1
|
Mäder P, Stache F, Engelbart L, Huhn C, Hochmanová Z, Hofman J, Poll C, Kandeler E. Effects of MCPA and difenoconazole on glyphosate degradation and soil microorganisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124926. [PMID: 39260542 DOI: 10.1016/j.envpol.2024.124926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Modern agriculture relies heavily on pesticide use to meet the demands of food quality and quantity. Therefore, pesticides are often applied in mixtures, leading to a diverse cocktail of chemicals and their metabolites in soils, which can affect non-target organisms such as soil microorganisms. Pesticides are tested for their single effects, but studies on their interactive effects are scarce. This study aimed to determine the effects of up to three simultaneously applied pesticides on the soil microbial community and on their special function in pesticide degradation. Agricultural soil without previous pesticide application was exposed to different mixtures of the herbicide glyphosate (GLP), the phenoxy herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid) and the fungicide difenoconazole (DFC) for up to 56 days. Isotopic and molecular methods were used to investigate effects of the mixtures on the microbial community and to follow the mineralization and utilization of GLP. An initial increase in the metabolic quotient by up to 35 % in the presence of MCPA indicated a stress reaction of the microbial community. The presence of multiple pesticides reduced both gram positive bacterial fatty acid methyl esters (FAMEs) by 13 % and the abundance of microorganisms with the genetic potential for GLP degradation via the AMPA (aminomethylphosphonic acid) pathway. Both the number of pesticides and the identities of individual pesticides played major roles. Surprisingly, an increase in 13C-labelled GLP mineralization of up to 40 % was observed while carbon use efficiency (CUE) decreased. Interactions between multiple pesticides might alter the behavior of individual pesticides and be reflected in the microbial community. Our results highlight the importance of investigating not only single pesticides, but also pesticide mixtures and their interactions.
Collapse
Affiliation(s)
- Philipp Mäder
- Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of Hohenheim, Emil-Wolff-Straße 27, 70599, Stuttgart, Germany.
| | - Fabian Stache
- Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of Hohenheim, Emil-Wolff-Straße 27, 70599, Stuttgart, Germany
| | - Lisa Engelbart
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Zuzana Hochmanová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Christian Poll
- Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of Hohenheim, Emil-Wolff-Straße 27, 70599, Stuttgart, Germany
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of Hohenheim, Emil-Wolff-Straße 27, 70599, Stuttgart, Germany
| |
Collapse
|
2
|
Schleicherová D, Pastorino P, Pappalardo A, Nota A, Gendusa C, Mirone E, Prearo M, Santovito A. Genotoxicological and physiological effects of glyphosate and its metabolite, aminomethylphosphonic acid, on the freshwater invertebrate Lymnaea stagnalis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106940. [PMID: 38728927 DOI: 10.1016/j.aquatox.2024.106940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Aminomethylphosphonic acid (AMPA) is the main metabolite in the degradation of glyphosate, a broad-spectrum herbicide, and it is more toxic and persistent in the environment than the glyphosate itself. Owing to their extensive use, both chemicals pose a serious risk to aquatic ecosystems. Here, we explored the genotoxicological and physiological effects of glyphosate, AMPA, and the mixed solution in the proportion 1:1 in Lymnaea stagnalis, a freshwater gastropod snail. To do this, adult individuals were exposed to increasing nominal concentrations (0.0125, 0.025, 0.050, 0.100, 0.250, 0.500 µg/mL) in all three treatments once a week for four weeks. The genotoxicological effects were estimated as genomic damage, as defined by the number of micronuclei and nuclear buds observed in hemocytes, while the physiological effects were estimated as the effects on somatic growth and egg production. Exposure to glyphosate, AMPA, and the mixed solution caused genomic damage, as measured in increased frequency of micronuclei and nuclear buds and in adverse effects on somatic growth and egg production. Our findings suggest the need for more research into the harmful and synergistic effects of glyphosate and AMPA and of pesticides and their metabolites in general.
Collapse
Affiliation(s)
- Dáša Schleicherová
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10124, Torino; Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Torino.
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Torino.
| | - Alessia Pappalardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10124, Torino.
| | - Alessandro Nota
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10124, Torino.
| | - Claudio Gendusa
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10124, Torino.
| | - Enrico Mirone
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10124, Torino.
| | - Marino Prearo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Torino.
| | - Alfredo Santovito
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10124, Torino.
| |
Collapse
|
3
|
Aslam S, Nowak KM. Nitrogen-fertilizer addition to an agricultural soil enhances biogenic non-extractable residue formation from 2- 13C, 15N-glyphosate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170643. [PMID: 38320697 DOI: 10.1016/j.scitotenv.2024.170643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Glyphosate and nitrogen (N) or (P) phosphorus fertilizers are often applied in combination to agricultural fields. The additional P or N supply to microorganisms might drive glyphosate degradation towards sarcosine/glycine or aminomethylphosphonic acid (AMPA), and consequently determine the speciation of non-extractable residues (NERs): harmless biogenic NERs (bioNERs) or potentially hazardous xenobiotic NERs (xenoNERs). We therefore investigated the effect of P or N-fertilizers on microbial degradation of glyphosate and bioNER formation in an agricultural soil. Four different treatments were incubated at 20 °C for 75 days as follows; I: no fertilizer (2-13C,15N-glyphosate only, control), II: P-fertilizer (superphosphate + 2-13C,15N-glyphosate, effect of P-supply), III: N-fertilizer (ammonium nitrate + 2-13C,15N-glyphosate, effect of N-supply) and IV: 15N-fertilizer (15N-ammonium nitrate + 2-13C-glyphosate, differentiation between microbial assimilations of 15N: 15N-fertilizer versus 15N-glyphosate). We quantified 13C or 15N in mineralization, extractable residues, NERs and in amino acids (AAs). At the end, mineralization (36-41 % of the 13C), extractable 2-13C,15N-glyphosate/2-13C-glyphosate (0.42-0.49 %) & 15N-AMPA (1.2 %), and 13C/15N-NERs (40-43 % of the 13C, 40-50 % of the 15N) were comparable among treatments. Contrastingly, the 15N-NERs from 15N-fertlizer amounted to only 6.6 % of the 15N. Notably, N-fertilizer promoted an incorporation of 13C/15N from 2-13C,15N-glyphosate into AAs and thus the formation of 13C/15N-bioNERs. The 13C/15N-AAs were as follows: 16-21 % (N-fertilizer) > 11-13 % (control) > 7.2-7.3 % (P-fertilizer) of the initially added isotope. 2-13C,15N-glyphosate was degraded via the sarcosine/glycine and AMPA simultaneously in all treatments, regardless of the treatment type. The percentage share of bioNERs within the NERs in the N-fertilized soil was highest (13C: 80-82 %, 15N: 100 %) compared to 53 % (13C & 15N, control) and to only 30 % (13C & 15N, P-fertilizer). We thus concluded simultaneous N & glyphosate addition to soils could be beneficial for the environment due to the enhanced bioNER formation, while P & glyphosate application disadvantageous since it promoted xenoNER formation.
Collapse
Affiliation(s)
- Sohaib Aslam
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Department of Environmental Sciences, Forman Christian College (A Chartered University), Ferozepur Road, 54600 Lahore, Pakistan
| | - Karolina M Nowak
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
4
|
Cuzziol Boccioni AP, Peltzer PM, Attademo AM, Leiva L, Colussi CL, Repetti MR, Russell-White K, Di Conza N, Lajmanovich RC. High toxicity of agro-industrial wastewater on aquatic fauna of a South American stream: Mortality of aquatic turtles and amphibian tadpoles as bioindicators of environmental health. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11010. [PMID: 38433361 DOI: 10.1002/wer.11010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
The aim of this study was to characterize an aquatic system of Santa Fe province (Argentina) receiving wastewater from agro-industrial activities (mainly dairy) by in situ assessment (fauna mortality, physicochemical, microbiological, and pesticide residues measurement), and ecotoxicity bioassays on amphibian tadpoles. Water and sediment samples were obtained from the Los Troncos Stream (LTS), previous to the confluence with the "San Carlos" drainage channel (SCC), and from the SCC. Biological parameters (mortality and sublethal biomarkers) were used to evaluate ecotoxicity during 10-day exposure of Rhinella arenarum tadpoles to LTS and SCC samples. Nine pesticides were detected in both LTS and SCC. Chemical and biochemical oxygen demand, ammonia, and coliform count recorded in SCC greatly exceeded limits for aquatic life protection. At SCC and LTS after the confluence with SCC, numerous dying and dead aquatic turtles (Phrynops hilarii) were recorded. In the ecotoxicity assessment, no mortality of tadpoles was observed in LTS treatment, whereas total mortality (100%) was observed in SCC treatments in dilution higher than 50% of water and sediment. For SCC, median lethal concentration and the 95% confidence limits was 18.30% (14.71-22.77) at 24 h; lowest-observed and no-observed effect concentrations were 12.5% and 6.25%, respectively. Oxidative stress and neurotoxicity were observed in tadpoles exposed to 25% SCC dilution treatment. In addition, there was a large genotoxic effect (micronuclei test) in all sublethal SCC dilution treatments (6.25%, 12.5%, and 25%). These results alert about the high environmental quality deterioration and high ecotoxicity for aquatic fauna of aquatic ecosystems affected by agro-industrial wastewater. PRACTITIONER POINTS: Great mortality of turtles was observed in a basin with a high load of agro-industrial wastewater. San Carlos Channel (SCC), where effluents are spilled, is environmentally deteriorated. The water-sediment matrix of SCC caused 100% lethality in tadpoles. SCC dilutions caused neurotoxicity, oxidative stress, and genotoxicity on tadpoles.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola M Peltzer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Andrés M Attademo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Leonardo Leiva
- Museo Provincial de Ciencias Naturales Florentino Ameghino, Santa Fe, Argentina
| | - Carlina L Colussi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Karen Russell-White
- Cátedras de Microbiología General y Principios de Biotecnología, Departamento de Ingeniería en Alimentos y Biotecnología, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Noelia Di Conza
- Cátedras de Microbiología General y Principios de Biotecnología, Departamento de Ingeniería en Alimentos y Biotecnología, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
5
|
Okuda K, Ando D, Suzuki Y, Fujisawa T. Improved Assessment of Soil Nonextractable Residues of the Pyrethroid Insecticide Cyphenothrin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37319355 DOI: 10.1021/acs.jafc.3c01501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The metabolic fate of pyrethroid insecticide cyphenothrin (1) [(RS)-α-cyano-3-phenoxybenzyl (1RS)-cis-trans-2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropanecarboxylate] in soils was investigated using 14C-labeled (1R)-cis/trans isomers at the cyclopropane ring. Both isomers degraded with half-lives of 19.0-47.4 days, and 48.9-56.0% and 27.5-38.7% of the applied radioactivity (AR) were mineralized to CO2 and incorporated into nonextractable residues (NER), respectively, after 120 days at 20 °C. NER analyses revealed 37.5-42.2% (cis-1) and 44.9-54.1% (trans-1) of each residue at 30/120 days were comprised of 14C-amino acids (AAs) as microbial products. Assuming that 50% of microbial biomass is AAs, it was estimated that 11.3-22.9%AR (cis-1, 75.0-84.4% of NER) and 13.9-30.4%AR (trans-1, 89.8-108.2% of NER) were nonhazardous biogenic NER (bio-NER), while type I/II xenobiotic NER (xeno-NER) characterized by silylation was insignificant at 0.9-1.0%/2.8-3.3%AR (cis-1). Detailed 14C-AA quantitation indicated a high relevance of the tricarboxylic acid cycle and pyruvate pathway during bio-NER formation, offering new insights into the microbial assimilation of the chrysanthemic moiety.
Collapse
Affiliation(s)
- Kenji Okuda
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 4-2-1 Takatsukasa, Takarazuka, Hyogo 665-8555, Japan
| | - Daisuke Ando
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 4-2-1 Takatsukasa, Takarazuka, Hyogo 665-8555, Japan
| | - Yusuke Suzuki
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 4-2-1 Takatsukasa, Takarazuka, Hyogo 665-8555, Japan
| | - Takuo Fujisawa
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 4-2-1 Takatsukasa, Takarazuka, Hyogo 665-8555, Japan
| |
Collapse
|
6
|
Aslam S, Jing Y, Nowak KM. Fate of glyphosate and its degradation products AMPA, glycine and sarcosine in an agricultural soil: Implications for environmental risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130847. [PMID: 36696778 DOI: 10.1016/j.jhazmat.2023.130847] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Glyphosate can be biodegraded via the aminomethylphosponic acid (AMPA) and the sarcosine/glycine pathway leading to the formation of three intermediate products AMPA, sarcosine or glycine. The fate of the three intermediate compounds of glyphosate biodegradation including nature of non-extractable residues (NERs; harmless biogenic [NERsbiogenic] versus hazardous xenobiotic [NERsxenobiotic]) in soils has not been investigated yet. This information is crucial for an assessment of environmental risks related to the speciation of glyphosate-derived NERs which may stem from glyphosate intermediates. Therefore, we incubated 13C- and 15N-labeled glyphosate (2-13C,15N-glyphosate) and its degradation product AMPA (13C,15N-AMPA), sarcosine (13C3,15N-sarcosine) or glycine (13C2,15N-glycine) in an agricultural soil separately for a period of 75 days. 13C2-glycine and 13C3-sarcosine mineralized rapidly compared to 2-13C-glyphosate and 13C-AMPA. The mineralization of 13C-AMPA was lowest among all four compounds due to its persistent nature. Only 0.5% of the initially added 2-13C,15N-glyphosate and still about 30% of the initially added 13C,15N-AMPA was extracted from soil after 75 days. The NERs formed from 13C,15N-AMPA were mostly NERsxenobiotic as compared to other three compounds for which significant amounts of NERsbiogenic were determined. We noticed 2-13C,15N-glyphosate was biodegraded via two biodegradation pathways simultaneously; however, the sarcosine/glycine pathway with the formation of harmless NERsbiogenic presumably dominated.
Collapse
Affiliation(s)
- Sohaib Aslam
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Department of Environmental Sciences, Forman Christian College (A Chartered University), Ferozepur Road, 54600 Lahore, Pakistan
| | - Yuying Jing
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Karolina M Nowak
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
7
|
Wimmer B, Langarica-Fuentes A, Schwarz E, Kleindienst S, Huhn C, Pagel H. Mechanistic modeling indicates rapid glyphosate dissipation and sorption-driven persistence of its metabolite AMPA in soil. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:393-405. [PMID: 36417923 DOI: 10.1002/jeq2.20437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Residual concentrations of glyphosate and its main transformation product aminomethylphosphonic acid (AMPA) are often observed in soils. The factors controlling their biodegradation are currently not well understood. We analyzed sorption-limited biodegradation of glyphosate and AMPA in soil with a set of microcosm experiments. A mechanistic model that accounts for equilibrium and kinetic sorption facilitated interpretation of the experimental results. Both compounds showed a biphasic dissipation with an initial fast (up to Days 7-10) and subsequent slower transformation rate, pointing to sorption-limited degradation. Glyphosate transformation was well described by considering only equilibrium sorption. Model simulations suggested that only 0.02-0.13% of total glyphosate was present in the soil solution and thus bioavailable. Glyphosate transformation was rapid in solution (time required for 50 % dissipation of the total initially added chemical [DT50 ] = 3.9 min), and, despite strong equilibrium sorption, total glyphosate in soil dissipated quickly (DT50 = 2.4 d). Aminomethylphosphonic acid dissipation kinetics could only be described when considering both equilibrium and kinetic sorption. In comparison to glyphosate, the model simulations showed that a higher proportion of total AMPA was dissolved and directly bioavailable (0.27-3.32%), but biodegradation of dissolved AMPA was slower (DT50 = 1.9 h). The model-based data interpretation suggests that kinetic sorption strongly reduces AMPA bioavailability, leading to increased AMPA persistence in soil (DT50 = 12 d). Thus, strong sorption combined with rapid degradation points to low risks of glyphosate leaching by vertical transport through soil in the absence of preferential flow. Ecotoxicological effects on soil microorganisms might be reduced. In contrast, AMPA persists, rendering these risks more likely.
Collapse
Affiliation(s)
- Benedikt Wimmer
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Univ., Tübingen, Germany
| | - Adrian Langarica-Fuentes
- Center for Applied Geosciences/Geo- and Environmental Research Center, Eberhard Karls Univ., Tübingen, Germany
| | - Erik Schwarz
- Dep. of Biogeophysics, Institute of Soil Science and Land Evaluation, Univ. of Hohenheim, Stuttgart, Germany
- Dep. of Physical Geography and Bolin Centre for Climate Research, Stockholm Univ., Stockholm, Sweden
| | - Sara Kleindienst
- Center for Applied Geosciences/Geo- and Environmental Research Center, Eberhard Karls Univ., Tübingen, Germany
- Dep. of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), Univ. of Stuttgart, Stuttgart, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Univ., Tübingen, Germany
| | - Holger Pagel
- Dep. of Biogeophysics, Institute of Soil Science and Land Evaluation, Univ. of Hohenheim, Stuttgart, Germany
| |
Collapse
|
8
|
Hossen K, Asato Y, Teruya T, Kato-Noguchi H. Identification of four allelopathic compounds including a novel compound from Elaeocarpus floribundus Blume and determination of their allelopathic activity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116728. [PMID: 36399811 DOI: 10.1016/j.jenvman.2022.116728] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Allelopathic compounds can play a vital role in protecting the environment from pollution by synthetic herbicides. Compounds isolated from plant species with allelopathic potential can be used as natural herbicides to control weeds and help reduce environmental pollution. Elaeocarpus floribundus has been reported to contain allelopathic compounds. Aqueous methanolic extracts of the leaves of this plant showed strong growth inhibitory potential against two test species (monocotyledonous Italian ryegrass and dicotyledonous alfalfa) in plants- and dose-dependent technique. Several extensive chromatographic separations of the E. floribundus leaf extracts yielded four active compounds 1, 2, 3, and 4 (novel compound). All the identified compounds showed strong growth inhibitory potential against cress. The concentrations caused for 50% growth limitation (I50 values) of the cress seedlings were in the range 500.4-1913.1 μM. The findings indicate that the identified compounds might play a pivotal function in the allelopathic potential of E. floribundus tree. This report is the first on elaeocarpunone and its allelopathic potential.
Collapse
Affiliation(s)
- Kawsar Hossen
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, 761-0795, Japan; The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, 790-8566, Japan; Department of Agriculture, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Yuka Asato
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.
| | - Toshiaki Teruya
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.
| | - Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, 761-0795, Japan; The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, 790-8566, Japan.
| |
Collapse
|
9
|
Davenport R, Curtis‐Jackson P, Dalkmann P, Davies J, Fenner K, Hand L, McDonough K, Ott A, Ortega‐Calvo JJ, Parsons JR, Schäffer A, Sweetlove C, Trapp S, Wang N, Redman A. Scientific concepts and methods for moving persistence assessments into the 21st century. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1454-1487. [PMID: 34989108 PMCID: PMC9790601 DOI: 10.1002/ieam.4575] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 05/19/2023]
Abstract
The evaluation of a chemical substance's persistence is key to understanding its environmental fate, exposure concentration, and, ultimately, environmental risk. Traditional biodegradation test methods were developed many years ago for soluble, nonvolatile, single-constituent test substances, which do not represent the wide range of manufactured chemical substances. In addition, the Organisation for Economic Co-operation and Development (OECD) screening and simulation test methods do not fully reflect the environmental conditions into which substances are released and, therefore, estimates of chemical degradation half-lives can be very uncertain and may misrepresent real environmental processes. In this paper, we address the challenges and limitations facing current test methods and the scientific advances that are helping to both understand and provide solutions to them. Some of these advancements include the following: (1) robust methods that provide a deeper understanding of microbial composition, diversity, and abundance to ensure consistency and/or interpret variability between tests; (2) benchmarking tools and reference substances that aid in persistence evaluations through comparison against substances with well-quantified degradation profiles; (3) analytical methods that allow quantification for parent and metabolites at environmentally relevant concentrations, and inform on test substance bioavailability, biochemical pathways, rates of primary versus overall degradation, and rates of metabolite formation and decay; (4) modeling tools that predict the likelihood of microbial biotransformation, as well as biochemical pathways; and (5) modeling approaches that allow for derivation of more generally applicable biotransformation rate constants, by accounting for physical and/or chemical processes and test system design when evaluating test data. We also identify that, while such advancements could improve the certainty and accuracy of persistence assessments, the mechanisms and processes by which they are translated into regulatory practice and development of new OECD test guidelines need improving and accelerating. Where uncertainty remains, holistic weight of evidence approaches may be required to accurately assess the persistence of chemicals. Integr Environ Assess Manag 2022;18:1454-1487. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | - Philipp Dalkmann
- Bayer AG, Crop Science Division, Environmental SafetyMonheimGermany
| | | | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Department of ChemistryUniversity of ZürichZürichSwitzerland
| | - Laurence Hand
- Syngenta, Product Safety, Jealott's Hill International Research CentreBracknellUK
| | | | - Amelie Ott
- School of EngineeringNewcastle UniversityNewcastle upon TyneUK
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC)BrusselsBelgium
| | - Jose Julio Ortega‐Calvo
- Instituto de Recursos Naturales y Agrobiología de SevillaConsejo Superior de Investigaciones CientíficasSevillaSpain
| | - John R. Parsons
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Andreas Schäffer
- RWTH Aachen University, Institute for Environmental ResearchAachenGermany
| | - Cyril Sweetlove
- L'Oréal Research & InnovationEnvironmental Research DepartmentAulnay‐sous‐BoisFrance
| | - Stefan Trapp
- Department of Environmental EngineeringTechnical University of DenmarkBygningstorvetLyngbyDenmark
| | - Neil Wang
- Total Marketing & ServicesParis la DéfenseFrance
| | - Aaron Redman
- ExxonMobil Petroleum and ChemicalMachelenBelgium
| |
Collapse
|
10
|
Jing Y, Miltner A, Eggen T, Kästner M, Nowak KM. Microcosm test for pesticide fate assessment in planted water filters: 13C, 15N-labeled glyphosate as an example. WATER RESEARCH 2022; 226:119211. [PMID: 36252297 PMCID: PMC9669332 DOI: 10.1016/j.watres.2022.119211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Planted filters are often used to remove pesticides from runoff water. However, the detailed fate of pesticides in the planted filters still remains elusive. This hampers an accurate assessment of environmental risks of the pesticides related to their fate and thereby development of proper mitigation strategies. In addition, a test system for the chemical fate analysis including plants and in particular for planted filters is not well established yet. Therefore, we developed a microcosm test to simulate the fate of pesticide in planted filters, and applied 2-13C,15N-glyphosate as a model pesticide. The fate of 2-13C,15N-glyphosate in the planted microcosms over 31 day-incubation period was balanced and compared with that in the unplanted microcosms. The mass balance of 2-13C,15N-glyphosate turnover included 13C mineralization, degradation products, and the 13C and 15N incorporation into the rhizosphere microbial biomass and plants. We observed high removal of glyphosate (> 88%) from the water mainly due to adsorption on gravel in both microcosms. More glyphosate was degraded in the planted microcosms with 4.1% of 13C being mineralized, 1.5% of 13C and 3.8% of 15N being incorporated into microbial biomass. In the unplanted microcosms, 1.1% of 13C from 2-13C,15N-glyphosate was mineralized, and only 0.2% of 13C and 0.1% of 15N were assimilated into microbial biomass. The total recovery of 13C and 15N was 81% and 85% in planted microcosms, and 91% and 93% in unplanted counterparts, respectively. The microcosm test was thus proven to be feasible for mass balance assessments of the fate of non-volatile chemicals in planted filters. The results of such studies could help better manage and design planted filters for pesticide removal.
Collapse
Affiliation(s)
- Yuying Jing
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Anja Miltner
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Trine Eggen
- Norwegian Institute of Bioeconomy Research - NIBIO, Postboks 115, 1431-Ås, Norway
| | - Matthias Kästner
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Karolina M Nowak
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany.
| |
Collapse
|
11
|
Muskus AM, Miltner A, Hamer U, Nowak KM. Microbial community composition and glyphosate degraders of two soils under the influence of temperature, total organic carbon and pH. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118790. [PMID: 35016983 DOI: 10.1016/j.envpol.2022.118790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Glyphosate can be degraded by soil microorganisms rapidly and is impacted by temperature and soil properties. Enhanced temperature and total organic carbon (TOC) as well as reduced pH increased the rate of 13C315N-glyphosate conversion to CO2 and biogenic non-extractable residues (bioNERs) in a Haplic Chernozem (Muskus et al., 2019) and in a Humic Cambisol (Muskus et al., 2020). To date; however, the combined effect of temperature and TOC or pH on microbial community composition and glyphosate degraders in these two soils has not been investigated. Phospholipid fatty acid [PLFA] biomarker analysis combined with 13C labeling was employed to investigate the effect of two soil properties (pH, TOC) and of three temperatures (10 °C, 20 °C, 30 °C) on soil microorganisms. Before incubation, the properties of a Haplic Chernozem and a Humic Cambisol were adjusted to obtain five treatments: (a) Control (Haplic Chernozem: 2.1% TOC and pH 6.6; Humic Cambisol: 3% TOC and pH 7.0), (b) 3% TOC (Haplic Chernozem) or 4% TOC (Humic Cambisol), (c) 4% TOC (Haplic Chernozem) or 5% TOC (Humic Cambisol), (d) pH 6.0 (Haplic Chernozem) or pH 6.5 (Humic Cambisol), and (e) pH 5.5 for both soils. All treatments were amended with 50 mg kg-1 glyphosate and incubated at 10 °C, 20 °C or 30 °C. We observed an increase in respiration, microbial biomass and glyphosate mineralization with incubation temperature. Although respiration and microbial biomass in the Humic Cambisol was higher, the microorganisms in the Haplic Chernozem were more active in glyphosate degradation. Increased TOC shifted the microbiome and the 13C-glyphosate degraders towards Gram-positive bacteria in both soils. However, the abundance of 13C-PLFAs indicative for the starvation of Gram-negative bacteria increased with increasing TOC or decreasing pH at higher temperatures. Gram-negative bacteria thus may have been involved in earlier stages of glyphosate degradation.
Collapse
Affiliation(s)
- Angelica M Muskus
- UFZ - Helmholtz-Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstr. 15, 04318, Leipzig, Germany; Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149, Münster, Germany; Pontifical Bolivarian University, Environmental Engineering Faculty, Km 7 Vía Piedecuesta, Bucaramanga, Colombia
| | - Anja Miltner
- UFZ - Helmholtz-Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstr. 15, 04318, Leipzig, Germany
| | - Ute Hamer
- Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149, Münster, Germany
| | - Karolina M Nowak
- UFZ - Helmholtz-Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstr. 15, 04318, Leipzig, Germany.
| |
Collapse
|
12
|
Hébert MP, Fugère V, Beisner BE, Barbosa da Costa N, Barrett RDH, Bell G, Shapiro BJ, Yargeau V, Gonzalez A, Fussmann GF. Widespread agrochemicals differentially affect zooplankton biomass and community structure. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02423. [PMID: 34288209 DOI: 10.1002/eap.2423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic environmental change is causing habitat deterioration at unprecedented rates in freshwater ecosystems. Despite increasing more rapidly than many other agents of global change, synthetic chemical pollution-including agrochemicals such as pesticides-has received relatively little attention in freshwater community and ecosystem ecology. Determining the combined effects of multiple agrochemicals on complex biological systems remains a major challenge, requiring a cross-field integration of ecology and ecotoxicology. Using a large-scale array of experimental ponds, we investigated the response of zooplankton community properties (biomass, composition, and diversity metrics) to the individual and joint presence of three globally widespread agrochemicals: the herbicide glyphosate, the neonicotinoid insecticide imidacloprid, and nutrient fertilizers. We tracked temporal variation in zooplankton biomass and community structure along single and combined pesticide gradients (each spanning eight levels), under low (mesotrophic) and high (eutrophic) nutrient-enriched conditions, and quantified (1) response threshold concentrations, (2) agrochemical interactions, and (3) community resistance and recovery. We found that the biomass of major zooplankton groups differed in their sensitivity to pesticides: ≥0.3 mg/L glyphosate elicited long-lasting declines in rotifer communities, both pesticides impaired copepods (≥3 µg/L imidacloprid and ≥5.5 mg/L glyphosate), whereas some cladocerans were highly tolerant to pesticide contamination. Strong interactive effects of pesticides were only recorded in ponds treated with the combination of the highest doses. Overall, glyphosate was the most influential driver of aggregate community properties of zooplankton, with biomass and community structure responding rapidly but recovering unequally over time. Total community biomass showed little resistance when first exposed to glyphosate, but rapidly recovered and even increased with glyphosate concentration over time; in contrast, taxon richness decreased in more contaminated ponds but failed to recover. Our results indicate that the biomass of tolerant taxa compensated for the loss of sensitive species after the first exposure, conferring greater community resistance upon a subsequent contamination event; a case of pollution-induced community tolerance in freshwater animals. These findings suggest that zooplankton biomass may be more resilient to agrochemical pollution than community structure; yet all community properties measured in this study were affected at glyphosate concentrations below common water quality guidelines in North America.
Collapse
Affiliation(s)
- Marie-Pier Hébert
- Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada
- Department of Biological Sciences, University of Québec at Montreal, Montréal, Québec, H3C 3V8, Canada
| | - Vincent Fugère
- Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada
- Department of Biological Sciences, University of Québec at Montreal, Montréal, Québec, H3C 3V8, Canada
- Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada
- Département des Sciences de L'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada
| | - Beatrix E Beisner
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada
- Department of Biological Sciences, University of Québec at Montreal, Montréal, Québec, H3C 3V8, Canada
- Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada
| | - Naíla Barbosa da Costa
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada
- Département des Sciences Biologiques, Université de Montréal, Montréal, Québec, H2V 0B3, Canada
| | - Rowan D H Barrett
- Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada
- Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada
- Redpath Museum, McGill University, Montréal, Québec, H3A 0C4, Canada
| | - Graham Bell
- Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada
- Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada
| | - B Jesse Shapiro
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada
- Département des Sciences Biologiques, Université de Montréal, Montréal, Québec, H2V 0B3, Canada
- Department of Microbiology and Immunology, McGill Genome Centre, Montréal, Québec, H3A 0G1, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Montréal, Québec, H3A 0C5, Canada
| | - Andrew Gonzalez
- Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada
- Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada
| | - Gregor F Fussmann
- Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada
- Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada
| |
Collapse
|
13
|
Corrales N, Meerhoff M, Antoniades D. Glyphosate-based herbicide exposure affects diatom community development in natural biofilms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117354. [PMID: 34030084 DOI: 10.1016/j.envpol.2021.117354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Glyphosate herbicide is ubiquitously used in agriculture and weed control. It has now been identified in aquatic ecosystems worldwide, where numerous studies have suggested that it may have both suppressive and stimulatory effects on diverse non-target organisms. We cultured natural biofilms from a hypereutrophic environment to test the effects on periphytic diatoms of exposure to a glyphosate-based herbicide formulation at concentrations from 0 to 10 mg L-1 of active ingredient. There were clear and significant differences between treatments in diatom community structure after the 15-day experiments. Diversity increased more in low glyphosate treatments relative to higher concentrations, and compositional analyses indicated statistically significant differences between glyphosate treatments. The magnitude of change observed was significantly correlated with glyphosate-based herbicide concentration. Our results show that glyphosate-based herbicides have species-selective effects on benthic diatoms that may significantly alter trajectories of community development and therefore may affect benthic habitats and whole ecosystem function.
Collapse
Affiliation(s)
- Natalie Corrales
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay.
| | - Mariana Meerhoff
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Maldonado, 20000, Uruguay; Department of Bioscience, Aarhus University, Silkeborg, Denmark.
| | - Dermot Antoniades
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay; Département de géographie, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
14
|
Brunetti G, Kodešová R, Švecová H, Fér M, Nikodem A, Klement A, Grabic R, Šimůnek J. On the Use of Mechanistic Soil-Plant Uptake Models: A Comprehensive Experimental and Numerical Analysis on the Translocation of Carbamazepine in Green Pea Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2991-3000. [PMID: 33587851 PMCID: PMC8023655 DOI: 10.1021/acs.est.0c07420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 05/04/2023]
Abstract
Food contamination is a major worldwide risk for human health. Dynamic plant uptake of pollutants from contaminated environments is the preferred pathway into the human and animal food chain. Mechanistic models represent a fundamental tool for risk assessment and the development of mitigation strategies. However, difficulty in obtaining comprehensive observations in the soil-plant continuum hinders their calibration, undermining their generalizability and raising doubts about their widespread applicability. To address these issues, a Bayesian probabilistic framework is used, for the first time, to calibrate and assess the predictive uncertainty of a mechanistic soil-plant model against comprehensive observations from an experiment on the translocation of carbamazepine in green pea plants. Results demonstrate that the model can reproduce the dynamics of water flow and solute reactive transport in the soil-plant domain accurately and with limited uncertainty. The role of different physicochemical processes in bioaccumulation of carbamazepine in fruits is investigated through Global Sensitivity Analysis, which shows how soil hydraulic properties and soil solute sorption regulate transpiration streams and bioavailability of carbamazepine. Overall, the analysis demonstrates the usefulness of mechanistic models and proposes a comprehensive numerical framework for their assessment and use.
Collapse
Affiliation(s)
- Giuseppe Brunetti
- Institute
for Soil Physics and Rural
Water Management, University of Natural
Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1180 Vienna, Austria
| | - Radka Kodešová
- Faculty
of Agrobiology, Food and Natural Resources, Dept. of Soil Science
and Soil Protection, Czech University of
Life Sciences Prague, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Helena Švecová
- Faculty
of Fisheries and Protection of Waters, South Bohemian Research Center
of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic
| | - Miroslav Fér
- Faculty
of Agrobiology, Food and Natural Resources, Dept. of Soil Science
and Soil Protection, Czech University of
Life Sciences Prague, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Antonín Nikodem
- Faculty
of Agrobiology, Food and Natural Resources, Dept. of Soil Science
and Soil Protection, Czech University of
Life Sciences Prague, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Aleš Klement
- Faculty
of Agrobiology, Food and Natural Resources, Dept. of Soil Science
and Soil Protection, Czech University of
Life Sciences Prague, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Roman Grabic
- Faculty
of Fisheries and Protection of Waters, South Bohemian Research Center
of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic
| | - Jiří Šimůnek
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| |
Collapse
|
15
|
Ding Y, Li L, Wania F, Zhang Y, Huang H, Liao T, Liu J, Qi S. Formation of non-extractable residues as a potentially dominant process in the fate of PAHs in soil: Insights from a combined field and modeling study on the eastern Tibetan Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115383. [PMID: 32858438 DOI: 10.1016/j.envpol.2020.115383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Whereas non-extractable residue (NER) formation is recognized as an important process affecting the ecological risk of organic contaminants in soils, it is commonly neglected in regional-scale multi-media models assessing chemical environmental fate and risk. We used a combined field and modeling study to elucidate the relative importance of NER formation to the reduction in available organic contaminants compared with fate processes commonly considered in risk assessment models (volatilization, leaching, and biodegradation). Specifically, four polycyclic aromatic hydrocarbons (PAHs), i.e., phenanthrene (Phe), pyrene (Pyr), benzo[a]pyrene (BaP), and benzo[ghi]perylene (BghiP), were spiked and measured in a one-year field pot experiment at four sites with diverse environmental conditions on the eastern Tibetan Plateau. The rate of NER formation was derived as the difference between the overall rate of decline in total-extractable PAH concentrations, obtained by fitting a biphasic first-order model to the measured concentrations, and the sum of the calculated rates of volatilization, leaching, and biodegradation. Our work shows that the total-extractable PAH concentration undergoes a rapid decline and a slow decline, with shorter overall half-lives (especially for BaP and BghiP) than those observed in earlier studies. Generally, NER formation was assessed to be the dominant contributor (64 ± 33%) to the overall decline of PAHs, followed by biodegradation (35 ± 32%); volatilization and leaching were the smallest contributors. In particular, heavier PAHs (i.e. BaP and BghiP) tend to have shorter half-lives in the rapid and the overall decline phase, indicating that the erroneous estimation of environmental fate and risks might be more pronounced for organic contaminants with a large molecular size. The trend of overall decline rates of PAHs displayed a combined effect of NER formation and biodegradation. This work indicates the need to consider NER formation as a process in multi-media models of chemical fate and risk.
Collapse
Affiliation(s)
- Yang Ding
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| | - Li Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; School of Community Health Sciences, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Huanfang Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Ting Liao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Jinhong Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|