1
|
Souihi A, Kruve A. Estimating LoD-s Based on the Ionization Efficiency Values for the Reporting and Harmonization of Amenable Chemical Space in Nontargeted Screening LC/ESI/HRMS. Anal Chem 2024; 96:11263-11272. [PMID: 38959408 PMCID: PMC11256014 DOI: 10.1021/acs.analchem.4c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
Nontargeted LC/ESI/HRMS aims to detect and identify organic compounds present in the environment without prior knowledge; however, in practice no LC/ESI/HRMS method is capable of detecting all chemicals, and the scope depends on the instrumental conditions. Different experimental conditions, instruments, and methods used for sample preparation and nontargeted LC/ESI/HRMS as well as different workflows for data processing may lead to challenges in communicating the results and sharing data between laboratories as well as reduced reproducibility. One of the reasons is that only a fraction of method performance characteristics can be determined for a nontargeted analysis method due to the lack of prior information and analytical standards of the chemicals present in the sample. The limit of detection (LoD) is one of the most important performance characteristics in target analysis and directly describes the detectability of a chemical. Recently, the identification and quantification in nontargeted LC/ESI/HRMS (e.g., via predicting ionization efficiency, risk scores, and retention times) have significantly improved due to employing machine learning. In this work, we hypothesize that the predicted ionization efficiency could be used to estimate LoD and thereby enable evaluating the suitability of the LC/ESI/HRMS nontargeted method for the detection of suspected chemicals even if analytical standards are lacking. For this, 221 representative compounds were selected from the NORMAN SusDat list (S0), and LoD values were determined by using 4 complementary approaches. The LoD values were correlated to ionization efficiency values predicted with previously trained random forest regression. A robust regression was then used to estimate LoD values of unknown features detected in the nontargeted screening of wastewater samples. These estimated LoD values were used for prioritization of the unknown features. Furthermore, we present LoD values for the NORMAN SusDat list with a reversed-phase C18 LC method.
Collapse
Affiliation(s)
- Amina Souihi
- Department
of Environmental and Materials Chemistry, Stockholm University, Svante Arrhenius väg 16, 106
91 Stockholm, Sweden
| | - Anneli Kruve
- Department
of Environmental and Materials Chemistry, Stockholm University, Svante Arrhenius väg 16, 106
91 Stockholm, Sweden
- Department
of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Jia W, Liu H, Ma Y, Huang G, Liu Y, Zhao B, Xie D, Huang K, Wang R. Reproducibility in nontarget screening (NTS) of environmental emerging contaminants: Assessing different HLB SPE cartridges and instruments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168971. [PMID: 38042181 DOI: 10.1016/j.scitotenv.2023.168971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Non-targeted screening (NTS) methods are integral in environmental research for detecting emerging contaminants. However, their efficacy can be influenced by variations in hydrophilic-lipophilic balance (HLB) solid phase extraction (SPE) cartridges and high-resolution mass spectrometry (HRMS) instruments across different laboratories. In this study, we scrutinized the influence of five HLB SPE cartridges (Nano, Weiqi, CNW, Waters, and J&K) and four LC-HRMS platforms (Agilent, Waters, Thermo, and AB SCIEX) on the identification of emerging environmental contaminants. Our results demonstrate that 87.6 % of the target compounds and over 59.6 % of the non-target features were consistently detected across all tested HLB cartridges, with an overall 71.2 % universally identified across the four LC-HRMS systems. Discrepancies in detection rates were primarily attributable to variations in retention time stability, mass stability of precursors and fragments, system cleanliness affecting fold change and p-values, and fragment response. These findings confirm the necessity of refining parameter criteria for NTS. Moreover, our study confirms the efficacy of the PyHRMS tool in analyzing and processing data from multiple instrumental platforms, reinforcing its utility for multi-platform NTS. Overall, our findings underscore the reliability and robustness of NTS methods in identifying potential water contaminants, while also highlighting factors that may influence these outcomes.
Collapse
Affiliation(s)
- Wenhao Jia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China
| | - He Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yini Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China
| | - Guolong Huang
- Zhejiang GenPure Eco-Tech Co., Ltd., Hangzhou 310020, Zhejiang, China
| | - Yaxiong Liu
- Guangdong Institute for Drug Control, Guangzhou 510663, Guangdong, China
| | - Bo Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning 530028, China
| | - Danping Xie
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning 530028, China
| | - Kaibo Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China.
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning 530028, China.
| |
Collapse
|
3
|
Liu H, Wang R, Zhao B, Xie D. Assessment for the data processing performance of non-target screening analysis based on high-resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167967. [PMID: 37866614 DOI: 10.1016/j.scitotenv.2023.167967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Non-target screening (NTS) based on high-resolution mass spectrometry (HRMS) is considered one of the most comprehensive approaches for the characterization of contaminants of emerging concern (CECs) in a complex sample. This study evaluated the performance of NTS in aquatic environments (including peak picking, database matching, product identification, semi-quantification, etc.) based on a self-developed data processing method using 38 glucocorticoids as testing compounds. Data-dependent acquisition (DDA) and data-independent acquisition (DIA) modes were used for obtaining the MS2 information for in-house or online database matching. Results indicate that DDA and DIA mode have their own advantages and can complement each other. The quantification method based on LC-HRMS has shown the potential to provide a fast and acceptable result for testing compounds. Finally, a matrix spike analysis was carried out on 66 CECs across different usage categories in wastewater, surface water, and seawater matrix samples, together with a case study performed for characterizing the whole contaminants in a Pearl River sample, to better illustrate the application potential of NTS workflow and the credibility of NTS outcomes. This study provides a foundation for novel applications of HRMS data by NTS workflow to identify and quantify CECs in complex systems.
Collapse
Affiliation(s)
- He Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Bo Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Danping Xie
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| |
Collapse
|
4
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
5
|
Hulleman T, Turkina V, O’Brien JW, Chojnacka A, Thomas KV, Samanipour S. Critical Assessment of the Chemical Space Covered by LC-HRMS Non-Targeted Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14101-14112. [PMID: 37704971 PMCID: PMC10537454 DOI: 10.1021/acs.est.3c03606] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Non-targeted analysis (NTA) has emerged as a valuable approach for the comprehensive monitoring of chemicals of emerging concern (CECs) in the exposome. The NTA approach can theoretically identify compounds with diverse physicochemical properties and sources. Even though they are generic and have a wide scope, non-targeted analysis methods have been shown to have limitations in terms of their coverage of the chemical space, as the number of identified chemicals in each sample is very low (e.g., ≤5%). Investigating the chemical space that is covered by each NTA assay is crucial for understanding the limitations and challenges associated with the workflow, from the experimental methods to the data acquisition and data processing techniques. In this review, we examined recent NTA studies published between 2017 and 2023 that employed liquid chromatography-high-resolution mass spectrometry. The parameters used in each study were documented, and the reported chemicals at confidence levels 1 and 2 were retrieved. The chosen experimental setups and the quality of the reporting were critically evaluated and discussed. Our findings reveal that only around 2% of the estimated chemical space was covered by the NTA studies investigated for this review. Little to no trend was found between the experimental setup and the observed coverage due to the generic and wide scope of the NTA studies. The limited coverage of the chemical space by the reviewed NTA studies highlights the necessity for a more comprehensive approach in the experimental and data processing setups in order to enable the exploration of a broader range of chemical space, with the ultimate goal of protecting human and environmental health. Recommendations for further exploring a wider range of the chemical space are given.
Collapse
Affiliation(s)
- Tobias Hulleman
- Van
’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1090 GD Amsterdam, The Netherlands
| | - Viktoriia Turkina
- Van
’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1090 GD Amsterdam, The Netherlands
| | - Jake W. O’Brien
- Van
’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1090 GD Amsterdam, The Netherlands
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Aleksandra Chojnacka
- Van
’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1090 GD Amsterdam, The Netherlands
| | - Kevin V. Thomas
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Saer Samanipour
- Van
’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1090 GD Amsterdam, The Netherlands
- UvA
Data Science Center, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
- Queensland
Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
6
|
Ruan T, Li P, Wang H, Li T, Jiang G. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem Rev 2023; 123:10584-10640. [PMID: 37531601 DOI: 10.1021/acs.chemrev.3c00056] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Exposure to environmental organic pollutants has triggered significant ecological impacts and adverse health outcomes, which have been received substantial and increasing attention. The contribution of unidentified chemical components is considered as the most significant knowledge gap in understanding the combined effects of pollutant mixtures. To address this issue, remarkable analytical breakthroughs have recently been made. In this review, the basic principles on recognition of environmental organic pollutants are overviewed. Complementary analytical methodologies (i.e., quantitative structure-activity relationship prediction, mass spectrometric nontarget screening, and effect-directed analysis) and experimental platforms are briefly described. The stages of technique development and/or essential parts of the analytical workflow for each of the methodologies are then reviewed. Finally, plausible technique paths and applications of the future nontarget screening methods, interdisciplinary techniques for achieving toxicant identification, and burgeoning strategies on risk assessment of chemical cocktails are discussed.
Collapse
Affiliation(s)
- Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Strynar M, McCord J, Newton S, Washington J, Barzen-Hanson K, Trier X, Liu Y, Dimzon IK, Bugsel B, Zwiener C, Munoz G. Practical application guide for the discovery of novel PFAS in environmental samples using high resolution mass spectrometry. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:575-588. [PMID: 37516787 PMCID: PMC10561087 DOI: 10.1038/s41370-023-00578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND The intersection of the topics of high-resolution mass spectrometry (HRMS) and per- and polyfluoroalkyl substances (PFAS) bring together two disparate and complex subjects. Recently non-targeted analysis (NTA) for the discovery of novel PFAS in environmental and biological media has been shown to be valuable in multiple applications. Classical targeted analysis for PFAS using LC-MS/MS, though growing in compound coverage, is still unable to inform a holistic understanding of the PFAS burden in most samples. NTA fills at least a portion of this data gap. OBJECTIVES Entrance into the study of novel PFAS discovery requires identification techniques such as HRMS (e.g., QTOF and Orbitrap) instrumentation. This requires practical knowledge of best approaches depending on the purpose of the analyses. The utility of HRMS applications for PFAS discovery is unquestioned and will likely play a significant role in many future environmental and human exposure studies. METHODS/RESULTS PFAS have some characteristics that make them standout from most other chemicals present in samples. Through a series of tell-tale PFAS characteristics (e.g., characteristic mass defect range, homologous series and characteristic fragmentation patterns), and case studies different approaches and remaining challenges are demonstrated. IMPACT STATEMENT The identification of novel PFAS via non-targeted analysis using high resolution mass spectrometry is an important and difficult endeavor. This synopsis document will hopefully make current and future efforts on this topic easier to perform for novice and experienced alike. The typical time devoted to NTA PFAS investigations (weeks to months or more) may benefit from these practical steps employed.
Collapse
Affiliation(s)
- Mark Strynar
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA.
| | - James McCord
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA
| | - Seth Newton
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA
| | - John Washington
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA
| | | | - Xenia Trier
- Section of Environmental Chemistry and Physics, Department of Plant and Environmental Sciences (PLEN), University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Ian Ken Dimzon
- Ateneo de Manila University, Loyola Heights, Quezon City, Philippines
| | - Boris Bugsel
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
| | - Gabriel Munoz
- Université de Montréal, Montreal, QC, H3C 3J7, Canada
| |
Collapse
|
8
|
Cui D, Cox J, Mejias E, Ng B, Gardinali P, Bagner DM, Quinete N. Evaluating non-targeted analysis methods for chemical characterization of organic contaminants in different matrices to estimate children's exposure. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023:10.1038/s41370-023-00547-9. [PMID: 37120701 PMCID: PMC10148696 DOI: 10.1038/s41370-023-00547-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Children are vulnerable to environmental exposure of contaminants due to their small size, lack of judgement skills, as well as their proximity to dust, soil, and other environmental sources. A better understanding about the types of contaminants that children are exposed to or how their bodies retain or process these compounds is needed. OBJECTIVE In this study, we have implemented and optimized a methodology based on non-targeted analysis (NTA) to characterize chemicals in dust, soil, urine, and in the diet (food and drinking water) of infant populations. METHODS To evaluate potential toxicological concerns associated with chemical exposure, families with children between 6 months and 6 years of age from underrepresented groups were recruited in the greater Miami area. Samples of soil, indoor dust, food, water, and urine were provided by the caregivers, prepared by different techniques (involving online SPE, ASE, USE, QuEChERs), and analyzed by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Data post-processing was performed using the small molecule structure identification software, Compound Discoverer (CD) 3.3, and identified features were plotted using Kendrick mass defect plot and Van Krevelen diagrams to show unique patterns in different samples and regions of anthropogenic compound classifications. RESULTS The performance of the NTA workflow was evaluated using quality control standards in terms of accuracy, precision, selectivity, and sensitivity, with an average of 98.2%, 20.3%, 98.4% and 71.1%, respectively. Sample preparation was successfully optimized for soil, dust, water, food, and urine. A total of 30, 78, 103, 20 and 265 annotated features were frequently identified (detection frequency >80%) in the food, dust, soil, water, and urine samples, respectively. Common features detected in each matrix were prioritized and classified, providing insight on children's exposure to organic contaminants of concern and their potential toxicities. IMPACT STATEMENT Current methods to assess the ingestion of chemicals by children have limitations and are generally restricted by specific classes of targeted organic contaminants of interest. This study offers an innovative approach using non-targeted analysis for the comprehensive screening of organic contaminants that children are exposed to through dust, soil, and diet (drinking water and food).
Collapse
Affiliation(s)
- Danni Cui
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Joseph Cox
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Emily Mejias
- Institute of Environment, Florida International University, Miami, FL, USA
- Department of Psychology, Center for Children and Families, Florida International University, Miami, FL, USA
| | - Brian Ng
- Institute of Environment, Florida International University, Miami, FL, USA
- Department of Chemistry and Biochemistry, Florida International University, North Miami, FL, USA
| | - Piero Gardinali
- Institute of Environment, Florida International University, Miami, FL, USA
- Department of Chemistry and Biochemistry, Florida International University, North Miami, FL, USA
| | - Daniel M Bagner
- Department of Psychology, Center for Children and Families, Florida International University, Miami, FL, USA
| | - Natalia Quinete
- Institute of Environment, Florida International University, Miami, FL, USA.
- Department of Chemistry and Biochemistry, Florida International University, North Miami, FL, USA.
| |
Collapse
|
9
|
Steeves KL, Bissram MJ, Kleywegt S, Stevens D, Dorman FL, Simpson AJ, Simpson MJ, Cahill LS, Jobst KJ. Nontargeted screening reveals fluorotelomer ethoxylates in indoor dust and industrial wastewater. ENVIRONMENT INTERNATIONAL 2023; 171:107634. [PMID: 36459821 DOI: 10.1016/j.envint.2022.107634] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Concerns regarding the persistence, bioaccumulation behaviour, and toxicity of perfluorooctanoic acid and perfluorooctane sulfonic acid have resulted in the creation of thousands of replacement perfluoroalkyl substances (PFAS). This study reports on the discovery of fluorotelomer ethoxylates (FTEO) in indoor dust (9/15 samples), and industrial effluents (14/37 samples) using gas chromatographic cyclic ion mobility mass spectrometry (GC-cIMS). By filtering the detected unknowns by mass and collision-cross section, a series of FTEO homologues were revealed with the formula F-(CF2)n(C2H4O)xH, where n = 6,8,10, and x = 4-12. The highest concentrations were observed in samples collected from healthcare facilities, consistent with the potential use of these compounds in anti-fog products, sprays used to prevent condensation on eyeglasses. FTEOs were also detected in c. 40 % of industrial effluent samples, with the highest concentrations in electroplating facilities, manufacturers of cosmetics and personal care products, and linen cleaning services for healthcare and work uniforms. These results suggest that FTEOs may well be widespread pollutants that are more persistent than previously thought, underlining the need for further study of their occurrence and potential impact to human health and the environment.
Collapse
Affiliation(s)
- Katherine L Steeves
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, NL A1C 5S7, Canada
| | - Meera J Bissram
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, NL A1C 5S7, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, 40 St. Clair Ave. W., Toronto, ON M4V 1P5, Canada
| | | | - Frank L Dorman
- Waters Corporation, 34 Maple St., Milford, MA, USA; Department of Chemistry, Dartmouth College, Hannover, NH, USA
| | - Andre J Simpson
- Departments of Chemistry and Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada
| | - Myrna J Simpson
- Departments of Chemistry and Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, NL A1C 5S7, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
10
|
Qiu J, Lü F, Li T, Zhang H, He P. A Novel 4-Set Venn Diagram Model Based on High-Resolution Mass Spectrometry To Monitor Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14753-14762. [PMID: 36166304 DOI: 10.1021/acs.est.2c02229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A 4-set Venn diagram model oriented to high-resolution mass spectrometry (HRMS) data was developed to decipher the fate of dissolved organic matters (DOM) in three-stage continuous wastewater treatment processes. In total, 24 typical wastewater treatment modes conceptualized into a combination of three stages were generalized so that this model can be applied to all common types of actual wastewater treatment processes. As a result, eight kinds of native DOM and seven kinds of wastewater-produced (WW-produced) DOM separately represented by each proper subset of the 4-set Venn diagram could be identified so as to offer a molecular profile of DOM transformation. The 15 proper subsets of the 4-set Venn diagram could then explain how different wastewater treatment units work. Transformation rates of each DOM molecular formula can be estimated as a semiquantitative result. We further discussed the relationship between the transformation rates and proper subsets. As a proof of concept, the 4-set Venn diagram model was successfully applied in a complicated full-scale mature leachate treatment process with nine treatment units. This model can help to overcome the challenging task of data mining when applying HRMS and reduce the workload of data screening in the subsequent structural annotation.
Collapse
Affiliation(s)
- Junjie Qiu
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
- Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Tianqi Li
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
- Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
- Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| |
Collapse
|
11
|
Breen J, Hashemihedeshi M, Amiri R, Dorman FL, Jobst KJ. Unwrapping Wrap-around in Gas (or Liquid) Chromatographic Cyclic Ion Mobility-Mass Spectrometry. Anal Chem 2022; 94:11113-11117. [PMID: 35913896 PMCID: PMC9387526 DOI: 10.1021/acs.analchem.2c02351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gas chromatography multiplexed with cyclic ion mobility mass spectrometry is a comprehensive two-dimensional separation technique that can resolve compounds that would otherwise coelute in a single-dimension separation. The cyclic geometry of the ion mobility cell enables ions to travel multiple passes, increasing their drift times to the detector and relative separation. However, the quality of the separation may be obfuscated when "wrap-around" occurs, during which speedier ions catch up with slower ion populations when allowed to travel through more than one pass. Consequently, cyclic ion mobility is incorrectly perceived as a targeted approach that requires preselection of ions prior to separation. The present study demonstrates that "wrap-around" can be mitigated by comparing drift times measured during single- and multipass experiments and extrapolating the number of passes experienced by each ion. This straightforward calculation results in the "unwrapping" of cyclic ion mobility data so that the experiments can be interpreted in a nontargeted way while reaping the benefit of peak capacities that rival those achieved using other comprehensive two-dimensional separations.
Collapse
Affiliation(s)
- Jake Breen
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, Newfoundland, Canada, A1C 5S7
| | - Mahin Hashemihedeshi
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, Newfoundland, Canada, A1C 5S7
| | - Roshanak Amiri
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, Newfoundland, Canada, A1C 5S7
| | - Frank L Dorman
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States.,Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, Newfoundland, Canada, A1C 5S7
| |
Collapse
|
12
|
MacNeil A, Li X, Amiri R, Muir DCG, Simpson A, Simpson MJ, Dorman FL, Jobst KJ. Gas Chromatography-(Cyclic) Ion Mobility Mass Spectrometry: A Novel Platform for the Discovery of Unknown Per-/Polyfluoroalkyl Substances. Anal Chem 2022; 94:11096-11103. [DOI: 10.1021/acs.analchem.2c02325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amber MacNeil
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John’s, NL A1C 5S7, Canada
| | - Xiaolei Li
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John’s, NL A1C 5S7, Canada
| | - Roshanak Amiri
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John’s, NL A1C 5S7, Canada
| | - Derek C. G. Muir
- Canada Centre for Inland Waters, Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, OntarioL7S 1A1, Canada
| | - Andre Simpson
- Departments of Chemistry and Physical & Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Myrna J. Simpson
- Departments of Chemistry and Physical & Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Frank L. Dorman
- Department of Chemistry, Dartmouth College, Hannover, New Hampshire 03755, United States
- Waters Corporation, 34 Maple St., Milford, Massachusetts 01757, United States
| | - Karl J. Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
13
|
Approaches for assessing performance of high-resolution mass spectrometry-based non-targeted analysis methods. Anal Bioanal Chem 2022; 414:6455-6471. [PMID: 35796784 PMCID: PMC9411239 DOI: 10.1007/s00216-022-04203-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022]
Abstract
Non-targeted analysis (NTA) using high-resolution mass spectrometry has enabled the detection and identification of unknown and unexpected compounds of interest in a wide range of sample matrices. Despite these benefits of NTA methods, standardized procedures do not yet exist for assessing performance, limiting stakeholders’ abilities to suitably interpret and utilize NTA results. Herein, we first summarize existing performance assessment metrics for targeted analyses to provide context and clarify terminology that may be shared between targeted and NTA methods (e.g., terms such as accuracy, precision, sensitivity, and selectivity). We then discuss promising approaches for assessing NTA method performance, listing strengths and key caveats for each approach, and highlighting areas in need of further development. To structure the discussion, we define three types of NTA study objectives: sample classification, chemical identification, and chemical quantitation. Qualitative study performance (i.e., focusing on sample classification and/or chemical identification) can be assessed using the traditional confusion matrix, with some challenges and limitations. Quantitative study performance can be assessed using estimation procedures developed for targeted methods with consideration for additional sources of uncontrolled experimental error. This article is intended to stimulate discussion and further efforts to develop and improve procedures for assessing NTA method performance. Ultimately, improved performance assessments will enable accurate communication and effective utilization of NTA results by stakeholders.
Collapse
|
14
|
Samanipour S, Choi P, O'Brien JW, Pirok BWJ, Reid MJ, Thomas KV. From Centroided to Profile Mode: Machine Learning for Prediction of Peak Width in HRMS Data. Anal Chem 2021; 93:16562-16570. [PMID: 34843646 PMCID: PMC8674881 DOI: 10.1021/acs.analchem.1c03755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Centroiding is one of the major approaches used for size reduction of the data generated by high-resolution mass spectrometry. During centroiding, performed either during acquisition or as a pre-processing step, the mass profiles are represented by a single value (i.e., the centroid). While being effective in reducing the data size, centroiding also reduces the level of information density present in the mass peak profile. Moreover, each step of the centroiding process and their consequences on the final results may not be completely clear. Here, we present Cent2Prof, a package containing two algorithms that enables the conversion of the centroided data to mass peak profile data and vice versa. The centroiding algorithm uses the resolution-based mass peak width parameter as the first guess and self-adjusts to fit the data. In addition to the m/z values, the centroiding algorithm also generates the measured mass peak widths at half-height, which can be used during the feature detection and identification. The mass peak profile prediction algorithm employs a random-forest model for the prediction of mass peak widths, which is consequently used for mass profile reconstruction. The centroiding results were compared to the outputs of the MZmine-implemented centroiding algorithm. Our algorithm resulted in rates of false detection ≤5% while the MZmine algorithm resulted in 30% rate of false positive and 3% rate of false negative. The error in profile prediction was ≤56% independent of the mass, ionization mode, and intensity, which was 6 times more accurate than the resolution-based estimated values.
Collapse
Affiliation(s)
- Saer Samanipour
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands.,Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Queensland 4102, Australia.,Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo 0579, Norway
| | - Phil Choi
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Queensland 4102, Australia.,Water Unit, Health Protection Branch, Prevention Division, Queensland Department of Health, Brisbane, Queensland 4000, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Bob W J Pirok
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Malcolm J Reid
- Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo 0579, Norway
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
15
|
Place BJ, Ulrich EM, Challis JK, Chao A, Du B, Favela K, Feng YL, Fisher CM, Gardinali P, Hood A, Knolhoff AM, McEachran AD, Nason SL, Newton SR, Ng B, Nuñez J, Peter KT, Phillips AL, Quinete N, Renslow R, Sobus JR, Sussman EM, Warth B, Wickramasekara S, Williams AJ. An Introduction to the Benchmarking and Publications for Non-Targeted Analysis Working Group. Anal Chem 2021; 93:16289-16296. [PMID: 34842413 PMCID: PMC8848292 DOI: 10.1021/acs.analchem.1c02660] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Non-targeted analysis (NTA) encompasses a rapidly evolving set of mass spectrometry techniques aimed at characterizing the chemical composition of complex samples, identifying unknown compounds, and/or classifying samples, without prior knowledge regarding the chemical content of the samples. Recent advances in NTA are the result of improved and more accessible instrumentation for data generation and analysis tools for data evaluation and interpretation. As researchers continue to develop NTA approaches in various scientific fields, there is a growing need to identify, disseminate, and adopt community-wide method reporting guidelines. In 2018, NTA researchers formed the Benchmarking and Publications for Non-Targeted Analysis Working Group (BP4NTA) to address this need. Consisting of participants from around the world and representing fields ranging from environmental science and food chemistry to 'omics and toxicology, BP4NTA provides resources addressing a variety of challenges associated with NTA. Thus far, BP4NTA group members have aimed to establish a consensus on NTA-related terms and concepts and to create consistency in reporting practices by providing resources on a public Web site, including consensus definitions, reference content, and lists of available tools. Moving forward, BP4NTA will provide a setting for NTA researchers to continue discussing emerging challenges and contribute to additional harmonization efforts.
Collapse
Affiliation(s)
- Benjamin J. Place
- National Institute of Standards and Technology, Gaithersburg, MD, USA 20899,Corresponding author,
| | - Elin M. Ulrich
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA 27711
| | | | - Alex Chao
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA 27711
| | - Bowen Du
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA 92626
| | - Kristin Favela
- Southwest Research Institute, San Antonio, TX, USA 78238
| | - Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada, K1A 0K9
| | - Christine M. Fisher
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA 20740
| | - Piero Gardinali
- Institute of Environment & Department of Chemistry and Biochemistry, Florida International University, North Miami, FL 33181
| | - Alan Hood
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA 20993
| | - Ann M. Knolhoff
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA 20740
| | | | - Sara L. Nason
- Connecticut Agricultural Experiment Station, New Haven, CT, USA 06511
| | - Seth R. Newton
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA 27711
| | - Brian Ng
- Institute of Environment & Department of Chemistry and Biochemistry, Florida International University, North Miami, FL 33181
| | - Jamie Nuñez
- Pacific Northwest National Laboratory, Richland, WA, USA 99352
| | - Katherine T. Peter
- National Institute of Standards and Technology, Charleston, SC, USA 29412
| | - Allison L. Phillips
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA 27711
| | - Natalia Quinete
- Institute of Environment & Department of Chemistry and Biochemistry, Florida International University, North Miami, FL 33181
| | - Ryan Renslow
- Pacific Northwest National Laboratory, Richland, WA, USA 99352
| | - Jon R. Sobus
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA 27711
| | - Eric M. Sussman
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA 20993
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Samanthi Wickramasekara
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA 20993
| | - Antony J. Williams
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA 27711
| |
Collapse
|
16
|
Uncovering global-scale risks from commercial chemicals in air. Nature 2021; 600:456-461. [PMID: 34912090 DOI: 10.1038/s41586-021-04134-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022]
Abstract
Commercial chemicals are used extensively across urban centres worldwide1, posing a potential exposure risk to 4.2 billion people2. Harmful chemicals are often assessed on the basis of their environmental persistence, accumulation in biological organisms and toxic properties, under international and national initiatives such as the Stockholm Convention3. However, existing regulatory frameworks rely largely upon knowledge of the properties of the parent chemicals, with minimal consideration given to the products of their transformation in the atmosphere. This is mainly due to a dearth of experimental data, as identifying transformation products in complex mixtures of airborne chemicals is an immense analytical challenge4. Here we develop a new framework-combining laboratory and field experiments, advanced techniques for screening suspect chemicals, and in silico modelling-to assess the risks of airborne chemicals, while accounting for atmospheric chemical reactions. By applying this framework to organophosphate flame retardants, as representative chemicals of emerging concern5, we find that their transformation products are globally distributed across 18 megacities, representing a previously unrecognized exposure risk for the world's urban populations. More importantly, individual transformation products can be more toxic and up to an order-of-magnitude more persistent than the parent chemicals, such that the overall risks associated with the mixture of transformation products are also higher than those of the parent flame retardants. Together our results highlight the need to consider atmospheric transformations when assessing the risks of commercial chemicals.
Collapse
|
17
|
Nontargeted Screening Using Gas Chromatography-Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential. Molecules 2021; 26:molecules26226911. [PMID: 34834002 PMCID: PMC8624013 DOI: 10.3390/molecules26226911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
Gas chromatography–high-resolution mass spectrometry (GC–HRMS) is a powerful nontargeted screening technique that promises to accelerate the identification of environmental pollutants. Currently, most GC–HRMS instruments are equipped with electron ionization (EI), but atmospheric pressure ionization (API) ion sources have attracted renewed interest because: (i) collisional cooling at atmospheric pressure minimizes fragmentation, resulting in an increased yield of molecular ions for elemental composition determination and improved detection limits; (ii) a wide range of sophisticated tandem (ion mobility) mass spectrometers can be easily adapted for operation with GC–API; and (iii) the conditions of an atmospheric pressure ion source can promote structure diagnostic ion–molecule reactions that are otherwise difficult to perform using conventional GC–MS instrumentation. This literature review addresses the merits of GC–API for nontargeted screening while summarizing recent applications using various GC–API techniques. One perceived drawback of GC–API is the paucity of spectral libraries that can be used to guide structure elucidation. Herein, novel data acquisition, deconvolution and spectral prediction tools will be reviewed. With continued development, it is anticipated that API may eventually supplant EI as the de facto GC–MS ion source used to identify unknowns.
Collapse
|
18
|
Jacob P, Wang R, Ching C, Helbling DE. Evaluation, optimization, and application of three independent suspect screening workflows for the characterization of PFASs in water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1554-1565. [PMID: 34550138 DOI: 10.1039/d1em00286d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Suspect screening is a valuable tool for characterizing per- and polyfluoroalkyl substances (PFASs) in environmental media. Although a variety of data mining tools have been developed and applied for suspect screening of PFAS, few suspect screening workflows have undergone a comprehensive performance evaluation or optimization. The goals of this research were to: (1) evaluate and optimize three independent suspect screening workflows for the detection of PFASs in water samples; and (2) apply the optimized suspect screening workflows to an environmental sample to determine the extent to which suspect screening results converge. We evaluated and optimized suspect screening workflows using Compound Discoverer v3.2, enviMass v4.2, and FluoroMatch v2.4 using test samples containing 33 target PFASs. The average sensitivity (Sen) and selectivity (Sel) for each workflow across the test samples was: Compound Discoverer Sen = 71%, Sel = 85%; enviMass Sen = 89%, Sel = 80%; FluoroMatch Sen = 51%, Sel = 82%. We then applied the optimized workflows to a contaminated groundwater sample containing an unknown number of PFASs. Each workflow managed to annotate unique PFASs that were not annotated by the other workflows including 2 by Compound Discoverer and 19 each by enviMass and FluoroMatch. Thirty-two enviMass hits and 28 of the Compound Discoverer and FluoroMatch hits were annotated by at least one of the other workflows. Sixteen PFASs were annotated by all three of the optimized workflows. This work provides a basis for conducting suspect screening for PFASs that will lead to more consistent reporting of suspect screening data.
Collapse
Affiliation(s)
- Paige Jacob
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Ri Wang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Casey Ching
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
19
|
Peter KT, Phillips AL, Knolhoff AM, Gardinali PR, Manzano CA, Miller KE, Pristner M, Sabourin L, Sumarah MW, Warth B, Sobus JR. Nontargeted Analysis Study Reporting Tool: A Framework to Improve Research Transparency and Reproducibility. Anal Chem 2021; 93:13870-13879. [PMID: 34618419 PMCID: PMC9408805 DOI: 10.1021/acs.analchem.1c02621] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-targeted analysis (NTA) workflows using mass spectrometry are gaining popularity in many disciplines, but universally accepted reporting standards are nonexistent. Current guidance addresses limited elements of NTA reporting-most notably, identification confidence-and is insufficient to ensure scientific transparency and reproducibility given the complexity of these methods. This lack of reporting standards hinders researchers' development of thorough study protocols and reviewers' ability to efficiently assess grant and manuscript submissions. To overcome these challenges, we developed the NTA Study Reporting Tool (SRT), an easy-to-use, interdisciplinary framework for comprehensive NTA methods and results reporting. Eleven NTA practitioners reviewed eight published articles covering environmental, food, and health-based exposomic applications with the SRT. Overall, our analysis demonstrated that the SRT provides a valid structure to guide study design and manuscript writing, as well as to evaluate NTA reporting quality. Scores self-assigned by authors fell within the range of peer-reviewer scores, indicating that SRT use for self-evaluation will strengthen reporting practices. The results also highlighted NTA reporting areas that need immediate improvement, such as analytical sequence and quality assurance/quality control information. Although scores intentionally do not correspond to data/results quality, widespread implementation of the SRT could improve study design and standardize reporting practices, ultimately leading to broader use and acceptance of NTA data.
Collapse
Affiliation(s)
- Katherine T Peter
- U.S. National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| | - Allison L Phillips
- U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Ann M Knolhoff
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, HFS-707, College Park, Maryland 20740, United States
| | - Piero R Gardinali
- Institute of Environment and Department of Chemistry & Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, Florida 33181, United States
| | - Carlos A Manzano
- Faculty of Science, University of Chile, 3425 Las Palmeras, 7750000 Nunoa RM, Chile
- School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, United States
| | - Kelsey E Miller
- U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Manuel Pristner
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Street 38, 1090 Vienna, Austria
| | - Lyne Sabourin
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - Mark W Sumarah
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Street 38, 1090 Vienna, Austria
| | - Jon R Sobus
- U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, North Carolina 27709, United States
| |
Collapse
|
20
|
Skoczyńska E, Leonards PEG, Llompart M, de Boer J. Analysis of recycled rubber: Development of an analytical method and determination of polycyclic aromatic hydrocarbons and heterocyclic aromatic compounds in rubber matrices. CHEMOSPHERE 2021; 276:130076. [PMID: 33714875 DOI: 10.1016/j.chemosphere.2021.130076] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Recycled crumb rubber (CR) is rich in compounds with unrecognized toxic potency; this study aims at the development of an analytical method that would allow identification and quantification of a very wide range of organic compounds extractable from the complex rubber matrix. The analytical set-up includes target analysis of polycyclic aromatic hydrocarbons (PAHs) and methyl-PAHs and suspect screening of raw extracts to tentatively identify primary organic compounds present, but not included in the standard target analysis of recycled rubber, followed by analytical method development and target analysis of identified compounds. Analyzed samples included weathered and new CR originating from football turf granulates, rubber mats, and end-of-life car tires (ELTs). The developed analytical method involves sonication extraction, followed by solid phase extraction (SPE) fractionation that enables simple and efficient separation of analytes with broad polarity scale. The application of SPE fractionation resolves coelution problems and simplifies the chromatograms. This analytical approach allowed to identify and quantify 46 sample specific compounds, including several heterocyclic PAHs like 2-methylthiobenzothiazole, benzonapthothiophenes, benzonaphthofuranes and aromatic amines like diphenylamine and N-phenyl-2-naphthylamine, which to our knowledge were not determined before. The PAHs concentrations determined in CR tiles purchased in Dutch and Spanish shops exceed the EU limits for articles marketed for use by the public. Furthermore, sets of methylated PAHs, dibenzothiazoles and aromatic amines were identified and quantified, and several other compounds were tentatively identified. The obtained results stress the need for expanding the list of target compounds analyzed in CR and the need for longitudinal studies on weathering processes taking place in CR.
Collapse
Affiliation(s)
- Ewa Skoczyńska
- Vrije Universiteit, Department of Environment and Health, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands.
| | - Pim E G Leonards
- Vrije Universiteit, Department of Environment and Health, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Maria Llompart
- CRETUS Institute, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Jacob de Boer
- Vrije Universiteit, Department of Environment and Health, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Schreckenbach SA, Anderson JSM, Koopman J, Grimme S, Simpson MJ, Jobst KJ. Predicting the Mass Spectra of Environmental Pollutants Using Computational Chemistry: A Case Study and Critical Evaluation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1508-1518. [PMID: 33982573 DOI: 10.1021/jasms.1c00078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic pollutants can be identified by comparing their electron ionization (EI) mass spectra with those in libraries or obtained from authentic standards. Nevertheless, libraries are incomplete; standards may be unavailable or too costly, or their synthesis may be too time-consuming. This study evaluates the performance of quantum chemical electron ionization mass spectrometry (QCEIMS) vis-à-vis competitive fragmentation modeling (CFM) for suspect screening and unknown identification. EI mass spectra of 35 compounds, including halogenated organics, organophosphorus flame retardants (OPFRs), and disinfection byproducts were computed. Computational results were compared with EI mass spectra compiled in the NIST Library as well as collision-induced dissociation (CID) mass spectra obtained from radical cations M•+ generated by charge-exchange atmospheric pressure chemical ionization (APCI). The results indicate that QCEIMS performs equivalently or better than CFM. Average match factors between computed and experimental (NIST) EI mass spectra were 656 vs 503 for the halogenated organics, and on average, QCEIMS predicted 55% of the products generated by CID vs 17% predicted by CFM. QCEIMS predicted 37% of the OPFR CID products whereas CFM predicted 29%. QCEIMS performed comparably to a commercial combinatorial fragmentation method for suspect screening of a dust sample, identifying 19/20 targets. Examples of unknown pollutants, whose reference spectra were unavailable at the time of discovery, are also presented. The computational results suggest that QCEIMS can help guide the analyst in obtaining authentic standards and raise the possibility that, with advances in computing, an unknown may eventually be confirmed in hours as opposed to the days or months required to obtain authentic standards.
Collapse
Affiliation(s)
- Sophia A Schreckenbach
- Departments of Chemistry and Physical and Environmental Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - James S M Anderson
- Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Jeroen Koopman
- Mulliken Center for Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Myrna J Simpson
- Departments of Chemistry and Physical and Environmental Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7, Canada
| |
Collapse
|
22
|
Guardian MGE, He P, Bermudez A, Duan S, Kaushal SS, Rosenfeldt E, Aga DS. Optimized suspect screening approach for a comprehensive assessment of the impact of best management practices in reducing micropollutants transport in the Potomac River watershed. WATER RESEARCH X 2021; 11:100088. [PMID: 33598649 PMCID: PMC7868815 DOI: 10.1016/j.wroa.2021.100088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The vast number of chemicals potentially reaching aquatic environment pose a challenge in maintaining the quality of water resources. However, best management practices to improve water quality are typically focused on reducing nutrient transport without assessing how these practices may impact the occurrence of micropollutants. The potential for co-management of nutrients and organic micropollutants exists, but few studies have comprehensively evaluated the suite of contaminants associated with different water quality management practices (riparian zone restoration, stormwater management, etc.). Furthermore, most studies dealing with the determination of micropollutants in environmental samples include only a limited number of target analytes, leaving many contaminants undetected. To address this limitation, there has been a gradual shift in environmental monitoring from using target analysis to either suspect screening analysis (SSA) or non-targeted analysis (NTA), which relies on accurate mass measurements, mass spectral fragmentation patterns, and retention time information obtained using liquid chromatography coupled to high-resolution mass spectrometry. The work presented in this paper focuses on a wide-scope detection of micropollutants in surface water samples from the Potomac River watershed (United States). An in-house database composed of 1039 compounds based on experimental analysis of primary standards was established, and SSA workflow was optimized and applied to determine the presence of micropollutants in surface water. A total of 103 micropollutants were detected in the samples, some of which are contaminants that were not previously monitored and belong to various classes such as pharmaceuticals, personal care products, per-and polyfluoroalkyl substances and other persistent industrial chemicals. The impact of best management practices being implemented for nitrogen and phosphorus reductions were also assessed for their potential to reduce micropollutant transport. This work illustrates the advantages of suspect screening methods to determine a large number of micropollutants in environmental samples and reveals the potential to co-manage a diverse array of micropollutants based on shared transport and transformation mechanisms in watersheds.
Collapse
Affiliation(s)
- Mary Grace E. Guardian
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - Ping He
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - Alysson Bermudez
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - Shuiwang Duan
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20740, USA
| | - Sujay S. Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20740, USA
| | | | - Diana S. Aga
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| |
Collapse
|
23
|
Liu X, Zeng X, Dong G, Venier M, Xie Q, Yang M, Wu Q, Zhao F, Chen D. Plastic Additives in Ambient Fine Particulate Matter in the Pearl River Delta, China: High-Throughput Characterization and Health Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4474-4482. [PMID: 33710877 DOI: 10.1021/acs.est.0c08578] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Elucidation of the chemical components of airborne fine particulate matter (PM2.5) facilitates the characterization of atmospheric contamination sources and associated human exposure risks. In the present study, we employed a high-throughput analytical approach to investigate the abundance and distribution of 163 plastic additives in ambient PM2.5 collected from 94 different sites across the Pearl River Delta region, China. These chemicals are from six categories, including organophosphate esters (OPEs), phthalate esters (PAEs), PAE replacements, bisphenol analogues, UV stabilizers, and antioxidants. Ninety-three of them exhibited a detection frequency greater than 50% in PM2.5, while the combined concentrations of target plastic additives ranged from 610 to 49,400 μg/g (median: 3500 μg/g) across sites. By category, concentrations of PAEs (median: 2710 μg/g) were one to three orders of magnitude greater than those of other groups, followed by PAE replacements (540 μg/g) and OPEs (76.2 μg/g). Chemical-dependent exposure risks to PM2.5-bound plastic additives were characterized via the estimated daily intake and hazard quotient (HQ) approaches, which resulted in two different risk prioritization systems. Although the HQ approach suggested no or very low health concerns when considering individual chemicals, the complexity of co-concurrent chemicals in PM2.5 raises the concern on potential health risks from exposure to airborne particles and a cocktail of chemical components.
Collapse
Affiliation(s)
- Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaowen Zeng
- Department of Environmental and Occupational Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Guanghui Dong
- Department of Environmental and Occupational Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Marta Venier
- School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Qitong Xie
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Mo Yang
- Department of Environmental and Occupational Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qizhen Wu
- Department of Environmental and Occupational Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Fanrong Zhao
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
24
|
Place BJ. Development of a Data Analysis Tool to Determine the Measurement Variability of Consensus Mass Spectra. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:707-715. [PMID: 33591742 PMCID: PMC8409248 DOI: 10.1021/jasms.0c00423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The success of nontargeted analysis often depends on libraries containing reference mass spectra of known chemical compounds; the mass spectra of unknown compounds are compared to these reference mass spectra, leading to a probable compound identity. Typical calculations include the mean measured values for each ion m/z and intensity with no estimation of the variability of the measurement. This study presents a novel tool for the calculation of the variability of a measured mass spectrum, including the various data parameters that can impact the measured variability. Using perfluorooctanoic acid (PFOA) as the model compound, the variability of measured data-dependent fragmentation mass spectra (ddMS2) was calculated within replicate measurements of a simple solution of PFOA and a complex mixture (house dust extract) containing PFOA. The variability of the measured ddMS2 for PFOA in the solution and house dust extract were similar, with standard deviations about the measured m/z value ranging from m/z 0.00003 to 0.00015 and the standard deviations about the measured relative intensity ranging from 0.0077 to 0.0211 relative intensity units. In addition, the selected parameters for the extraction of ddMS2 from a single analytical run varied between the sample types due to the increased presence of background ions in the house dust extract. Finally, the variability of the ddMS2 spectra for PFOA in both samples was used to calculate a more robust similarity factor, informing the confidence of the identification of unknown compounds.
Collapse
Affiliation(s)
- Benjamin J Place
- Chemical Sciences Division, National Institute of Standards & Technology Gaithersburg, Maryland 20899, United States
| |
Collapse
|
25
|
De Silva AO, Armitage JM, Bruton TA, Dassuncao C, Heiger-Bernays W, Hu XC, Kärrman A, Kelly B, Ng C, Robuck A, Sun M, Webster TF, Sunderland EM. PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:631-657. [PMID: 33201517 PMCID: PMC7906948 DOI: 10.1002/etc.4935] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 11/05/2020] [Indexed: 05/20/2023]
Abstract
We synthesize current understanding of the magnitudes and methods for assessing human and wildlife exposures to poly- and perfluoroalkyl substances (PFAS). Most human exposure assessments have focused on 2 to 5 legacy PFAS, and wildlife assessments are typically limited to targeted PFAS (up to ~30 substances). However, shifts in chemical production are occurring rapidly, and targeted methods for detecting PFAS have not kept pace with these changes. Total fluorine measurements complemented by suspect screening using high-resolution mass spectrometry are thus emerging as essential tools for PFAS exposure assessment. Such methods enable researchers to better understand contributions from precursor compounds that degrade into terminal perfluoroalkyl acids. Available data suggest that diet is the major human exposure pathway for some PFAS, but there is large variability across populations and PFAS compounds. Additional data on total fluorine in exposure media and the fraction of unidentified organofluorine are needed. Drinking water has been established as the major exposure source in contaminated communities. As water supplies are remediated, for the general population, exposures from dust, personal care products, indoor environments, and other sources may be more important. A major challenge for exposure assessments is the lack of statistically representative population surveys. For wildlife, bioaccumulation processes differ substantially between PFAS and neutral lipophilic organic compounds, prompting a reevaluation of traditional bioaccumulation metrics. There is evidence that both phospholipids and proteins are important for the tissue partitioning and accumulation of PFAS. New mechanistic models for PFAS bioaccumulation are being developed that will assist in wildlife risk evaluations. Environ Toxicol Chem 2021;40:631-657. © 2020 SETAC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carla Ng
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Robuck
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI USA
| | - Mei Sun
- University of North Carolina at Charlotte, Charlotte, NC USA
| | | | | |
Collapse
|
26
|
Towards harmonised criteria in quality assurance and quality control of suspect and non-target LC-HRMS analytical workflows for screening of emerging contaminants in human biomonitoring. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116201] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Bursian SJ, Link JE, McCarty M, Simcik MF. The Subacute Toxicity of Perfluorooctane Sulfonate and/or Perfluorooctanoic Acid and Legacy Aqueous Film-Forming Foams to Japanese Quail (Coturnix japonica) Chicks. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:695-710. [PMID: 32060944 DOI: 10.1002/etc.4684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/18/2019] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
As part of an effort to develop avian ecotoxicity information for poly- and perfluoroalkyl substances (PFAS) including perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) associated with aqueous film-forming foam (AFFF) used by the Department of Defense, the subacute toxicity of PFOS, PFOA, PFOS + PFOA, 3M AFFF, and Ansul AFFF to Japanese quail (Coturnix japonica) chicks was determined. Ten-day-old Japanese quail were administered treated feed for 5 d and then fed untreated feed for 18 d. Analyzed concentrations of PFOS, PFOA, and PFOS + PFOA ranged from 62 to 1955, 162 to 1208, and 43 + 45 to 296 + 292 mg kg feed-1 . Analyzed concentrations of PFOS in feed containing the 3M AFFF ranged from 73 to 1399 mg kg feed-1 , and formulated concentrations of 6:2 fluorotelomer thioamido sulfonate in feed containing the Ansul AFFF ranged from 9 to 1118 mg kg feed-1 . Average daily doses resulting in 50% mortality at day 5 were 38 (34-43), 68 (63-74), 55 (51-59), and 130 (103-164) mg PFOS, PFOA, PFOS + PFOA, and PFOS in 3M AFFF kg body weight-1 d-1 . Ansul AFFF did not result in any mortalities. Dietary concentrations resulting in 50% mortality at day 5 were 351 (275-450), 496 (427-575), 398 (339-468), and 467 (390-559) mg PFOS, PFOA, PFOS + PFOA, and PFOS in 3M AFFF kg feed-1 . Environ Toxicol Chem 2021;40:695-710. © 2020 SETAC.
Collapse
Affiliation(s)
- Steven J Bursian
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Jane E Link
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Michael McCarty
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matt F Simcik
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
28
|
Schreckenbach SA, Simmons D, Ladak A, Mullin L, Muir DCG, Simpson MJ, Jobst KJ. Data-Independent Identification of Suspected Organic Pollutants Using Gas Chromatography-Atmospheric Pressure Chemical Ionization-Mass Spectrometry. Anal Chem 2021; 93:1498-1506. [PMID: 33355455 DOI: 10.1021/acs.analchem.0c03733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The identity of an unknown environmental pollutant is reflected by the mass and dissociation chemistry of its (quasi)molecular ion. Gas chromatography-atmospheric pressure chemical ionization-mass spectrometry (GC-APCI-MS) increases the yield of molecular ions (compared to conventional electron ionization) by collisional cooling. Scanning quadrupole data-independent acquisition (SQDIA) permits unbiased, unattended selection of (quasi)molecular ions and acquisition of structure-diagnostic collision-induced dissociation mass spectra, while minimizing interferences, by sequentially cycling a quadrupole isolation window through the m/z range. This study reports on the development of a suspect screening method based on industrial compounds with bioaccumulation potential. A comparison of false and correct identifications in a mixed standard containing 30 analytes suggests that SQDIA results in a markedly lower false-positive rate than standard DIA: 5 for SQDIA and 82 for DIA. Electronic waste dust was analyzed using GC and quadrupole time-of-flight MS with APCI and SQDIA acquisition. A total of 52 brominated, chlorinated, and organophosphorus compounds were identified by suspect screening; 15 unique elemental compositions were identified using nontargeted screening; 17 compounds were confirmed using standards and others identified to confidence levels 2, 3, or 4. SQDIA reduced false-positive identifications, compared to experiments without quadrupole isolation. False positives also varied by class: 20% for Br, 37% for Cl, 75% for P, and >99% for all other classes. The structure proposal of a previously reported halogenated compound was revisited. The results underline the utility of GC-SQDIA experiments that provide information on both the (quasi)molecular ions and its dissociation products for a more confident structural assignment.
Collapse
Affiliation(s)
- Sophia A Schreckenbach
- Department of Chemistry, University of Toronto, Toronto, Ontario, M1C 1A4, Canada.,Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Denina Simmons
- Depertment of Biology, University of Ontario Institute of Technology, Oshawa, Ontario L1G 0C5, Canada
| | - Adam Ladak
- Waters Corporation, Milford, Massachusetts 01757, United States
| | - Lauren Mullin
- Waters Corporation, Milford, Massachusetts 01757, United States
| | - Derek C G Muir
- Environment and Climate Change Canada, Burlington, Ontario ON L7S 1A1, Canada
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, Toronto, Ontario, M1C 1A4, Canada.,Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
29
|
An assessment of quality assurance/quality control efforts in high resolution mass spectrometry non-target workflows for analysis of environmental samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116063] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Zhang X, Saini A, Hao C, Harner T. Passive air sampling and nontargeted analysis for screening POP-like chemicals in the atmosphere: Opportunities and challenges. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Newton SR, Sobus JR, Ulrich EM, Singh RR, Chao A, McCord J, Laughlin-Toth S, Strynar M. Examining NTA performance and potential using fortified and reference house dust as part of EPA's Non-Targeted Analysis Collaborative Trial (ENTACT). Anal Bioanal Chem 2020; 412:4221-4233. [PMID: 32335688 DOI: 10.1007/s00216-020-02658-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 11/29/2022]
Abstract
Non-targeted analysis (NTA) methods are being increasingly used to aid in the identification of unknown compounds in the environment, a problem that has challenged environmental chemists for decades. Despite its increased use, quality assurance practices for NTA have not been well established. Furthermore, capabilities and limitations of certain NTA methods have not been thoroughly evaluated. Standard reference material dust (SRM 2585) was used here to evaluate the ability of NTA to identify previously reported compounds, as well as a suite of 365 chemicals that were spiked at various stages of the analytical procedure. Analysis of the unaltered SRM 2585 extracts revealed that several previously reported compounds can be identified by NTA, and that correct identification was dependent on concentration. A manual inspection of unknown features in SRM 2585 revealed the presence of two chlorinated and fluorinated compounds in high abundance, likely precursors to perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS). A retrospective analysis of data from the American Healthy Homes Survey revealed that these compounds were present in 42% of sampled homes. Spiking the dust at various stages of sample preparation revealed losses from extraction, cleanup, and instrumental analysis; the log Kow for individual compounds influenced the overall recovery levels but no pattern could be discerned from the various degrees of interference that the matrix had on the ionization efficiency of the spiked chemicals. Analysis of the matrix-free chemical mixture at low, medium, and high concentrations led to more correct identifications than analysis at one, very high concentration. Varying the spiked amount and identifying reported compounds at known concentrations allowed an estimation of the lower limits of identification (LOIs) for NTA, analogous to limits of detection in targeted analysis. The LOIs were much lower than levels in dust that would be likely to cause bioactivity in humans, indicating that NTA is useful for identifying and monitoring compounds that may be of toxicological concern. Graphical abstract.
Collapse
Affiliation(s)
- Seth R Newton
- Center for Computational Toxicology and Exposure, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Jon R Sobus
- Center for Computational Toxicology and Exposure, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Elin M Ulrich
- Center for Computational Toxicology and Exposure, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Randolph R Singh
- Oak Ridge Institute for Science and Education, Post-Doctoral Participant, National Exposure Research Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4365, Esch-sur-Alzette, Luxembourg
| | - Alex Chao
- Oak Ridge Institute for Science and Education, Post-Doctoral Participant, National Exposure Research Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - James McCord
- Center for Environmental Measurement and Modeling, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Sarah Laughlin-Toth
- Oak Ridge Institute for Science and Education, Post-Doctoral Participant, National Exposure Research Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.,Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mark Strynar
- Center for Environmental Measurement and Modeling, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
32
|
Ng B, Quinete N, Gardinali PR. Assessing accuracy, precision and selectivity using quality controls for non-targeted analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136568. [PMID: 31955085 DOI: 10.1016/j.scitotenv.2020.136568] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
The benchmarks to assess reproducibility are not well defined for non-target analysis. Parameters to evaluate analytical performance, such as accuracy, precision and selectivity, are well defined for target analysis, but remain elusive for non-target screening analysis. In this study, quality control (QC) guidelines are proposed to assure reliable data in non-target screening methodologies using a simple set of standards. Workflow reproducibility was assessed using an in-house QC mixture containing selected compounds with a wide range of polarity that can be detected either by electrospray ionization (ESI) in positive or negative mode. The analysis was performed by online solid phase extraction (SPE) liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). Data processing was done by a commercially available software, Compound Discoverer v. 3.0 using an environmental working template, which searched a multitude of databases, including Chemspider, EPA Toxcast, MzCloud among others. We have specifically evaluated method specificity, precision, accuracy and reproducibility in terms of peak area and retention time variability, true positive identification rate, intraday (within days) and interday (consecutive days) variations and the use of QC samples to reduce false positives. The method showed a satisfactory accuracy with an identification rate of ≥70% for most of the QC compounds. Precision estimated based on peak area relative standard deviation (RSD) ranged between 30 and 50% for most of the compounds. Data normalization to a single internal standard did not improve peak area variability. Retention time precision showed great repeatability and reproducibility (RSD ≤ 5%). In addition, a simple model of RT vs log Kow was designed based on our QC mixtures to efficiently reduced false positives by an average of 49.1%.
Collapse
Affiliation(s)
- Brian Ng
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America
| | - Natalia Quinete
- Southeast Environmental Research Center (SERC), Florida International University, Miami, FL, United States of America; Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, United States of America.
| | - Piero R Gardinali
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America; Southeast Environmental Research Center (SERC), Florida International University, Miami, FL, United States of America
| |
Collapse
|
33
|
Farrington JW. Need to update human health risk assessment protocols for polycyclic aromatic hydrocarbons in seafood after oil spills. MARINE POLLUTION BULLETIN 2020; 150:110744. [PMID: 31910519 DOI: 10.1016/j.marpolbul.2019.110744] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The need to include alkylated polycyclic aromatic hydrocarbons in human health risks assessments for oil contaminated seafood after crude oil spills is set forth. This is placed within the context of a brief review of the literature for PAHs and human health risk assessments after oil spills. The example of human health risk assessments for oil contaminated seafood after the Deepwater Horizon oil spill is reviewed with the conclusion that PAHs such as alkylated chrysenes/triphenylenes/benzanthracenes should have been included in the human health risk assessment and not dismissed as present in very low concentrations relative to their parent PAHs.
Collapse
|
34
|
Untargeted Metabolite Profiling for Screening Bioactive Compounds in Digestate of Manure under Anaerobic Digestion. WATER 2019. [DOI: 10.3390/w11112420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Untargeted metabolite profiling was performed on chicken manure (CHM), swine manure (SM), cattle manure (CM), and their respective digestate by XCMS coupled with MetaboAnalyst programs. Through global chemical profiling, the chemical characteristics of different digestates and types of manure were displayed during the anaerobic digestion (AD) process. As the feed for AD, CM had less easily-degradable organics, SM contained the least O-alkyls and anomerics of carbohydrates, and CHM exhibited relatively lower bio-stability. The derived metabolite pathways of different manure during the AD process were identified by MetaboAnalyst. Twelve, 8, and 5 metabolic pathways were affected by the AD process in CHM, SM, and CM, respectively. Furthermore, bioactive compounds of digestate were detected, such as amino acids (L-arginine, L-ornithine, L-cysteine, and L-aspartate), hormones (L-adrenaline, 19-hydroxy androstenedione, and estrone), alkaloids (tryptamine and N-methyltyramine), and vitamin B5, in different types of manure and their digestates. The combination of XCMS and MetaboAnalyst programs can be an effective strategy for metabolite profiling of manure and its anaerobic digestate under different situations.
Collapse
|
35
|
Chibwe L, Myers AL, De Silva AO, Reiner EJ, Jobst K, Muir D, Yuan B. C 12-30 α-Bromo-Chloro "Alkenes": Characterization of a Poorly Identified Flame Retardant and Potential Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10835-10844. [PMID: 31441649 DOI: 10.1021/acs.est.9b03760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bromo-chloro alkenes (Br-Cl PXAs) have been used for over 30 years as flame retardants and are listed on several national chemical inventories. Very little publicly available information is available on Br-Cl PXAs, and thus preliminary ecological risk screening is challenging due to the lack of basic information such as molecular structure and associated physicochemical properties. Due to their likely similarity with chlorinated paraffins (CPs), Br-Cl PXAs may pose a similar environmental hazard. Several structural databases list such substances as "alkenes", although the industrial synthesis involves halogenation of linear alpha-olefins and would be expected to produce linear alkanes. In this study, a combination of high-resolution separation and mass spectrometric techniques were used to characterize a Br-Cl PXA industrial technical product, C12-30 bromo-chloro alpha-alkenes (CAS RN 68527-01-5). The results show this product is dominated by C18 carbon chain lengths, substituted with 3-7 chlorine atoms and 1-3 bromine atoms on an alkane chain. Long-chain C18 chlorinated paraffins are also present, although they represent a relatively minor component. Experimental log KOW (6.9 to 8.6) and estimated log KOA (10.5 to 13.5) and log KAW (-5.1 to -0.6) partition coefficients suggest that this chemical will behave similarly to medium- and long-chain CPs as well as other persistent organic pollutants, such as highly chlorinated pesticides and polychlorinated biphenyls. The results of this study provide an initial step toward understanding the environmental behavior and persistence of Br-Cl PXAs, highlighting the need for further assessment and re-evaluation of the current structure(s) assigned to these compounds.
Collapse
Affiliation(s)
- Leah Chibwe
- Aquatic Contaminants Research Division , Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| | - Anne L Myers
- Ministry of the Environment, Conservation and Parks , Toronto , Ontario M9P 3V6 , Canada
| | - Amila O De Silva
- Aquatic Contaminants Research Division , Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| | - Eric J Reiner
- Ministry of the Environment, Conservation and Parks , Toronto , Ontario M9P 3V6 , Canada
| | - Karl Jobst
- Ministry of the Environment, Conservation and Parks , Toronto , Ontario M9P 3V6 , Canada
| | - Derek Muir
- Aquatic Contaminants Research Division , Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| | - Bo Yuan
- Department of Environmental Science and Analytical Chemistry , Stockholm University , Stockholm SE-10691 , Sweden
| |
Collapse
|
36
|
Wang Y, Gao W, Wang Y, Jiang G. Suspect screening analysis of the occurrence and removal of micropollutants by GC-QTOF MS during wastewater treatment processes. JOURNAL OF HAZARDOUS MATERIALS 2019; 376:153-159. [PMID: 31128394 DOI: 10.1016/j.jhazmat.2019.05.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
The presence of micropollutants in wastewater treatment plant (WWTP) poses potential risks to the aquatic system and human health. This study comprehensively characterized the presence, elimination, and transformation of micropollutants in the WWTP using the suspect screening approaches by employing the gas chromatography coupled with quadrupole time-of-flight mass spectrometry. Overall, 5724 features were identified in influent, while only 3418 features existed in effluents. Hierarchical cluster analysis (HCA) was used to group features based on intensity profiles to investigate the behavior and fate of detected features. Four representative trends were defined with the corresponding features. Among 117 compounds identified during the treatment process, there were 99 compounds in influent, 10 biological transformation products (TPs), 3 ozone TPs, and 5 ultraviolet TPs. Furthermore, the removal efficiencies for the detected compounds were determined. The study findings highlight the importance of the removal of emerging pollutants and TPs such as fipronil, fipronil sulfide, and fipronil sulfone.
Collapse
Affiliation(s)
- Yingjun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
37
|
Samanipour S, O’Brien JW, Reid MJ, Thomas KV. Self Adjusting Algorithm for the Nontargeted Feature Detection of High Resolution Mass Spectrometry Coupled with Liquid Chromatography Profile Data. Anal Chem 2019; 91:10800-10807. [DOI: 10.1021/acs.analchem.9b02422] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Saer Samanipour
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall St., Woolloongabba, Qld 4102, Australia
| | - Jake W. O’Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall St., Woolloongabba, Qld 4102, Australia
| | - Malcolm J. Reid
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway
| | - Kevin V. Thomas
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall St., Woolloongabba, Qld 4102, Australia
| |
Collapse
|
38
|
Hedgespeth ML, Nichols EG. Expanding phytoremediation to the realms of known and unknown organic chemicals of concern. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1385-1396. [PMID: 31257906 DOI: 10.1080/15226514.2019.1633265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent advancements in analytical chemistry and data analyses via high-resolution mass spectrometry (HRMS) are evolving scientific understanding of the potential totality of organic chemical exposure and pollutant risk. This review addresses the importance of HRMS approaches, namely suspect screening and nontarget chemical analyses, to the realm of phytoremediation. These analytical approaches are not without caveats and constraints, but they provide an opportunity to understand in greater totality how plant-based technologies contribute, mitigate, and reduce organic chemical exposure across scales of experimental and system-level studies. These analytical tools can enlighten the complexity and efficacy of plant-contaminant system design and expand our understanding of biogenic and anthropogenic chemicals at work in phytoremediation systems. Advances in data analytics from biological sciences, such as metabolomics, are crucial to HRMS analysis. This review provides an overview of targeted, suspect screening, and nontarget HRMS approaches, summarizes the expanding knowledge of regulated and unregulated organic chemicals in the environment, addresses requisite HRMS instrumentation, analysis cost, uncertainty, and data processing techniques, and offers potential bridges of HRMS analyses to phytoremediation research and application.
Collapse
Affiliation(s)
- Melanie L Hedgespeth
- Department of Forest and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
39
|
Hites RA, Jobst KJ. Response to "Letter to the Editor: Optimism for Nontarget Analysis in Environmental Chemistry". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5531-5533. [PMID: 31074619 DOI: 10.1021/acs.est.9b02473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Ronald A Hites
- O'Neill School of Public and Environmental Affairs , Indiana University , Bloomington , Indiana 47405 , United States
| | - Karl J Jobst
- Department of Chemistry and Chemical Biology McMaster University Hamilton , Ontario L8S 4M1 , Canada
| |
Collapse
|
40
|
Liu X, Wu Y, Zhang X, Shen L, Brazeau AL, Adams DH, Marler H, Watts BD, Chen D. Novel Dechlorane Analogues and Possible Sources in Peregrine Falcon Eggs and Shark Livers from the Western North Atlantic Regions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3419-3428. [PMID: 30852890 DOI: 10.1021/acs.est.8b06214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During the investigation of dechlorane-related chemicals in North American wildlife, two unknown polychlorinated compounds (referred to as U1 and U2) were discovered. After extensive sample cleanup, structural information on U1 and U2 was characterized by gas chromatography (GC) coupled with single quadrupole mass spectrometer (MS) or GC-quadrupole time-of-flight (QToF) MS. Mass spectral evidence suggests that both U1 and U2 are structurally related to Dechlorane 603 (Dec603; C17H8Cl12), an analogue of the chlorinated flame retardant Dechlorane Plus. From the results we suspect U1 (C17H9Cl11) to be a monohydro analogue of Dec603 (i.e., one chlorine atom in Dec603 is replaced by a hydrogen atom). U1 may be formed via the degradation of Dec603's stereoisomers or present as an impurity in commercial Dec603 products. Mass spectral characterization of U2 (C17H7OCl11) suggests it is a carbonylic derivative of Dec603, likely formed via metabolic transformation of Dec603 or its photoisomer. Semiquantitative measurement revealed that U1 and U2 were present at estimated median concentrations of 49 ng/g lipid weight (lw) and 59 ng/g lw in peregrine falcon ( Falco peregrinus) eggs, from the mid-Atlantic region of the United States, and 4.6 and 3.0 ng/g lw in shortfin mako shark ( Isurus oxyrinchus) livers from the western North Atlantic Ocean, respectively. Our results demonstrate the occurrence of these two novel Dec603-related chemicals in both terrestrial and aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| | - Yan Wu
- Cooperative Wildlife Research Laboratory and Department of Zoology , Southern Illinois University , Carbondale , Illinois 62901 , United States
| | - Xianming Zhang
- Ontario Ministry of the Environment, Conservation and Parks , Toronto , Ontario M9P 3V6 , Canada
| | - Li Shen
- Ontario Ministry of the Environment, Conservation and Parks , Toronto , Ontario M9P 3V6 , Canada
| | - Allison L Brazeau
- Wellington Laboratories Inc. , 345 Southgate Drive , Guelph , Ontario N1G 3M5 , Canada
| | - Douglas H Adams
- Cape Canaveral Scientific Inc. , 220 Surf Road , Melbourne Beach , Florida 32951 , United States
| | - Hillary Marler
- Cooperative Wildlife Research Laboratory and Department of Zoology , Southern Illinois University , Carbondale , Illinois 62901 , United States
| | - Bryan D Watts
- Center for Conservation Biology , The College of William and Mary , Williamsburg , Virginia 23185 , United States
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| |
Collapse
|