1
|
Duan L, Yun Q, Jiang G, Teng D, Zhou G, Cao Y. A review of chloride ions removal from high chloride industrial wastewater: Sources, hazards, and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120184. [PMID: 38310791 DOI: 10.1016/j.jenvman.2024.120184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/23/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
To reduce metal pipe corrosion, improve product quality, and meet zero liquid discharge (ZLD) criteria, managing chloride ion concentrations in industrial wastewaters from metallurgical and chemical sectors has become increasingly important. This review provides detailed information on the sources, concentration levels, and deleterious effects of chloride ions in representative industrial wastewaters, and also summarizes and discusses various chloride ion removal techniques, including precipitation, ion exchange, physical separation, and advanced oxidation (AOPs). Among these, AOPs are particularly promising due to their ability to couple with other technologies and the diversity of their auxiliary technologies. The development of dechlorination electrode materials by electro-adsorption (CDI) can be inspired by the electrode materials used in chloride ion battery (CIB). This review also provides insights into exploring the effective combination of multiple chloride removal mechanisms, as well as the development of environmentally friendly composite materials. This review provides a theoretical basis and development direction for the effective treatment and secondary utilization of chlorine-containing industrial wastewater in the future.
Collapse
Affiliation(s)
- Lizhe Duan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Qinghang Yun
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Gaoliang Jiang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Daoguang Teng
- The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou, 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Guoli Zhou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou, 450001, China.
| | - Yijun Cao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou, 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
2
|
Kazemi S, Zabarjad Shiraz N, Samadizadeh M, Ezabadi A. Theoretical Study on Design and Feasibility of Novel Circumtrindene Derivatives to Remove Ionic Contaminants. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2185642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Sara Kazemi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nader Zabarjad Shiraz
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Marjaneh Samadizadeh
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Ezabadi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Study on the Removal of Chloride Ions in an Acidic Solution of Zinc Smelting by Green Method. SEPARATIONS 2023. [DOI: 10.3390/separations10030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
In the process of zinc smelting, when the chloride ion concentration exceeds 100 mg/L, it continuously corrodes the electrode plate and affects the stability of the electrodeposition process. Therefore, the chloride concentration must be reduced below 100 mg/L. Compared with other methods used to control the reactions of Cu(II), the use of the copper slag produced in zinc smelting without other additives does not cause reverse dissolution; to reduce the cost, turn the waste into treasure, and protect the environment, research was carried out on chloride removal by the copper slag via a synergistic valence control process. In this study, the influencing factors, such as the amount of copper slag, the reaction time, and reaction temperature, were systematically investigated. The results showed that the optimum dechlorination conditions were as follows: the copper: copper(II): chloride molar ratio was 6:5:1, the reaction time was 60 min, and the reaction temperature was 20 °C. The chloride ion concentration was decreased from 1.6 g/L to 0.05 g/L, the dechlorination efficiency was 96.875%, and the residual chloride ion concentration was less than 100 mg/L, which provides a basis for industrial use.
Collapse
|
4
|
Liu X, Zhang H, Zhang X, Yang Y, Yang C, Zhao P, Dong Y. Chloride removal from flue gas desulfurization wastewater through Friedel's salt precipitation method: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160906. [PMID: 36521621 DOI: 10.1016/j.scitotenv.2022.160906] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
As a high efficiency method for chloride removal, Friedel's salt precipitation (FSP) method has attracted much attention in zero liquid discharge (ZLD) of flue gas desulfurization (FGD) wastewater. This review provides comprehensive knowledge of FSP method for chloride removal through analysis of the evolution, reaction mechanisms and influential factors, and describes the recent research progress. FSP method is a cost-efficient technology to remove chloride from saline wastewater by adding lime and aluminate. Chloride ions react with the precipitants by adsorption or/and ion exchange to form Friedel's salt, which is affected by the reaction conditions including reaction time, temperature, interferential ions, etc. The effluent of this process can be reused as the makeup water of desulfurization tower, and the dechloridation precipitates can be reclaimed as adsorption materials and sludge conditioners. That can not only offset a fraction of the treatment cost, but also avoid secondary pollution, so ZLD of FGD wastewater can be achieved. This paper summarizes the deficiencies and potential improvement measures of FSP method. We believe this technology is a promising way to achieve ZLD of FGD wastewater and other wastewater containing chloride, and expect FSP method would become more mature and be widely applied in hypersaline wastewater treatment in the foreseeable future.
Collapse
Affiliation(s)
- Xiao Liu
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
| | - Hao Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
| | - Xiaoyang Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
| | - Yanchun Yang
- Guoneng (Shandong) Energy & Environment Co. Ltd., Jinan 250012, Shandong, China
| | - Chunzhen Yang
- Guoneng (Shandong) Energy & Environment Co. Ltd., Jinan 250012, Shandong, China
| | - Pei Zhao
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China.
| | - Yong Dong
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China.
| |
Collapse
|
5
|
Ruck EB, Porat OB, Gendel Y. Catalytic selective separation of chloride ions from acidic wastewater. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Wu Y, Guo J, Zhang Y, Xu J, Pozdnyakov IP, Li J, Wu F. Aquatic photochemistry of Cu(II) in the presence of As(III): Mechanistic insights from Cu(III) production and As(III) oxidation under neutral pH conditions. WATER RESEARCH 2022; 227:119344. [PMID: 36402098 DOI: 10.1016/j.watres.2022.119344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Surface complexation between arsenite (As(III)) and colloidal metal hydroxides plays an important role not only in the immobilization and oxidation of As(III) but also in the cycle of the metal and the fate of their ligands. However, the photochemical processes between Cu(II) and As(III) are not sufficiently understood. In this work, the photooxidation of As(III) in the presence of Cu(II) under neutral pH conditions was investigated in water containing 200 μM Cu(II) and 5 μM As(III) under simulated solar irradiation consisting of UVB light. The results confirmed the complexation between As(III) and Cu(II) hydroxides, and the photooxidation of As(III) is attributed to the ligand-to-metal charge transfer (LMCT) process and Cu(III) oxidation. The light-induced LMCT process results in simultaneous As(III) oxidation and Cu(II) reduction, then produced Cu(I) undergoes autooxidation with O2 to produce O2•⁻ and H2O2, and further the Cu(I)-Fenton reaction produces Cu(III) that can oxidize As(III) efficiently (kCu(III)+As(III) = 1.02 × 109 M-1 s-1). The contributions from each pathway (ρrCu(II)-As(III)+hv = 0.62, ρrCu(III)+As(III) = 0.38) were obtained using kinetic analysis and simulation. Sunlight experiments showed that the pH range of As(III) oxidation could be extended to weak acidic conditions in downstream water from acid mine drainage (AMD). This work helps to understand the environmental chemistry of Cu(II) and As(III) regarding their interaction and photo-induced redox reactions.
Collapse
Affiliation(s)
- Yi Wu
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Juntao Guo
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Yihui Zhang
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Jing Xu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, PR China.
| | - Ivan P Pozdnyakov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation
| | - Jinjun Li
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Feng Wu
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
7
|
Wang X, Gao K, Ma J, Liu F, Wang X, Li D, Yang M. Analysis of the chloride ion removal mechanism from simulated wastewater by discarded vitamin tablets. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2483-2494. [PMID: 36450668 DOI: 10.2166/wst.2022.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Vitamin (VM) tablets are often discarded or incinerated as medical waste, and untreated highly chlorinated wastewater is discharged, polluting the environment. In this study, Cu2+ was reduced by vitamin C (VC, a component of VM), and the precipitate formed by the reaction of its product with Cl- in water was used to remove Cl- from simulated wastewater. This allows for the resourceful use of waste VM, while also achieving the goal of dechlorinating wastewater. Meanwhile, the effect of various parameters on dechlorination was studied, and the dechlorination mechanism was analyzed. According to the results, the removal rate of Cl- increased first and then decreased with pH, removal time and reaction temperature. Using VC in VM to dechlorinate simulated wastewater, the removal rate of Cl- was 94.31% under optimum conditions: pH 2.5, temperature 30 °C and reaction time 10 minutes. According to the dechlorination process, it can be inferred that Cu2+ is reduced to Cu+ by VC, and Cu+ and Cl- coprecipitate to remove Cl-. Therefore, it is feasible to use discarded VM to treat high concentration chlorine-containing wastewater.
Collapse
Affiliation(s)
- Xing Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kangning Gao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jingyi Ma
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Feihong Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xi Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Dengxin Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ming Yang
- Research Center of Analysis & Measurement, Donghua University, Shanghai 201620, China E-mail:
| |
Collapse
|
8
|
Teng D, Qu J, Li P, Jin P, Zhang J, Zhang Y, Cao Y. Heterostructured α-Bi 2O 3/BiOCl Nanosheet for Photocatalytic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3631. [PMID: 36296821 PMCID: PMC9608947 DOI: 10.3390/nano12203631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Photocatalytic degradation of organic pollutants in wastewater is recognized as a promising technology. However, photocatalyst Bi2O3 responds to visible light and suffers from low quantum yield. In this study, the α-Bi2O3 was synthetized and used for removing Cl- in acidic solutions to transform BiOCl. A heterostructured α-Bi2O3/BiOCl nanosheet can be fabricated by coupling Bi2O3 (narrow band gap) with layered BiOCl (rapid photoelectron transmission). During the degradation of Rhodamine B (RhB), the Bi2O3/BiOCl composite material presented excellent photocatalytic activity. Under visible light irradiation for 60 min, the Bi2O3/BiOCl photocatalyst delivered a superior removal rate of 99.9%, which was much higher than pristine Bi2O3 (36.0%) and BiOCl (74.4%). Radical quenching experiments and electron spin resonance spectra further confirmed the dominant effect of electron holes h+ and superoxide radical anions ·O2- for the photodegradation process. This work develops a green strategy to synthesize a high-performance photocatalyst for organic dye degradation.
Collapse
Affiliation(s)
- Daoguang Teng
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Qu
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Li
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Jin
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Zhang
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Yijun Cao
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Jiang H, Huang S, Lv H, Ge D, He X, Zhou P, Xiao K, Zhang Y. Construction of bismuth-based porous carbon models by 3D printing technology for light-enhanced removal of chloride ions in wastewater. WATER RESEARCH 2022; 225:119134. [PMID: 36182672 DOI: 10.1016/j.watres.2022.119134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The bismuth oxide (Bi2O3) based chloride (Cl-) removal method is one of the chemical precipitation methods possessing good selectivity and high removal efficiency of Cl- ions, but Bi2O3 often appears in the powder form, which is difficult to be recovered for regeneration. In this work, the combination of 3D printing technology and the Bi2O3 method was explored to construct the resin model including the Bi-precursors. In the optimum carbonization process at 400 °C for 30 min, the Bi3+ ions of the Bi-precursor were reduced into the metallic Bi0 nanoparticles, whose surfaces were covered by the thin Bi2O3 layers to form the heterostructured Bi0/Bi2O3 core/shell nanoparticles with an average size of 43 nm. These Bi0/Bi2O3 nanoparticles were tightly adhered to the internal and external surfaces of the hierarchical porous carbon model (Bi-PCM), which greatly facilitated their regeneration and ensured the stable Cl- removal performance. After five cycles of Cl- removal, the chloride removal efficiency over the multiple Bi-PCMs in the dark and pH 1 conditions maintained at about 26%, which then largely increased to 63.6% with UV light irradiation. The light-enhanced mechanism was related to the improved release rate of Bi3+ ions caused by photocorrosion and the Cl• radicals produced from the holes and the •OH and O2•- radicals, which quickly reacted with Bi2O3 to form BiOCl. The construction of Bi-PCMs by using 3D printing technology provides a very promising strategy for the removal of Cl- ions from wastewater.
Collapse
Affiliation(s)
- Haiwei Jiang
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shouqiang Huang
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Hongying Lv
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Dongdong Ge
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu He
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Pin Zhou
- Research Center of secondary Resources and Environment, Changzhou Institute of Technology, Changzhou 213032, China.
| | - Kun Xiao
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yaheng Zhang
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| |
Collapse
|
10
|
Sun W, Lv H, Ma L, Tan X, Jin C, Wu H, Chen L, Liu M, Wei H, Sun C. Use of catalytic wet air oxidation (CWAO) for pretreatment of high-salinity high-organic wastewater. J Environ Sci (China) 2022; 120:105-114. [PMID: 35623764 DOI: 10.1016/j.jes.2021.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/15/2023]
Abstract
Catalytic wet air oxidation (CWAO) coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater. Chloride widely occurs in natural and wastewaters, and its high content jeopardizes the efficacy of Advanced oxidation process (AOPs). Thus, a novel chlorine ion resistant catalyst B-site Ru doped LaFe1-xRuxO3-δ in CWAO treatment of chlorine ion wastewater was examined. Especially, LaFe0.85Ru0.15O3-δ was 45.5% better than that of the 6%RuO2@TiO2 (commercial carrier) on total organic carbon (TOC) removal. Also, doped catalysts LaFe1-xRuxO3-δ showed better activity than supported catalysts RuO2@LaFeO3 and RuO2@TiO2 with the same Ru content. Moreover, LaFe0.85Ru0.15O3-δ has novel chlorine ion resistance no matter the concentration of Cl- and no Ru dissolves after the reaction. X-ray diffraction (XRD) refinement, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and X-ray absorption fine structure (XAFS) measurements verified the structure of LaFe0.85Ru0.15O3-δ. Kinetic data and density functional theory (DFT) proved that Fe is the site of acetic acid oxidation and adsorption of chloride ions. The existence of Fe in LaFe0.85Ru0.15O3-δ could adsorb chlorine ion (catalytic activity inhibitor), which can protect the Ru site and other active oxygen species to exert catalytic activity. This work is essential for the development of chloride-resistant catalyst in CWAO.
Collapse
Affiliation(s)
- Wenjing Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongxia Lv
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Lei Ma
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Xiangdong Tan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chengyu Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Huiling Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyang Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Chenglin Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
11
|
Zhao J, Kong L, Hu X, Peng X. Clean and effective removal of Cl(-I) from strongly acidic wastewater by PbO 2. J Environ Sci (China) 2022; 120:1-8. [PMID: 35623763 DOI: 10.1016/j.jes.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 06/15/2023]
Abstract
Recycling strongly acidic wastewater as diluted H2SO4 after contaminants contained being removed was previously proposed, however, Cl(-I), a kind of contaminant contained in strongly acidic wastewater, is difficult to remove, which severely degrades the quality of recycled H2SO4. In this study, the removal of Cl(-I) using PbO2 was investigated and the involved mechanisms were explored. The removal efficiency of Cl(-I) reached 93.38% at 50℃ when PbO2/Cl(-I) mole ratio reached 2:1. The identification of reaction products shows that Cl(-I) was oxidized to Cl2, and PbO2 was reduced to PbSO4. Cl2 was absorbed by NaOH to form NaClO, which was used for the regeneration of PbO2 from the generated PbSO4. Cl(-I) was removed through two pathways, i.e., surface oxidation and •OH radical oxidation. •OH generated by the reaction of PbO2 and OH- plays an important role in Cl(-I) removal. The regenerated PbO2 had excellent performance to remove Cl(-I) after six-time regeneration. This study provided an in-depth understanding on the effective removal of Cl(-I) by the oxidation method.
Collapse
Affiliation(s)
- Jinmin Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linghao Kong
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xingyun Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xianjia Peng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Shao H, Li X, Zhang J, Zhao X. Peroxymonosulfate enhanced photoelectrocatalytic oxidation of organic contaminants and simultaneously cathodic recycling of silver. J Environ Sci (China) 2022; 120:74-83. [PMID: 35623774 DOI: 10.1016/j.jes.2021.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 06/15/2023]
Abstract
Degradation of organic contaminants with simultaneous recycling of Ag+ from silver-containing organic wastewater such as photographic effluents is desired. Although photoelectrocatalysis (PEC) technology is a good candidate for this type of wastewater, its reaction kinetics still needs to be improved. Herein, peroxymonosulfate (PMS) was employed to enhance the PEC kinetics for oxidation of phenol (PhOH) at the anode and reduction of Ag+ at the cathode. The degradation efficiency of phenol (PhOH, 0.1 mmol/L) was increased from 42.8% to 96.9% by adding 5 mmol/L PMS at a potential of 0.25 V. Meanwhile, the Ag (by wt%) deposited on the cathode was 28.1% (Ag2O) in PEC process, while that of Ag (by wt%) was 69.7% (Ag0) by adding PMS. According to the electrochemistry analysis, PMS, as photoelectrons acceptor, enhances the separation efficiency of charges and the direct h+ oxidation of PhOH at the photoanode. Meantime, the increasing cathode potential avoided H2 evolution and strongly alkaline at the surface of cathode, thus enabling the deposition of Ag+ in the form of metallic silver with the help of PMS. In addition, PMS combined with PEC process was effective in treating photographic effluents.
Collapse
Affiliation(s)
- Huixin Shao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xia Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Capital Co. Ltd., Beijing 100028, China
| | - Juanjuan Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Dou W, Peng X, Kong L, Hu X. A review on the removal of Cl(-I) with high concentration from industrial wastewater: Approaches and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153909. [PMID: 35183638 DOI: 10.1016/j.scitotenv.2022.153909] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Large quantities of wastewaters containing high concentrations of Cl(-I) can be generated in several industries when chloride-containing materials and additive agents are employed. Because Cl(-I) is unavailable to microorganisms, physicochemical methods are generally used for the removal of Cl(-I); however, as the most stable form of chlorine under aqueous conditions, Cl(-I) in wastewaters is difficult to remove to achieve low residual concentrations through common physicochemical methods. This paper provides new insights into traditional precipitation, oxidation, ion exchange and physical separation methods, as well as newly developed approaches, for Cl(-I) removal from various industrial wastewaters through analysis of the mechanisms, applicable conditions, optimum parameters, and method advantages and disadvantages. Moreover, the developmental trends and potential improvements to these approaches are also presented. Currently, precipitation is the most common and efficient Cl(-I) removal method, for which ultraviolet (UV) light is regarded as an effective means of improvement. Additionally, advanced oxidation processes (AOPs), where Cl(-I) can be oxidized to generate Cl radicals, Cl2- radicals, Cl2 gas, etc., show great promise for Cl(-I) removal. This review provides a theoretical foundation for the effective treatment and for the secondary utilization of industrial wastewaters containing Cl(-I).
Collapse
Affiliation(s)
- Wenyue Dou
- Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China.
| | - Xianjia Peng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linghao Kong
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xingyun Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
14
|
Cao KF, Chen Z, Wu YH, Mao Y, Shi Q, Chen XW, Bai Y, Li K, Hu HY. The noteworthy chloride ions in reclaimed water: Harmful effects, concentration levels and control strategies. WATER RESEARCH 2022; 215:118271. [PMID: 35298995 DOI: 10.1016/j.watres.2022.118271] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/27/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Chloride ions (Cl-), which are omnipresent in reclaimed water, can cause various problems in water reuse systems, especially during water transmission and at end use sites. Although reverse osmosis (RO) is considered as an effective technology to reduce chloride, its high investment and complex maintenance requirements hinder its application in many water reclamation plants (WRPs). Recently, several technologies bringing new options to better deal with chloride have gained increased attention. This review provides detailed information on the harmful effects, concentration levels, and sources of chloride in reclaimed water and summarizes and discusses various chloride removal technologies, including non-selective methods (e.g., membrane filtration, adsorption and ion exchange, oxidation, and electrochemical methods) and selective methods (e.g. precipitation and specially designed electrochemical methods). Among these, Friedel's salt precipitation and capacitive deionization showed attractive development potential. This review also proposes a holistic framework for chloride control from aspects of "Fit-for-Purpose" planning, technical system development, and whole process optimization, which could facilitate the planning and operation of long-term sustainable water reuse practices.
Collapse
Affiliation(s)
- Ke-Fan Cao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yu Mao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qi Shi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiao-Wen Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yu Bai
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research and Development Center, Beijing Drainage Group Co., Ltd, Beijing 100124, PR China
| | - Kuixiao Li
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research and Development Center, Beijing Drainage Group Co., Ltd, Beijing 100124, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou, 215163, PR China
| |
Collapse
|
15
|
Li Y, Yang Z, Yang K, Wei J, Li Z, Ma C, Yang X, Wang T, Zeng G, Yu G, Yu Z, Zhang C. Removal of chloride from water and wastewater: Removal mechanisms and recent trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153174. [PMID: 35051452 DOI: 10.1016/j.scitotenv.2022.153174] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Increased chloride concentration can cause salinization, which has become a serious and widespread environmental problem nowadays. This review aims at providing comprehensive and state-of-the-art knowledge and insights of technologies for chloride removal. Mechanisms for chloride removal mainly include chemical precipitation, adsorption, oxidation and membrane separation. In chemical precipitation, chloride removal by forming CuCl, AgCl, BiOCl and Friedel's salt. Adsorbents used in chloride removal mainly include ion exchangers, bimetal oxides and carbon-based electrodes. Oxidation for chloride removal contains ozone-based, electrochemical and sulfate radical-based oxidation. Membrane separation for chloride removal consists of diffusion dialysis, nanofiltration, reverse osmosis and electrodialysis. In this review, we specifically proposed the factors that affect chloride removal process and the corresponding strategies for improving removal efficiency. In the last section, the remaining challenges of method explorations and material developments were stated to provide guidelines for future development of chloride removal technologies.
Collapse
Affiliation(s)
- Yiming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Kaihua Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jingjing Wei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guanlong Yu
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410014, PR China
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
16
|
Bagheri N, Cinti S, Nobile E, Moscone D, Arduini F. Multi-array wax paper-based platform for the pre-concentration and determination of silver ions in drinking water. Talanta 2021; 232:122474. [PMID: 34074442 DOI: 10.1016/j.talanta.2021.122474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023]
Abstract
In this work, a wax-patterned chromatographic paper has been utilized as a holistic platform to 1) synthesize Prussian Blue Nanoparticles (sensing species), 2) load the reagents for the assay, 3) concentrate the sample through multistep, and 4) visualize the determination of silver ions. Waters are continuously affected by changes in the composition, thus the utilization of reagent-free analytical tools is of huge interest for smart drinking water monitoring. Herein, we report the characterization and application of a multi-array paper-based platform for the colorimetric determination of silver ions based on the conversion from Prussian Blue to its silver-based analogue, namely Ag4[Fe(CN)6]. In particular, the platform highlights the increase of sensitivity due to paper pre-concentration of sample, that can be easily adapted to the analytical necessities. Within the proposed experimental setup, Ag+ is visualized down to a detection limit of 0.9 μM, with high repeatability and satisfactory recoveries in the range comprised between 90 and 113%.
Collapse
Affiliation(s)
- Neda Bagheri
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055, Naples, Italy.
| | - Eleonora Nobile
- BASF Italia SpA, Divisione Catalizzatori, Via di Salone 245, 00131, Rome, Italy
| | - Danila Moscone
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133, Rome, Italy; SENSE4MED, 00128, Rome, Italy.
| |
Collapse
|
17
|
Hu X, Zhu F, Kong L, Peng X. Sulfate radical-based removal of chloride ion from strongly acidic wastewater: Kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124540. [PMID: 33221075 DOI: 10.1016/j.jhazmat.2020.124540] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/25/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Specific to strongly acidic wastewater, the traditional lime neutralization produces massive hazardous waste and present serious environmental risks. Thus, the recycling of purified wastewater after the contained contaminants being removed has been proposed. However, among these contaminants, chloride ion (Cl(-I)) is rather difficult to remove. This study proposes a new method to remove Cl(-I) using thermal activated persulfate (PS). Under optimized conditions, above 96% of initial Cl(-I) was removed from the actual wastewater, and the residual Cl(-I) was below 158 mg/L, which satisfies the requirement of Cl(-I) concentration for wastewater recycling. Furthermore, the mechanism was investigated. In the strongly acidic wastewater, the high concentration of H+ prompted the thermal activation process of PS through two pathways. (1) H+ prompted the transformation of S2O82- into HSO4- and SO4, and then into HSO5- that was finally transformed into ·OH and ·SO4- at above 70 ℃. (2) H+ prompted the production of ·OH through the transformation of ·SO4- into ·HSO4 and the cleavage of ·HSO4. The key step for Cl(-I) removal was identified as the formation of ·Cl or ·Cl2- from the oxidation of Cl(-I) by ·SO4- and ·OH, and their contribution ratios were estimated to be 67.4% and 32.6%, respectively.
Collapse
Affiliation(s)
- Xingyun Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linghao Kong
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xianjia Peng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Hu X, Zhu F, Kong L, Peng X. A novel precipitant for the selective removal of fluoride ion from strongly acidic wastewater: Synthesis, efficiency, and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124039. [PMID: 33265053 DOI: 10.1016/j.jhazmat.2020.124039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
The strongly acidic wastewater containing fluoride [F(-I)] is generally neutralized using lime, producing massive hazardous solid waste, which may present serious environmental risks. In this study, a novel precipitant, N,N'-Bis(3-(triethoxysilyl)propyl)thiourea, was developed for the selective removal of F(-I) from strongly acidic wastewater. The precipitant was synthesized using (3-aminopropyl)triethoxysilane and thiourea at a molar ratio of 2:1 under 160 ℃. More than 90% of initial F(-I) was removed by the prepared precipitant from strong acidic wastewater produced by nonferrous metal smelting industry, and the residual F(-I) concentration decreased to below 100 mg/L. The F(-I) removal performance is almost free from the interference of coexisting ions. Only 6 kg/m3 of fluoride slag, which can be recycled as a concrete waterproofing agent, was produced. The F(-I) removal mechanism including substitution, polycondensation, ion exchange and complexation was clarified: ‒OH on Si atoms in the hydrolysis product of BTPT was substituted by F(-I), and a fluoro-substituted product formed; the polycondensation of BTPT and fluoro-substituted product produced polymer precipitates; the specific adsorption of F(-I) on the polymer precipitates occurred through ion exchange with ‒OH and complexation with -NH2+-.
Collapse
Affiliation(s)
- Xingyun Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linghao Kong
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xianjia Peng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Guo P, Kong L, Hu X, Peng X, Wang X. Removal of Cl(-I) from strongly acidic wastewater containing Cu(II) by complexation-precipitation using thiourea: Efficiency enhancement by ascorbic acid. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123836. [PMID: 33254814 DOI: 10.1016/j.jhazmat.2020.123836] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 06/12/2023]
Abstract
Strongly acidic wastewater produced by copper smelting industries contains high concentrations of Cl(-I), Cu(II) and H2SO4. The common method for the treatment of this type of wastewater is neutralization, which produces large amounts of solid waste. To avoid the production of solid waste, it was proposed to selectively remove contaminants and then recycle the wastewater as diluted sulfuric acid. This study proposed a new complexation-precipitation method to effectively remove Cl(-I) using thiourea (TU) under the promotion of ascorbic acid (AC). The Cl(-I) removal efficiency was optimized, important effecting factors were investigated and the mechanisms of the AC-improved removal of Cl(-I) were studied. The results showed that, Cl(-I) removal efficiency reached 87.4 % under a TU/AC/Cl(-I) mole ratio of 1:3:1 and the residual Cl(-I) concentration was lowered from 1000 mg/L to 126.4 mg/L. The mechanism investigation showed that, AC first reduces Cu(II) to Cu(I), then, the produced Cu(I) is quickly complexed by TU to form the [Cu(I)x(TU)y]x+; finally, [Cu(I)x(TU)y]x+ precipitates with Cl(-I) in the form of [Cu(I)x(TU)y]Clx. This study provided a theoretical foundation of complexation-precipitation of Cl(-I) under strongly conditions and developed an effective method for removal of Cl(-I) from strongly acid waster.
Collapse
Affiliation(s)
- Panpan Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linghao Kong
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xingyun Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xianjia Peng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xianliang Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| |
Collapse
|
20
|
Mulec AO, Mladenovič A, Pranjić AM, Oprčkal P, Ščančar J, Milačič R. Study of interferences and procedures for their removal in the spectrophotometric determination of ammonium and selected anions in coloured wastewater samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4769-4782. [PMID: 32940268 DOI: 10.1039/d0ay01361g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ammonium and selected anions were determined in wastewater samples with highly complex matrices by spectrophotometry using the reagent-kit method. For this purpose, the interferents of coloured compounds and S2-, SO32-, CO32- and Cl-, which are often present in wastewater samples, were systematically investigated in the spectrophotometric determination of ammonium, nitrate, chloride, sulphate, fluoride and phosphate. After this, innovative procedures for their removal were proposed. For sample decolourization, a DEAE column was used to determine ammonium, while a Florisil column was used for the colour removal and anions' determination. S2- and CO32- were eliminated from the samples by adding HCl or HNO3, which transformed them into gases H2S and CO2. The stepwise addition of CaCl2 to the sample, adjusted to pH 8, initiated the formation of CaSO3, which was removed by filtration. Cl- was removed by the addition of Ag2O, which formed a AgCl precipitate that was removed from the solution by filtration. The accuracy of the determination was tested with spike-recovery tests, which showed recoveries for the analytes in the spiked samples ranging from 95 to 105%. The repeatability of the measurements of nitrate, chloride, sulphate and phosphate in the wastewater samples was better than ±1%, while that for the ammonium and fluoride samples was ±2 and ±5%, respectively. The data from the present investigation revealed that the developed procedures for the decolourization and stepwise removal of interferents enabled accurate spectrophotometric determination of ammonium, nitrate, chloride, sulphate, fluoride and phosphate by using cuvette tests in complex wastewater and environmental water samples.
Collapse
Affiliation(s)
- Andreea Oarga Mulec
- Department of Materials, Slovenian National Building and Civil Engineering Institute, Dimičeva 12, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
21
|
Dou W, Hu X, Kong L, Peng X. UV-Improved Removal of Chloride Ions from Strongly Acidic Wastewater Using Bi 2O 3: Efficiency Enhancement and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10371-10378. [PMID: 31390179 DOI: 10.1021/acs.est.9b03296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Strongly acidic wastewater generated from nonferrous metal smelting industries can be recycled as sulfuric acid after the contaminants have been removed, and among which, Cl- is rather difficult to remove. Although previous studies showed that Cl- can be removed from acidic Zn electrolyte by Bi2O3, this method still suffers from low efficiency when being employed for strongly acidic wastewater recycling. Otherwise, very high Bi2O3 dosage and H2SO4 concentration are required, leading to the need for improvement. In this study, UV irradiation was employed to improve the removal, and it was found that Cl- removal efficiency was substantially enhanced from 63.9 to 98.3%, the optimum Bi2O3/Cl- mole ratio was lowered from 1.5:1 to 0.5:1, and to achieve the maximum removal efficiency, the required H2SO4 concentration was lowered from 70 to 40 g/L. The mechanisms were also elaborated. First, Bi2O3 dissolves under the function of UV and H+, and the produced Bi3+ combines with H2O and Cl- to form BiOCl. Then, Bi2O3/BiOCl transforms into BiOCl(h+)/Bi2O3(e-) under UV irradiation, and the generated h+ oxidizes Cl- to Cl•. Finally, Cl• reacts with Bi2O3/e- to produce BiOCl. This study offered a theoretical foundation for the improvement of Cl- removal from strongly acidic wastewater.
Collapse
Affiliation(s)
- Wenyue Dou
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | | | - Xianjia Peng
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|