfoundland , St. John's , NL , Canada .
| | - John J MacInnis
- Department of Chemistry , Memorial University of Newfoundland , St. John's , NL , Canada .
| | - Trevor C VandenBoer
- Department of Earth Sciences , Memorial University of Newfoundland , St. John's , NL , Canada
- Department of Chemistry , York University , Toronto , ON , Canada
| | - Cora J Young
- Department of Chemistry , Memorial University of Newfoundland , St. John's , NL , Canada .
- Department of Chemistry , York University , Toronto , ON , Canada
| | - Michael J Katz
- Department of Chemistry , Memorial University of Newfoundland , St. John's , NL , Canada .
| |
Collapse
|