1
|
Zheng X, Yang Y, Yan L, Song W, Li Y, Li X. Efficient production of singlet oxygen via dioxygen activation on Cu 0 decorated MoS 2 facilitates the elimination of oxytetracycline. J Colloid Interface Sci 2025; 679:656-669. [PMID: 39476620 DOI: 10.1016/j.jcis.2024.10.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024]
Abstract
Molecular oxygen (O2), a green oxidant, is applied in advanced oxidation processes, which represents one of the current focal points in water treatment research. However, achieving efficient and economical activation of O2 remains a formidable challenge because of its spin-restricted nature. Herein, zero-valent copper (Cu0) modified molybdenum disulfide (MoS2) materials were applied as O2 activators to degrade organic pollutants. The results showed that Cu0-MoS2 could significantly enhance the activation of O2 and thus accelerate the removal of oxytetracycline (OTC). Notably, 90.0 % of OTC was eliminated within 20 min in the Cu0-F-MoS2 (Cu0-Flower-MoS2) /air system. Quenching experiments, XPS spectra, and DFT calculations confirmed •O2- and 1O2 were pivotal reactive species, with both Mo and Cu playing essential roles. Specially, O2 was activated by Cu0/Cu+ to generate •O2-, then •O2- was oxidized by Mo6+ of MoS2 into 1O2. This research offers an eco-friendly approach for eliminating organic substances by activating O2.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Yuwei Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Liangguo Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Wen Song
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Yanfei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Xuguang Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
2
|
Xu Y, Li W, Wang J, Wu D, Li N, Li Y, Fan X, Peng W. Activation potential decreasing of iron oxide/graphite felt cathode by introducing Mn in electrochemical Fenton-like reactions. CHEMOSPHERE 2024; 369:143885. [PMID: 39638127 DOI: 10.1016/j.chemosphere.2024.143885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
In electrochemical advanced oxidation processes (EAOPs), energy consumption cannot be ignored. In this work, Mn-Fe oxide/graphite felt (GF) cathodes were synthesized by in situ reduction and low temperature calcination. The obtained Mn-Fe oxide/GF was used as cathodes to activate peroxymonosulfate (PMS) for atrazine (ATZ) degradation in the EAOPs system. The minimal activation potential (ηmin) of PMS was used to evaluate the activity of the cathodes, and it was found that the introduction of Mn element can effectively reduce the ηmin of PMS on the Fe oxide/GF cathode. The energy consumption by optimized Mn-Fe oxide/GF can be decreased to ∼85.1% in the EAOPs system compared to that without Mn. In addition, the introducing of Mn can also enhance the activity and stability of the catalyst with decreased Fe leaching. Quenching experiments and electron paramagnetic resonance (EPR) test indicated that the EAOPs system could generate several reactive oxygen species (ROSs), including •OH, SO4•-, O2•- and 1O2. This work decreases the potential by introducing Mn and provides a method to reduce the energy consumption in EAOPs.
Collapse
Affiliation(s)
- Yalong Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Weijian Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Di Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Institute of Shaoxing, Tianjin University, Zhejiang, 312300, China.
| | - Ning Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300350, China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Chen S, Zhao Z, Wang C, Cui F. VUV coupled with low-dose H 2O 2 as pretreatment prior to UF: Performance, mechanisms, DBPs formation and toxicity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134966. [PMID: 38901255 DOI: 10.1016/j.jhazmat.2024.134966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/17/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Ultrafiltration (UF) is widely used in drinking water plants; however, membrane fouling is unavoidable. Natural organic matter (NOM) is commonly considered as an important pollutant that causes membrane fouling. Herein, we proposed VUV/H2O2 as a UF pretreatment and used UV/H2O2 for comparison. Compared to UV/H2O2, the VUV/H2O2 system presented superior NOM removal. In the VUV/H2O2 system, the steady-state concentration of HO• was approximately twice that in the UV/H2O2 system, which was ascribed to the promoting effect of the 185 nm photons. Specifically, 185 nm photons promoted HO• generation by decomposing mainly H2O at a low H2O2 dose or by decomposing mainly H2O2 at a high H2O2 dose. The VUV/H2O2 pretreatment also demonstrated better membrane fouling mitigation performance than did UV/H2O2. An increase in the H2O2 dose promoted HO• generation, thereby enhancing the performance of NOM degradation and membrane fouling alleviation and shifting the major membrane fouling mechanism from cake filtration to standard blocking. The VUV/H2O2 (0.60 mM) pretreatment effectively reduced disinfection byproducts (DBPs) formation during chlorine disinfection. Additionally, the oxidant H2O2 affected the membrane surface morphology and performance but had no evident effect on the mechanical properties. In actual water treatment, the VUV/H2O2 pretreatment exhibited better performance than the UV/H2O2 pretreatment in easing membrane fouling, ameliorating water quality, and reducing DBPs formation and acute toxicity.
Collapse
Affiliation(s)
- Shengnan Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhiwei Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Chuang Wang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
4
|
Liu S, Chen G, Shi Q, Gan J, Jin B, Men Y, Liu H. Promotive Effects of Chloride and Sulfate on the Near-Complete Destruction of Perfluorocarboxylates (PFCAs) in Brine via Hydrogen-tuned 185-nm UV Photolysis: Mechanisms and Kinetics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10347-10356. [PMID: 38808621 PMCID: PMC11171456 DOI: 10.1021/acs.est.3c10552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
Hydrogen-tuned 185 nm vacuum ultraviolet (VUV/H2) photolysis is an emerging technology to destroy per- and polyfluoroalkyl substance (PFAS) in brine. This study discovered the promotive effects of two major brine anions, i.e., chloride and sulfate in VUV/H2 photolysis on the hydrated electron (eaq-) generation and perfluorocarboxylates (PFCAs) destruction and established a kinetics model to elucidate the promotive effects on the steady-state concentration of eaq- ([eaq-]ss). Results showed that VUV/H2 achieved near-complete defluorination of perfluorooctanoic acid (PFOA) in the presence of up to 1000 mM chloride or sulfate at pH 12. The defluorination rate constant (kdeF) of PFOA peaked with a chloride concentration at 100 mM and with a sulfate concentration at 500 mM. The promotive effects of chloride and sulfate were attributed to an enhanced generation of eaq- via their direct VUV photolysis and conversion of additionally generated hydroxyl radical to eaq- by H2, which was supported by a linear correlation between the predicted [eaq-]ss and experimentally observed kdeF. The kdeF value increased from pH 9 to 12, which was attributed to the speciation of the H·/eaq- pair. Furthermore, the VUV system achieved >95% defluorination and ≥99% parent compound degradation of a concentrated PFCAs mixture in a synthetic brine, without generating any toxic perchlorate or chlorate.
Collapse
Affiliation(s)
- Sitao Liu
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Gongde Chen
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Qingyang Shi
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Jay Gan
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Bosen Jin
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Yujie Men
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Haizhou Liu
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
5
|
Zhang H, Sun W, Zhang J, Ma J. Vacuum-ultraviolet based advanced oxidation and reduction processes for water treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134432. [PMID: 38691932 DOI: 10.1016/j.jhazmat.2024.134432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The use of vacuum-ultraviolet (VUV) photolysis in water treatment has been gaining significant interest due to its efficacy in degrading refractory organic contaminants and eliminating oxyanions. In recent years, the reactive species driving pollutant decomposition in VUV-based advanced oxidation and reduction processes (VUV-AOPs and VUV-ARPs) have been identified. This review aims to provide a concise overview of VUV photolysis and its advancements in water treatment. We begin with an introduction to VUV irradiation, followed by a summary of the primary reactive species in both VUV-AOPs and VUV-ARPs. We then explore the factors influencing VUV-photolysis in water treatment, including VUV irradiation dose, catalysts or activators, dissolved gases, water matrix components (e.g., DOM and inorganic anions), and solution pH. In VUV-AOPs, the predominant reactive species are hydroxyl radicals (˙OH), hydrogen peroxide (H2O2), and ozone (O3). Conversely, in VUV-ARPs, the main reactive species are the hydrated electron (eaq-) and hydrogen atom (˙H). It is worth noting that VUV-based advanced oxidation/reduction processes (VUV-AORPs) can transit between VUV-AOPs and VUV-ARPs based on the externally added chemicals and dissolved gases in the solution. Increase of the VUV irradiation dose and the concentration of catalysts/activators enhances the degradation of contaminants, whereas DOM and inorganic anions inhibit the reaction. The pH influences the redox potential of ˙OH, the speciation of contaminants and activators, and thus the overall performance of the VUV-AOPs. Conversely, an alkaline pH is favored in VUV-ARPs because eaq- predominates at higher pH.
Collapse
Affiliation(s)
- Honglong Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, PR China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jing Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
6
|
Zhang W, Zhuang H, Guo Y, Chi H, Ding Q, Wang L, Xi Y, Lin X. Wet peroxide oxidation process catalyzed by Cu/Al 2O 3: phenol degradation and Cu 2+ dissolution behavior. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26916-26927. [PMID: 38456980 DOI: 10.1007/s11356-024-32781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Catalytic wet peroxide oxidation (CWPO) has become an important deep oxidation technology for organics removal in wastewater treatments. Supported Cu-based catalysts belong to an important type of CWPO catalyst. In this paper, two Cu catalysts, namely, Cu/Al2O3-air and Cu/Al2O3-H2 were prepared and evaluated through catalytic degradation of phenol. It was found that Cu/Al2O3-H2 had an excellent catalytic performance (TOC removal rate reaching 96%) and less metal dissolution than the Cu/Al2O3-air case. Moreover, when the organic removal rate was promoted at a higher temperature, the metal dissolution amounts was decreased. Combined with hydroxyl radical quenching experiments, a catalytic oxidation mechanism was proposed to explain the above-mentioned interesting behaviors of the Cu/Al2O3-H2 catalyst for CWPO. The catalytic test results as well as the proposed mechanism can provide better guide for design and synthesis of good CWPO catalysts.
Collapse
Affiliation(s)
- Wumin Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Huimin Zhuang
- Shandong Yellow Sea Institute of Science and Technology Innovation, Rizhao, 276808, People's Republic of China
| | - Yu Guo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Hua Chi
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Qiuyue Ding
- College of Material Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Lu Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Yanyan Xi
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- Advanced Chemical Engineering and Energy Materials Research Center, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Xufeng Lin
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| |
Collapse
|
7
|
Du J, Wang C, Sun M, Chen G, Liu C, Deng X, Chen R, Zhao Z. Novel vacuum UV/ozone/peroxymonosulfate process for efficient degradation of levofloxacin: Performance evaluation and mechanism insight. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132916. [PMID: 37951169 DOI: 10.1016/j.jhazmat.2023.132916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/08/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Vacuum UV (VUV) irradiation has advantage in coupling oxidants for organics removal because VUV can dissociate water to produce reactive oxygen species (ROS) in situ and decompose oxidants rapidly. In this study, the synergistic activation of peroxymonosulfate (PMS) by VUV and ozone (O3) was explored via developing a novel integrated VUV/O3/PMS process, and the performance and mechanisms of VUV/O3/PMS for levofloxacin (LEV) degradation were investigated systematically. Results indicated that VUV/O3/PMS could effectively degrade LEV, and the degradation rate was 1.67-18.79 times of its sub-processes. Effects of PMS dosage, O3 dosage, solution pH, anions, and natural organic matter on LEV removal by VUV/O3/PMS were also studied. Besides, hydroxyl radical and sulfate radical were main ROS with contributions of 49.7% and 17.4%, respectively. Moreover, the degradation pathways of LEV in VUV/O3/PMS process were speculated based on density functional theory calculation and by-products detection. Furthermore, synergistic reaction mechanisms in VUV/O3/PMS process were proposed. The energy consumption of VUV/O3/PMS decreased by 22.6%- 88.1% compared to its sub-processes. Finally, the integrated VUV/O3/PMS process showed satisfactory results in removing LEV in actual waters, manifesting VUV/O3/PMS had great application potential and feasibility in removing organics in wastewater reuse.
Collapse
Affiliation(s)
- Jinying Du
- School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China; Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Chuang Wang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China; Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China.
| | - Meilin Sun
- School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Guoliang Chen
- School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China; Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Chenglin Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xiaoyong Deng
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Rui Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Zhiwei Zhao
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
8
|
Liang J, Wu J, Gan P, Liu Y, Zhen P, Li Y, Zhao Z, Liu W, Tong M. The synergistic effect of radical and non-radical processes on the dephosphorization of dimethoate by vacuum ultraviolet: The overlooked roles of singlet oxygen atom and high-energy excited state. WATER RESEARCH 2023; 247:120775. [PMID: 39491999 DOI: 10.1016/j.watres.2023.120775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Organophosphorus pesticides are extensively utilized worldwide, but their incomplete dephosphorization poses significant environmental risks. This study investigates the dephosphorization of dimethoate (DMT), a representative organophosphorus pesticide, using a vacuum ultraviolet system. Surprisingly, in addition to hydroxyl radicals (•OH), non-radical processes such as photoexcitation and singlet oxygen atoms (O(1D)) exert more significant effects on DMT dephosphorization. The degradation kinetics of DMT demonstrate a perfect linear correlation with the radical yield in both UV-based and VUV-based advanced oxidation processes (AOPs), with greater efficacy of radical attack observed in the VUV system. This heightened efficiency is attributed to the excitation of DMT to a high-energy excited state induced by UV185 radiation. Additionally, •OH alone is inadequate for achieving complete dephosphorization of DMT. The Fukui index and singly occupied orbital (SOMO) analysis reveal that the O(1D) generated by UV185-induced photolysis of O2 exhibits exceptional selectivity towards P=S bonds, thereby playing an indispensable role in the dephosphorization process of DMT. This study highlights the significant contribution of non-radical pathways in DMT dephosphorization by VUV, which holds great implications for the advancement of photochemical-based AOPs.
Collapse
Affiliation(s)
- Jialiang Liang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jingke Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Pengfei Gan
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yudan Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Peng Zhen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yunyi Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Zhiwei Zhao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
9
|
Liu Y, Wu J, Cheng N, Gan P, Li Y, Liu W, Ye J, Tong M, Liang J. The overlooked role of UV 185 induced high-energy excited states in the dephosphorization of organophosphorus pesticide by VUV/persulfate. CHEMOSPHERE 2023:138993. [PMID: 37244548 DOI: 10.1016/j.chemosphere.2023.138993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Vacuum ultraviolet (VUV) based advanced oxidation processes (AOPs) recently attracted widespread interests. However, the role of UV185 in VUV is only considered to be generating a series of active species, while the effect of photoexcitation has long been overlooked. In this work, the role of UV185 induced high-energy excited state for the dephosphorization of organophosphorus pesticides was studied using malathion as a model. Results showed malathion degradation was highly related to radical yield, while its dephosphorization was not. It was UV185 rather than UV254 or radical yield that was responsible for malathion dephosphorization by VUV/persulfate. DFT calculation results demonstrated that the polarity of P-S bond was further increased during UV185 excitation, favoring dephosphorization while UV254 did not. The conclusion was further supported by degradation path identification. Moreover, despite the fact that anions (Cl-, SO42- and NO3-) considerably affected radical yield, only Cl- and NO3- with high molar extinction coefficient at 185 nm significantly affected dephosphorization. This study shed light on the crucial role of excited states in VUV based AOPs and provided a new idea for the development of mineralization technology of organophosphorus pesticides.
Collapse
Affiliation(s)
- Yudan Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jingke Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Nanchunxiao Cheng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Pengfei Gan
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yunyi Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Jiangyu Ye
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Jialiang Liang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
10
|
Nong YJ, Zhang YL, Hübner U, Wang WL, Wu QY, Huang N, Drewes JE, Hu HY. Roles of radical species in vacuum-UV/UV/peroxydisulfate advanced oxidation processes and contributions of the species to contaminant degradation at different water depths. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130660. [PMID: 36580774 DOI: 10.1016/j.jhazmat.2022.130660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Vacuum-UV (VUV) (wavelength 185 nm)/ UV (wavelength 254 nm) are applied to improve performances of UV-based advanced oxidation processes. However, the improvements were strongly affected by water depth because of poor VUV transmittance in water. In this study, VUV/UV and peroxydisulfate (PDS) were used to degrade carbamazepine. More SO4•- oxidation occurred in VUV/UV/PDS than VUV/UV with similar •OH oxidation occurring. The additional SO4•- oxidation could be caused by VUV/PDS in superficial water or UV/PDS in deeper water. The synergistic factor for VUV/UV/PDS processes relative to VUV/UV and UV/PDS processes was 1.32. VUV/UV/PDS performances were affected by competition for photon absorption by dissolved organic matter (32-58 % inhibition), radical quenching by CO32-/HCO3- and NO3-, and conversion of •OH and SO4•- into reactive chlorine species by Cl-. Radical probe experiments and steady-state kinetic modeling simulations indicated that 34 %, 25 %, and 40 % of carbamazepine degradation occurring in 2-cm-deep bulk solution was due to •OH oxidation through VUV/H2O, SO4•- oxidation through VUV/PDS, and SO4•- oxidation through UV/PDS, respectively. Contribution of VUV-driven processes decreased with increasing water depth and became equivalent to contribution of 3.5-cm-deep UV-driven processes, which indicated the importance of optimizing water depth in VUV/UV-advanced oxidation process reactors.
Collapse
Affiliation(s)
- Yu-Jia Nong
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yi-Lin Zhang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Nan Huang
- Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China
| |
Collapse
|
11
|
Wu D, Chu M, Xu Y, Liu X, Duan X, Fan X, Li Y, Zhang G, Zhang F, Peng W. Facilely achieved enhancement of Fenton-like reactions by constructing electric microfields. J Colloid Interface Sci 2023; 633:967-978. [PMID: 36509039 DOI: 10.1016/j.jcis.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
In this work, we found that the presence of non-active ZnO crystals greatly accelerated the degradation of Bisphenol A (BPA) by 3.7 folds in the peroxymonosulfate (PMS, HSO5-)/Co3O4 system. Our mechanistic study revealed that the ZnO particles would create negative electric microfields around them, which are closely related with the zeta potentials (ζ) of ZnO and affected by solution pH. According to COMSOL simulation, the electrostatic repulsion between ZnO and PMS would drive HSO5- toward active Co3O4 surface, leading to the concentration increasing of HSO5- around active Co3O4 particles, which will then improve the degradation performance. The particle size of ZnO will also affect the promoting effect greatly by COMSOL simulation. Therefore, this study for the first time reveals synergy of electric microfields for enhanced heterogeneous Fenton-like reactions, providing a low-cost and effective strategy for enhanced persulfate catalysis.
Collapse
Affiliation(s)
- Di Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Menghan Chu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yongsheng Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaomei Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Guoliang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
12
|
Ouyang WY, Wang WL, Zhang YL, Cai HY, Wu QY. VUV/UV oxidation performance for the elimination of recalcitrant aldehydes in water and its variation along the light-path. WATER RESEARCH 2023; 228:119390. [PMID: 36423547 DOI: 10.1016/j.watres.2022.119390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Vacuum ultraviolet/ultraviolet (VUV/UV) oxidation using a low-pressure mercury lamp emitting dual wavelengths (185 nm (VUV) and 254 nm (UV)) significantly varies in performance along the light-path (lP), which has not been fully characterized. Therefore, VUV/UV oxidation in solution was investigated at various lP in terms of the degradation kinetics and mineralization pathway of representative aldehydes with various alkyl-chain lengths. Oxidative degradation of parent aldehydes with shorter alkyl chains was less efficient, specifically the pseudo-zero-order rate constant (kobs) of formaldehyde was only 51% of that of propionaldehyde (kobs = 0.078 μM s-1). In contrast, the mineralization of aldehydes with longer alkyl chains was less efficient because these aldehydes underwent mineralization into more refractory carboxylic byproducts, e.g., oxalic acid. VUV was mainly absorbed by superficial water (lP < 0.55 cm), which resulted in highly heterogeneous oxidation in homogeneous water. Thus, kobs of acetaldehyde dramatically decreased from 0.13 to 0.033 μM s-1 as the total lP of solution increased from 1.0 to 3.0 cm. On the basis of mineralization pathways proposed above, an iterative kinetic model was developed to characterize the degradation of parent aldehydes and the formation of carboxylic acids along lP. This model predicted the VUV/UV oxidaton for the first time by considering the fast diffusion of pollutants by limited diffusion of transient radical species. Thus, it realized the prediction of •OH concentration at specific water solution and byproduct evolution within specific water solution in turbulent flow regime, wherein •OH was predominantly formed in superficial water-layers wherein •OH in water-layers of lP <0.16 cm and <0.81 cm contributed to 50% and 90% of the total oxidation performance, respectively. This result would help to improve the VUV-UV-reactor design in terms of optimizing the thickness of water-layer and turbulence of water-flow.
Collapse
Affiliation(s)
- Wan-Yue Ouyang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wen-Long Wang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Yi-Lin Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Han-Ying Cai
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
13
|
Wang Y, Zhang P, Lyu L, Li T, Hu C. Preferential Destruction of Micropollutants in Water through a Self-Purification Process with Dissolved Organic Carbon Polar Complexation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10849-10856. [PMID: 35861715 DOI: 10.1021/acs.est.2c03354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Removing micropollutants in real water is a scientific challenge due to primary dissolved organic carbon (DOC) and high energy consumption of current technologies. Herein, we develop a self-purification process for the preferential destruction of various micropollutants in municipal wastewater, raw drinking water, and ultrapure water with humic acid (HA) driven by the surface microelectronic field of Fe0-FeyCz/Fex-GZIF-8-rGO without any additional input. It was verified that a strongly polar complex consisting of an electron-rich HA/DOC area and an electron-poor micropollutant area was formed between HA/DOC and micropollutants, promoting more electrons of micropollutants in the adsorbed complex to delocalizing to electron-rich Fe species area and be trapped by O2, which resulted in their surface cleavage and hydrolyzation preferentially. The higher micropollutant degradation efficiency observed in real wastewaters was due to the greater complex polarity of DOC. Moreover, the electron transfer process ensured the stability of the surface microelectronic field and continuous water purification. Our findings provide a new insight into low-energy combined-micropollution water treatment.
Collapse
Affiliation(s)
- Yumeng Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Peng Zhang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Lai Lyu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tong Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
14
|
Duan J, Chen L, Ji H, Li P, Li F, Liu W. Activation of peracetic acid by metal-organic frameworks (ZIF-67) for efficient degradation of sulfachloropyridazine. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Du J, Wang C, Zhao Z, Liu J, Deng X, Cui F. Mineralization, characteristics variation, and removal mechanism of algal extracellular organic matter during vacuum ultraviolet/ozone process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153298. [PMID: 35066049 DOI: 10.1016/j.scitotenv.2022.153298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Extracellular organic matter (EOM) produced by algal blooms in source water is detrimental to drinking water treatment processes and supplied water quality. Ozonation has been used to treat algal EOM, but it could not mineralize EOM effectively. In this study, mineralization and characteristics variation of EOM by vacuum ultraviolet/ozone (VUV/O3) and its sub-processes were comprehensively investigated. Results showed that EOM removal in different processes followed the order of VUV/O3 > UV/O3 > O3 > VUV > UV. For VUV/O3 process, removal efficiencies of dissolved organic carbon (DOC), UV254, protein, and polysaccharide at 50 min were 75.6%, 80.8%, 80.1%, and 78.0%, respectively, and fluorescence components received very high removal rates (≥92.8%, at 10 min). The yield of trichloromethane dropped from 102.0 to 30.1 μg/L after treating for 50 min by VUV/O3. Besides, effects of O3 dosage, initial pH, and water matrices on EOM removal in VUV/O3 process were investigated. Moreover, fluorescent molecular probe experiments confirmed that hydroxyl radical and superoxide radical were the main reactive oxygen species (ROS) in VUV/O3 process, and the transformation of ROS was proposed. The mechanism of EOM removal by VUV/O3 included VUV photolysis, direct O3 oxidation, and ROS oxidation. Furthermore, the removal of EOM in filtered water by VUV/O3 was satisfactory. All results indicated that VUV/O3 process had great application potential in treating EOM-rich filtered water.
Collapse
Affiliation(s)
- Jinying Du
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Chuang Wang
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhiwei Zhao
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China.
| | - Jie Liu
- Department of Military Facilities, Army Logistics University, Chongqing 401311, China
| | - Xiaoyong Deng
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Fuyi Cui
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
16
|
Dai C, Nie Y, Tian X, Yang C, Hu Y, Lin HM, Dionysiou DD. Insight into enhanced Fenton-like degradation of antibiotics over CuFeO 2 based nanocomposite: To improve the utilization efficiency of OH/O 2- via minimizing its migration distance. CHEMOSPHERE 2022; 294:133743. [PMID: 35093424 DOI: 10.1016/j.chemosphere.2022.133743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
In Fenton or Fenton-like processes, the key step is to catalyze H2O2 and produce highly reactive OH radicals. More efforts are then focus on designing efficient heterogeneous Fenton catalysts by activating H2O2 to generate OH at the highest possible steady state concentration. In this study, using the antibiotic ofloxacin as target organic pollutant, we firstly demonstrate a point of view for improving OH utilization efficiency by regulating surface chemical reactions to minimizing its migration distance to the target pollutant. C doped g-C3N4 incorporated CuFeO2 (CCN/CuFeO2) exhibited almost ten times higher ofloxacin degradation rate constant than our previously reported CuFeO2 {012} catalyst (0.1634 vs 0.0179 min-1). Since similar amount of OH was generated, the different inhibition effect of tert-butyl alcohol and nitrobenzene on the ofloxacin degradation confirmed that the much-enhanced ofloxacin degradation was attributed to the surface Fenton reaction process. According to XPS and EXAFS characterization, the C-O-Cu bond between g-C3N4 and CuFeO2 established a closed-circuit surface Fenton reaction mechanism. H2O2 was adsorbed and decomposed into OH/O2- over ≡Cu + site in CuFeO2. The successful construction of CCN/CuFeO2 creates a negative surface potential and benefits the enrichment of target antibiotics from water, which greatly reduces the migration distance of OH/O2•- to adjacent pollutant and then increases the OH/O2- utilization efficiency by avoiding the unwanted quenching. Hence, CCN/CuFeO2 possesses superior Fenton catalytic activity and long-term stability.
Collapse
Affiliation(s)
- Chu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China.
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Chao Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Yuguang Hu
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
| | - Hong-Ming Lin
- Department Materials Engineering, Tatung University, 104, Taipei, Taiwan
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, United States
| |
Collapse
|
17
|
Zhang YL, Wang WL, Lee MY, Yang ZW, Wu QY, Huang N, Hu HY. Promotive effects of vacuum-UV/UV (185/254 nm) light on elimination of recalcitrant trace organic contaminants by UV-AOPs during wastewater treatment and reclamation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151776. [PMID: 34800442 DOI: 10.1016/j.scitotenv.2021.151776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
The use of vacuum-UV/UV (185/254 nm) for trace organic contaminants (TOrCs) elimination during wastewater treatments has attracted much attention. Advanced oxidation processes which combine VUV/UV and additional oxidants (vacuum-UV/UV-based advanced oxidation processes, VUV/UV-AOPs) provide a promising method for eliminating recalcitrant and toxic TOrCs for wastewater reclamation. Researches in this area are increasing but the promoting effects, mechanisms, and influencing factors have not been well summarized. A comprehensive discussion of the limitations of this technique and future research directions is needed. VUV/UV-AOPs have considerable synergistic effects by increasing usage of VUV/UV photons and the oxidant, which increases radical generation. In terms of elimination kinetics, VUV/UV-AOPs outperform conventional UV-AOPs and VUV/UV processes in most cases; a 1.2-87.7-fold increase of the fluence-based kinetic constant is achieved. In terms of energy efficiency per order (EE/O) of TOrCs elimination, the EE/O of VUV/UV-AOPs only accounts for 4% of UV-AOPs and 63% of VUV/UV. However, VUV/UV-AOPs still need to be further investigated. Firstly, although VUV and UV processes have similar radical formation pathways, limited information is available on the quantum yields of photolysis and radical formation of oxidants under VUV irradiation. Secondly, optimization of VUV/UV-AOPs operating conditions, especially oxidant dosage and water-flow patterns, is needed. Thirdly, VUV/UV-AOPs are significantly inhibited by organic and inorganic matters, but the mechanisms of inhibition on VUV/UV scattering, radical quenching, and radical conversion are not well understood. Such inhibition suggests that the use of VUV/UV-AOPs would be limited to relatively clear water treatment, e.g., reverse osmosis effluent for potable water reuse and ultrapure water production. Related research is needed to establish a clearer scheme for VUV/UV-AOPs in terms of the spatial distribution of radical species in the VUV/UV irradiation system and the relevant optimization method for promoting oxidation performance.
Collapse
Affiliation(s)
- Yi-Lin Zhang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Min-Yong Lee
- Department of Environmental Resources Research, National Institute of Environmental Research, Seogu, Incheon 22689, Republic of Korea
| | - Zheng-Wei Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Nan Huang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong-Ying Hu
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China; Environmental Simulation and Pollution Control State Key Joint Laboratory, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China.
| |
Collapse
|
18
|
Lou F, Qiang Z, Zou X, Lv J, Li M. Organic pollutant degradation by UV/peroxydisulfate process: Impacts of UV light source and phosphate buffer. CHEMOSPHERE 2022; 292:133387. [PMID: 34952016 DOI: 10.1016/j.chemosphere.2021.133387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
In recent years, ultraviolet (UV) based advanced oxidation processes have been extensively studied for degradation of refractory organic pollutants in water and wastewater, and selection of an appropriate UV light source is an important issue. In this study, bench-scale tests were conducted on a mini-fluidic photoreaction system (MFPS) to determine the degradation kinetics of methylene blue (MB) by UV/peroxydisulfate (UV/PDS) process equipped with a low-pressure UV (LPUV), vacuum UV (VUV)/LPUV, or medium-pressure UV (MPUV) mercury vapor lamp. Results indicate that MB degradation by UV/PDS with various light sources all followed the pseudo-first order kinetics, and the photon fluence-based rate constant (kp,λ') had a descending order of: VUV/LPUV/PDS ≫ MPUV/PDS > LPUV/PDS. Moreover, it is noted that phosphate buffer (PB) notably inhibited MB degradation: the kp,LPUV', kp,VUV/LPUV' and kp,MPUV' decreased by 35.0%, 44.9% and 37.5% with the PB concentration increasing from 0 to 20 mM, respectively. The maximal decrease in kp,VUV/LPUV' was ascribed to a strong competition of PB for VUV photons. Thereafter, pilot-scale tests were conducted to evaluate the practical performance of UV/PDS in terms of the electrical energy consumption per order (EEO). It was found again that the VUV/LPUV lamp was the optimal light source in UV/PDS for organic pollutant degradation. This study helps optimize the UV/PDS process for its practical application to water and wastewater treatment.
Collapse
Affiliation(s)
- Fei Lou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xue Zou
- School of Civil Engineering, North China University of Technology, 5 Jinyuanzhuang Road, Beijing, 100144, China
| | - Jinrong Lv
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China; School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, 188 Daxue East Road, Nanning, 530006, China
| | - Mengkai Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
19
|
Zhao P, Liang Y, Liu Y, Zhao S, Yang M, Huo D, Hou C. Hemin functionalized hybrid aerogel-enabled electrochemical chip for real-time analysis of H 2O 2. Analyst 2022; 147:3822-3826. [DOI: 10.1039/d2an00524g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a novel hemin functionalized hybrid aerogel (He@GMA) is synthesized and applied to an electrochemical chip for real-time analysis of hydrogen peroxide (H2O2).
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yi Liang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yiyi Liu
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Shixian Zhao
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing, 401331, China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China
| |
Collapse
|
20
|
Zhan L, Li W, Liu L, Han T, Li M, Qiang Z. Degradation of micropolluants in flow-through VUV/UV/H 2O 2 reactors: Effects of H 2O 2 dosage and reactor internal diameter. J Environ Sci (China) 2021; 110:28-37. [PMID: 34593192 DOI: 10.1016/j.jes.2021.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
The degradation of atrazine (ATZ), sulfamethoxazole (SMX) and metoprolol (MET) in flow-through VUV/UV/H2O2 reactors was investigated with a focus on the effects of H2O2 dosage and reactor internal diameter (ID). Results showed that the micropollutants were degraded efficiently in the flow-through VUV/UV/H2O2 reactors following the pseudo first-order kinetics (R2 > 0.92). However, the steady-state assumption (SSA) kinetic model being vital in batch reactors was found invalid in flow-through reactors where fluid mixing was less sufficient. With the increase of H2O2 dosage, the ATZ removal efficiency remained almost constant while the SMX and MET removal was enhanced to different extents, which could be explained by the different reactivities of the pollutants towards HO•. A larger reactor ID resulted in lower degradation rate constants for all the three pollutants on account of the lower average fluence rate, but the change in energy efficiency was much more complicated. In reality, the electrical energy per order (EEO) of the investigated VUV/UV/H2O2 treatments ranged between 0.14-0.20, 0.07-0.14 and 0.09-0.26 kWh/m3/order for ATZ, SMX and MET, respectively, with the lowest EEO for each pollutant obtained under varied H2O2 dosages and reactor IDs. This study has demonstrated the efficiency of VUV/UV/H2O2 process for micropollutant removal and the inadequacy of the SSA model in flow-through reactors, and elaborated the influential mechanisms of H2O2 dosage and reactor ID on the reactor performances.
Collapse
Affiliation(s)
- Lumeng Zhan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C 1985, Denmark; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wentao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Li Liu
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C 1985, Denmark; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Mengkai Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Dong H, Zhang H, Wang Y, Qiang Z, Yang M. Disinfection by-product (DBP) research in China: Are we on the track? J Environ Sci (China) 2021; 110:99-110. [PMID: 34593199 DOI: 10.1016/j.jes.2021.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
Disinfection by-products (DBPs) formed during water disinfection has drawn significant public concern due to its toxicity. Since the first discovery of the trihalomethanes in 1974, continued effort has been devoted on DBPs worldwide to investigate the formation mechanism, levels, toxicity and control measures in drinking water. This review summarizes the main achievements on DBP research in China, which included: (1) the investigation of known DBP occurrence in drinking water of China; (2) the enhanced removal of DBP precursor by water treatment process; (3) the disinfection optimization to minimize DBP formation; and (4) the identification of unknown DBPs in drinking water. Although the research of DBPs in China cover the whole formation process of DBPs, there is still a challenge in effectively controlling the drinking water quality risk induced by DBPs, an integrated research framework including chemistry, toxicology, engineering, and epidemiology is especially crucial.
Collapse
Affiliation(s)
- Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haifeng Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
22
|
D'halluin T, Lepeytre C, Leydier A, Julcour C. Degradation mechanism of tributyl phosphate by UV/H 2O 2 treatment and parameters optimization towards the design of a pilot reactor. ENVIRONMENTAL TECHNOLOGY 2021; 42:4247-4259. [PMID: 32249685 DOI: 10.1080/09593330.2020.1751731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
While activated sludge treatment is currently the preferred process for the removal of tributyl phosphate (TBP) at the mg.L-1 level, it is well known that this recalcitrant molecule is incompletely degraded, stimulating research into alternative approaches, such as advanced oxidation. The aim of this study was to characterize the degradation mechanism of TBP during ultraviolet/H2O2 treatment using 31P NMR, ionic chromatography and total organic carbon analysis. The effects of initial pH, amount of oxidant and pollutant concentration were also assessed using an experimental design approach. The results of this parametric study show that ultraviolet/H2O2 photo-oxidation efficiently degrades TBP at concentrations up to 600 mg.L-1, with >90% phosphate release and up to 95% removal of total organic carbon within 1 h. The data also show that the main reaction intermediates are short carboxylic acids, resulting from the released alkyl groups, meaning that an interesting application of this process may be to rapidly pre-treat industrial effluent upstream of activated sludge reactors.
Collapse
Affiliation(s)
- Thibault D'halluin
- Decontamination and Supercritical Processes Laboratory BP17171, CEA, DEN, Univ Montpellier, DE2D, SEAD, Bagnols-sur-Ceze, France
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Célia Lepeytre
- Decontamination and Supercritical Processes Laboratory BP17171, CEA, DEN, Univ Montpellier, DE2D, SEAD, Bagnols-sur-Ceze, France
| | - Antoine Leydier
- Decontamination and Supercritical Processes Laboratory BP17171, CEA, DEN, Univ Montpellier, DE2D, SEAD, Bagnols-sur-Ceze, France
| | - Carine Julcour
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
23
|
Yang W, Zhou M, Mai L, Ou H, Oturan N, Oturan MA, Zeng EY. Generation of hydroxyl radicals by metal-free bifunctional electrocatalysts for enhanced organics removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148107. [PMID: 34118668 DOI: 10.1016/j.scitotenv.2021.148107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Low yields of H2O2 and a narrow range of appropriate pH values have been two major drawbacks for electro-Fenton (EF) process. Herein, metal-free electrochemical advanced oxidation processes (EAOPs) were developed with nitrogen and sulfur co-doped electrochemically exfoliated graphene (N, S-EEGr) electrocatalysts, which was confirmed as an outstanding bifunctional catalyst for synchronous generation and activation of H2O2 via (2 + 1) e- consecutive reduction reactions. Specifically, two elements (N, S) in metal-free N, S-EEGr-CF cathode synergize to promote the formation of H2O2 followed by its activation. With N, S-EEGr-CF cathode, phenol of initial 50 mg L-1 could be effectively removed within pH 3-11 and 6.25 mA cm-2, and 100% removal efficiency could be achieved within 15-min even at neutral pH. The pseudo-first-order rate constant for phenol removal in metal-free EAOPs with N,S-EEGr-CF at neutral pH was 10 times higher than that with EF process. Detection of active species, coupled with decay kinetics with specific trapping agents, confirmed that OH was the dominant oxidizing species promoting removal efficiencies of organics (phenol, antibiotics and dyes) at pH 3 and pH 7. In the actual wastewater treatment, the synergistic effect of bifunctional catalyst would also be used for improving the degradation efficiency of organics. Thus, the metal-free EAOPs with N,S-EEGr-CF cathode may serve as an alternative in wastewater treatment with a broadened range of solution pH values and avoiding Fe2+ (catalyst) addition.
Collapse
Affiliation(s)
- Weilu Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Mai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Huase Ou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Nihal Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement, EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Mehmet A Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement, EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
24
|
Emerging Contaminants: An Overview of Recent Trends for Their Treatment and Management Using Light-Driven Processes. WATER 2021. [DOI: 10.3390/w13172340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The management of contaminants of emerging concern (CECs) in water bodies is particularly challenging due to the difficulty in detection and their recalcitrant degradation by conventional means. In this review, CECs are characterized to give insights into the potential degradation performance of similar compounds. A two-pronged approach was then proposed for the overall management of CECs. Light-driven oxidation processes, namely photo/Fenton, photocatalysis, photolysis, UV/Ozone were discussed. Advances to overcome current limitations in these light-driven processes were proposed, focusing on recent trends and innovations. Light-based detection methodology was also discussed for the management of CECs. Lastly, a cost–benefit analysis on various light-based processes was conducted to access the suitability for CECs degradation. It was found that the UV/Ozone process might not be suitable due to the complication with pH adjustments and limited light wavelength. It was found that EEO values were in this sequence: UV only > UV/combination > photocatalyst > UV/O3 > UV/Fenton > solar/Fenton. The solar/Fenton process has the least computed EEO < 5 kWh m−3 and great potential for further development. Newer innovations such as solar/catalyst can also be explored with potentially lower EEO values.
Collapse
|
25
|
Chen X, Zhang W, Zhang L, Feng L, Zhang C, Jiang J, Wang H. Construction of Porous Tubular In 2S 3@In 2O 3 with Plasma Treatment-Derived Oxygen Vacancies for Efficient Photocatalytic H 2O 2 Production in Pure Water Via Two-Electron Reduction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25868-25878. [PMID: 34047545 DOI: 10.1021/acsami.1c02953] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tubular In2O3 was fabricated by the annealing of In-MIL-68 and further treated by Ar plasma to yield oxygen vacancies (Ov) followed by the growth of In2S3 nanoflowers. Unexpectedly, the resulting porous In2S3@In2O3 composites were discovered to display a broad visible-light response and especially enhanced capacities for efficient photocatalytic production of H2O2 in pure water, with a rate of 4.59 μmol·g-1·min-1. An apparent quantum yield of 28.9% at 420 nm can also be expected without the use of noble metals or organic scavengers. Herein, the high light utilization might be profited from their porous tubular heterostructure for powerful "light captivity". Moreover, the Ar plasma-derived Ov sites on the composites might tune the H2O2 generation route from the single-electron reduction to the two-electron one toward the significantly enhanced photocatalysis, as validated by the Koutecky-Levich plots. This work demonstrates a new perspective of designing porous heterostructures with the advantages of high light harvest and plasma-derived Ov active sites. Importantly, it may provide a promising defect-induced strategy of two-electron reduction triggered by the plasma treatment for the efficient photocatalytic H2O2 production under visible light.
Collapse
Affiliation(s)
- Xi Chen
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| | - Wenwen Zhang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Lixiang Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
- School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| | - Luping Feng
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| | - Chunxian Zhang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, P. R. China
| | - Hua Wang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| |
Collapse
|
26
|
Munoz M, Cirés S, de Pedro ZM, Colina JÁ, Velásquez-Figueroa Y, Carmona-Jiménez J, Caro-Borrero A, Salazar A, Santa María Fuster MC, Contreras D, Perona E, Quesada A, Casas JA. Overview of toxic cyanobacteria and cyanotoxins in Ibero-American freshwaters: Challenges for risk management and opportunities for removal by advanced technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143197. [PMID: 33160675 DOI: 10.1016/j.scitotenv.2020.143197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/04/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
The increasing occurrence of cyanobacterial blooms worldwide represents an important threat for both the environment and public health. In this context, the development of risk analysis and management tools as well as sustainable and cost-effective treatment processes is essential. The research project TALGENTOX, funded by the Ibero-American Science and Technology Program for Development (CYTED-2019), aims to address this ambitious challenge in countries with different environmental and social conditions within the Ibero-American context. It is based on a multidisciplinary approach that combines ecology, water management and technology fields, and includes research groups from Chile, Colombia, Mexico, Peru and Spain. In this review, the occurrence of toxic cyanobacteria and cyanotoxins in freshwaters from these countries are summarized. The presence of cyanotoxins has been confirmed in all countries but the information is still scarce and further monitoring is required. In this regard, remote sensing or metagenomics are good alternatives at reasonable cost. The risk management of freshwaters from those countries considering the most frequent uses (consumption and recreation) has been also evaluated. Only Spain and Peru include cyanotoxins in its drinking water legislation (only MC-LR) and thus, there is a need for regulatory improvements. The development of preventive strategies like diminishing nutrient loads to aquatic systems is also required. In the same line, corrective measures are urgently needed especially in drinking waters. Advanced Oxidation Processes (AOPs) have the potential to play a major role in this scenario as they are effective for the elimination of most cyanotoxins classes. The research on the field of AOPs is herein summarized considering the cost-effectiveness, environmental character and technical applicability of such technologies. Fenton-based processes and photocatalysis using solar irradiation or LED light represent very promising alternatives given their high cost-efficiency. Further research should focus on developing stable long-term operation systems, addressing their scale-up.
Collapse
Affiliation(s)
- Macarena Munoz
- Departamento de Ingeniería Química, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Samuel Cirés
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Zahara M de Pedro
- Departamento de Ingeniería Química, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Ángel Colina
- Departamento de Ingeniería Química, Universidad de Cartagena, Cartagena de Indias, Colombia
| | | | - Javier Carmona-Jiménez
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Angela Caro-Borrero
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Anthony Salazar
- Centro de Investigación y Tecnología de Agua - CITA, Universidad de Ingeniería y Tecnología - UTEC, Lima, Peru
| | | | - David Contreras
- Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Elvira Perona
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose A Casas
- Departamento de Ingeniería Química, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
27
|
Chen B, Huang Y, Zhang Q, Dionysiou DD, Wang L, Li J. Formation of Nitrite and Hydrogen Peroxide in Water during the Vacuum Ultraviolet Irradiation Process: Impacts of pH, Dissolved Oxygen, and Nitrate Concentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1682-1689. [PMID: 33472361 DOI: 10.1021/acs.est.0c06161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photolysis via vacuum ultraviolet (VUV) irradiation is a robust technology capable of inactivating pathogens and degrading micropollutants, and therefore, its application has recently attracted great interest. However, VUV irradiation of water may yield nitrite (NO2-, a regulated carcinogenic contaminant) and hydrogen peroxide (H2O2, a compound linked to aging, inflammation, and cancer), thus motivating us to better understand its risks. By applying a novel H2O2 detection method insensitive to coexisting compounds, this study clearly observed concurrent and substantial formations of NO2- and H2O2 during VUV irradiation of various synthetic and real waters. Increasing pH and/or decreasing oxygen promoted the conversion of nitrate (NO3-) into NO2- but suppressed the H2O2 formation, suggesting that there was a transition of radicals from oxidizing species like hydroxyl radicals to reducing species like hydrogen atoms and hydrated electrons. Under low light dose conditions, both NO2- and H2O2 were formed concurrently; however, under high radiation dosage conditions, the patterns conducive to NO2- formation were opposite to those conducive to H2O2 formation. Real water irradiation proved the formation of NO2- and H2O2 at levels near to or greater than current drinking water regulatory limits. Hence, the study reminds of a holistic view of benefits and disbenefits of a VUV process.
Collapse
Affiliation(s)
- Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yuanxi Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen 518055, China
| | - Qi Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen 518055, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| | - Lei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen 518055, China
| | - Juan Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
28
|
Ding J, Nie H, Wang S, Chen Y, Wan Y, Wang J, Xiao H, Yue S, Ma J, Xie P. Transformation of acetaminophen in solution containing both peroxymonosulfate and chlorine: Performance, mechanism, and disinfection by-product formation. WATER RESEARCH 2021; 189:116605. [PMID: 33189970 DOI: 10.1016/j.watres.2020.116605] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
With the fast development of peroxymonosulfate (PMS)-dominating processes in drinking water and wastewater treatment, residual PMS is easy to come across chlorine as these processes are usually followed by secondary chlorine disinfection. The synergistic effect of PMS and chlorine on the degradation of micro-organic pollutants is investigated by selecting acetaminophen (ACT) as a reference compound for the first time in this study. Unlike conventional PMS or chlorine activation which generates reactive species such as hydroxyl radical (HO•), sulfate radical (SO4•-), chlorine radical (Cl•), and singlet oxygen (1O2), the efficient ACT removal is attributed to the direct catalytic chlorination by PMS due to the significantly enhanced consumption of chlorine along with negligible change of PMS concentration at neutral condition, and the same reaction pathways in both PMS/chlorine and chlorine processes. The kinetic study demonstrates that ACT oxidation by PMS/chlorine follows second order reaction, and the degradation efficiency can be promoted at alkaline conditions with peak rate constants at pH 9.0-10.0. The presence of chloride can enhance the removal of ACT, while ammonium and humic acid significantly retard ACT degradation. Higher formation of selected disinfection by-products (DBPs) is observed in the PMS/chlorine process than in the sole chlorination. This study highlights the important role of PMS in organic pollutants degradation and DBPs formation during the chlorination process.
Collapse
Affiliation(s)
- Jiaqi Ding
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hui Nie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Songlin Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ying Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jingwen Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haoliang Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Siyang Yue
- School of Architecture & Urban Planning, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Pengchao Xie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham 27708-0287, USA.
| |
Collapse
|
29
|
Huang JJ, Tian Y, Chen L, Liao Y, Tian M, You X, Wang R. Electrospray-Printed Three-Tiered Composite Membranes with Enhanced Mass Transfer Coefficients for Phenol Removal in an Aqueous-Aqueous Membrane Extractive Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7611-7618. [PMID: 32396342 DOI: 10.1021/acs.est.0c00475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aqueous-aqueous membrane extractive process is an ideal approach to remove recalcitrant organics from highly saline and harsh wastewater. However, it is still challenging to develop highly efficient membranes for the extractive process. In this work, three-tiered polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) nanofiber/nonwoven fabric composite membranes were prepared by electrospinning and electrospray printing for the first time. An ultrathin and defect-free PDMS selective layer was fabricated on the surface of a PVDF/nonwoven fabric nanofibrous substrate by electrospray printing. Meanwhile, the thicknesses of the PDMS selective layer were able to be finely controlled by electrospray printing. The novel three-tiered composite membrane #N3-1 with the thinnest PDMS layer (3.0 ± 0.4 μm) and a thin and porous supporting layer showed an exceptionally high k0 of 37.9 ± 2.8 × 10-7 m/s and an excellent salt rejection above 99.95% over a 105 h continuous operation. Moreover, #N3-1 exhibited outstanding k0 at feed pH of 2 and 11 over 100 h without loss of salt rejection. In addition, the effects of the nonwoven fabric supporting layer on the phenol mass transfer coefficient (k0, m/s) of resultant extractive membranes were also studied symmetrically. A thin and porous nonwoven supporting layer #N3 was capable of improving the k0 of resultant composite membrane significantly.
Collapse
Affiliation(s)
- Jinhui Jeanne Huang
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Yuxiao Tian
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Lu Chen
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Miao Tian
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaofei You
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
30
|
Kiattisaksiri P, Khan E, Punyapalakul P, Musikavong C, Tsang DCW, Ratpukdi T. Vacuum ultraviolet irradiation for mitigating dissolved organic nitrogen and formation of haloacetonitriles. ENVIRONMENTAL RESEARCH 2020; 185:109454. [PMID: 32278158 DOI: 10.1016/j.envres.2020.109454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The main objective of this work was to investigate the feasibility of using vacuum ultraviolet (VUV, 185 + 254 nm) and ultraviolet (UV, 254 nm) for the reduction of dissolved organic nitrogen (DON) and haloacetonitrile formation potential (HANFP) of surface water and treated effluent wastewater samples. The results showed that the reduction of dissolved organic carbon (DOC), DON, hydrophobicity (HPO), absorbance at 254 nm (UV254), and fluorescence excitation-emission matrix (FEEM) of both water samples by VUV was higher compared to using UV. The addition of H2O2 remarkably improved the performances of VUV and UV. VUV/H2O2 exhibited the highest removal efficiency for DOC and DON. Even though HANFP increased at the early stage, its concentration decreased (19-72%) at the end of treatment (60 min). Decreases in DON (30-41%) and DOC (51-57%) led to HANFP reduction (53-72%). Moreover, FEEM revealed that substantial reduction in soluble microbial product-like compounds (nitrogen-rich organic) had a strong correlation with HANFP reduction, implying that this group of compounds act as a main precursor of HANs. The VUV/H2O2 system significantly reduced HANFP more than UV/H2O2 and therefore is suitable for controlling HAN precursors and HAN formation in drinking water and reclaimed wastewater.
Collapse
Affiliation(s)
- Pradabduang Kiattisaksiri
- Faculty of Public Health, Thammasat University (Lampang Center), Lampang, 52190, Thailand; International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154-4015, United States
| | - Patiparn Punyapalakul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Charongpun Musikavong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hatyai, Songkhla, 90112, Thailand
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Thunyalux Ratpukdi
- Department of Environmental Engineering, Faculty of Engineering, and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, 40002, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
31
|
Zhang Q, Wang L, Chen B, Chen Y, Ma J. Understanding and modeling the formation and transformation of hydrogen peroxide in water irradiated by 254 nm ultraviolet (UV) and 185 nm vacuum UV (VUV): Effects of pH and oxygen. CHEMOSPHERE 2020; 244:125483. [PMID: 31816545 DOI: 10.1016/j.chemosphere.2019.125483] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Understanding ultraviolet photolysis induced by low pressure mercury lamp that emits both 254 nm ultraviolet (UV254) and 185 nm vacuum UV (VUV185) is currently challenging due to the copresence of multiple direct and indirect photochemical processes involving a series of highly-reactive radicals. Herein we examined the formation and transformation of H2O2 in water, which is both a precursor and a product of radicals, under various pH and dissolved oxygen (DO) conditions. The trends show that H2O2 increased rapidly at early stage and then remained steady in DO-rich water or declined somewhat in DO-poor water, ultimately leading to higher steady-state H2O2 in DO-rich water. The maximum H2O2 contents nonetheless were similar among waters with different DO, suggesting that H2O2 in this system was mostly generated by hydroxyl radical (OH) recombination, which is an oxygen-independent H2O2 formation pathway, rather than by reduced oxygen via hydrogen atom (H) or hydrated electron (eaq-), which is an oxygen-dependent pathway. Increasing pH (from 6.3 to 10.0) or bicarbonate dosage dramatically decreased H2O2 formation too. Mathematically, the fates of H2O2 as a function of pH, DO, and time were well modeled (R2 ≥ 0.92), in which the rates of H2O2 formation and destruction were greater in DO-poor water than those in DO-rich water. In addition, we found that the steady-state concentrations of OH used for degradation of p-chlorobenzoic acid, an OH probe, correlated well with the OH levels used for H2O2 formation (R2 = 0.98). These results hence may help better understand the UV/VUV process via H2O2 evolutions.
Collapse
Affiliation(s)
- Qi Zhang
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Lei Wang
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Baiyang Chen
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Yi Chen
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
32
|
Li M, Sun M, Dong H, Zhang J, Su Y, Qiang Z. Enhancement of micropollutant degradation in UV/H 2O 2 process via iron-containing coagulants. WATER RESEARCH 2020; 172:115497. [PMID: 31986395 DOI: 10.1016/j.watres.2020.115497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/04/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
The low molar absorption coefficient of H2O2 limits the ultraviolet (UV)/H2O2 process, making it a desirable target to enhance the UV/H2O2 process for organic micropollutant degradation. Therefore, this study investigated the impact of iron-containing coagulants (Fe-coagulants) on micropollutant degradation by UV/H2O2 process. Three typical Fe-coagulants (i.e., polymeric ferric sulfate, polymeric aluminum ferric sulfate, and FeCl3) exhibited the enhancement of sulfamethazine degradation during the UV/H2O2 process. The maximum increasing ratio of the degradation rate constant reached 40%. The pH and Fe-coagulant concentration effects, as well as residual H2O2 were examined. The principal mechanism of micropollutant degradation enhancement via the Fe-coagulants was the photo-Fenton-like reaction between Fe(III) on the Fe-coagulant surface and H2O2 under UV irradiation. Then the influence of Fe-coagulant particle size was discussed. Smaller particles (<0.22 μm), with a lower iron content, a larger specific surface area, and a stronger optical scattering effect, exhibited a greater enhancement on the UV/H2O2 process as compared with larger particles (>0.22 μm). Finally, the enhancement effect of the Fe-coagulants was verified on two water samples from a water treatment plant, which were either pre-coagulation or sand filtered samples. This study explored an existing heterogeneous catalysis process in drinking water treatment, which provides additional information for coagulant selection and improvements to the treatment process for micropollutant removal.
Collapse
Affiliation(s)
- Mengkai Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Mengdi Sun
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Jun Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; School of Architectural, Surveying and Mapping Engineering, Jiangxi University of Science and Technology, 86 Hong-qi Road, Ganzhou 341000, Jiangxi, China
| | - Yingjia Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; School of Architectural, Surveying and Mapping Engineering, Jiangxi University of Science and Technology, 86 Hong-qi Road, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
33
|
Xie P, Zou Y, Jiang S, Wang J, Zhang L, Wang Z, Yue S, Feng X. Degradation of imipramine by vacuum ultraviolet (VUV) system: Influencing parameters, mechanisms, and variation of acute toxicity. CHEMOSPHERE 2019; 233:282-291. [PMID: 31176129 DOI: 10.1016/j.chemosphere.2019.05.201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Degradation of imipramine (IMI) in the VUV system (VUV185 + UV254) was firstly evaluated in this study. Both HO• oxidation and UV254 direct photolysis accounted for IMI degradation. The quantum yields of UV254 direct photolysis of deprotonated and protonated IMI were 1.31×10-2 and 3.31×10-3, respectively, resulting in the higher degradation efficiency of IMI at basic condition. Increasing the initial IMI concentration lowered the degradation efficiency of IMI. While elevating reaction temperature significantly improved IMI degradation efficiency through the promotion of both the quantum yields of HO• and the UV254 direct photolysis rate. The apparent activation energy was calculated to be about 26.6 kJ mol-1. Negative-linear relationships between the kobs of IMI degradation and the concentrations of HCO3-/CO32-, NOM and Cl- were obtained. The degradation pathways were proposed that cleavage of side chain and hydroxylation of iminodibenzyl and methyl groups were considered as the initial steps for IMI degradation in the VUV system. Although some high toxic intermediate products would be produced, they can be further transformed to other lower toxic products. The good degradation efficiency of IMI under realistic water matrices further suggests that the VUV system would be a good method to degrade IMI in aquatic environment.
Collapse
Affiliation(s)
- Pengchao Xie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China; Center for the Environmental Implications of Nanotechnology (CEINT), Durham, 27708-0287, USA
| | - Yujia Zou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Shan Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jingwen Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Li Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Siyang Yue
- School of Architecture & Urban Planning, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaonan Feng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
34
|
Li M, Li W, Wen D, Bolton JR, Blatchley ER, Qiang Z. Micropollutant Degradation by the UV/H 2O 2 Process: Kinetic Comparison among Various Radiation Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5241-5248. [PMID: 30920806 DOI: 10.1021/acs.est.8b06557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Kinetic comparisons of micropollutant degradation by ultraviolet (UV) based advanced oxidation processes among various radiation sources are an important issue, yet this is still a challenge at present. This study investigated comparatively the kinetics of sulfamethazine (SMN) degradation by the UV/H2O2 process among three representative radiation sources, including low-pressure mercury UV (LPUV, monochromatic), medium-pressure mercury UV (MPUV, polychromatic), and vacuum UV(VUV)/UV (dual wavelengths causing different reaction mechanisms) lamps. Experiments were conducted with a newly developed mini-fluidic MPUV photoreaction system and a previously developed mini-fluidic VUV/UV photoreaction system. Measured and modeled results both indicate that the photon fluence-based SMN degradation rate constant ( kp') followed a descending order of VUV/UV/H2O2 > MPUV/H2O2 (200-300 nm) > LPUV/H2O2, and the kp' of the MPUV lamp was dependent on the wavelength range selected for photon fluence calculation. Analysis of potential errors revealed that a shorter effective path-length could have a lower error, and the maximum errors for the MPUV/H2O2 and LPUV/H2O2 processes in this study were 7.7% and 18.2%, respectively. This study has developed a new method for kinetic comparisons of micropollutant degradation by UV-AOPs among various radiation sources at bench-scale, which provides useful reference to practical applications.
Collapse
Affiliation(s)
- Mengkai Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 18 Shuang-qing Road , Beijing 100085 , China
- Lyles School of Civil Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Wentao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 18 Shuang-qing Road , Beijing 100085 , China
| | - Dong Wen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 18 Shuang-qing Road , Beijing 100085 , China
| | - James R Bolton
- Department of Civil and Environmental Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Ernest R Blatchley
- Lyles School of Civil Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
- Division of Environmental & Ecological Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 18 Shuang-qing Road , Beijing 100085 , China
| |
Collapse
|