1
|
Wang S, Lu H, Zhai Y, Tang Y, Su M, Li H, Wang Y, Liu Y, Ge RS. Inhibition of human and rat placental 3β-hydroxysteroid dehydrogenases by bisphenol A analogues depends on their hydrophobicity: In silico docking analysis. Chem Biol Interact 2024; 403:111251. [PMID: 39313105 DOI: 10.1016/j.cbi.2024.111251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Bisphenol A (BPA) and its analogues are widely used industrial chemicals. Placental 3β-hydroxysteroid dehydrogenases (3β-HSDs) catalyse the conversion of pregnenolone to progesterone. However, the potency of BPA analogues in inhibiting 3β-HSDs activity remains unclear. We investigated the inhibitory effect of 10 BPA analogues on 3β-HSDs activity using an in vitro assay and performed the structure-activity relationship and in silico docking analysis. BPH was the most potent inhibitor of human 3β-HSD1, with an IC50 value of 0.95 μM. BPFL, BPG, DABPA, BPAP, BPZ, DMBPA, and BPB also inhibited human 3β-HSD1 activity, albeit with lower potency. BPG was the most potent inhibitor of rat 3β-HSD4, with an IC50 value of 1.14 μM. BPAP, BPFL, BPG, BPH, BPZ, DABPA, and DMBPA are mixed inhibitors of human 3β-HSD1 and they significantly inhibited human JAr cells to secrete progesterone. The LogP values were inversely correlated with the inhibitory effects. Docking analysis showed that most BPA analogues bind to steroid-binding site of both 3β-HSDs. A pharmacophore containing hydrogen bond donor and hydrophobic region was generated for predicting the inhibitory strength of BPA analogues. In conclusion, this study demonstrates that some BPA analogues are potent inhibitors of 3β-HSDs and lipophilicity determines the inhibitory potency.
Collapse
Affiliation(s)
- Shaowei Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, 325000, Zhejiang Province, China
| | - Han Lu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yingna Zhai
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ming Su
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Huitao Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yiyan Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
2
|
Nayan NM, Husin A, Siran R. The risk of prenatal bisphenol A exposure in early life neurodevelopment: Insights from epigenetic regulation. Early Hum Dev 2024; 198:106120. [PMID: 39293157 DOI: 10.1016/j.earlhumdev.2024.106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Bisphenols are mainly used as protective coatings for plastics and resin-based materials in various consumer products. Industrial producers have a high demand for bisphenol A (BPA) among all bisphenol substitutes for various consumer products. However, according to reports, prolonged exposure to BPA can cause multiple health issues, including neurodevelopmental disorders in young children. BPA exposure during pregnancy has been considered as the primary cause of increasing the risk of neurological disorders in children as their neural systems are designed to respond to any environmental changes during prenatal life. Recently, there has been an increased focus on the effects of prenatal exposure to BPA, as it has been found to alter gene expression related to epigenetic mechanisms like DNA methylation, histone modification, and microRNA expression. Based on the evidence, frequent interactions can lead to inherited changes in an individual's neural profile. In this review, we delve into the current knowledge regarding the toxicity mechanism of BPA for expecting mothers. Next, we will discuss the possible action of BPA on the epigenetic mechanism during brain development. This is especially important to portray an overview on the role of epigenetic modification caused by prenatal BPA exposure and next, give future directions for improving human health risk assessment caused by BPA exposure.
Collapse
Affiliation(s)
- Norazirah Mat Nayan
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Malaysia; Institute of Medical Molecular and Biotechnology (IMMB) Faculty of Medicine, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Andrean Husin
- Faculty of Dentistry, Universiti Teknologi MARA, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, Malaysia
| | - Rosfaiizah Siran
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, Malaysia.
| |
Collapse
|
3
|
Kim SH, Kang DW, Kwon D, Jung YS. Critical role of endoplasmic reticulum stress on bisphenol A-induced cytotoxicity in human keratinocyte HaCaT cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:4091-4104. [PMID: 38629620 DOI: 10.1002/tox.24290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/04/2024] [Accepted: 03/31/2024] [Indexed: 07/14/2024]
Abstract
Bisphenol A (BPA) is widely used in plastic and paper products, and its exposure can occur through skin contact or oral ingestion. The hazardous effects of BPA absorbed through the skin may be more severe; however, few studies have investigated the skin toxicity of BPA. This study investigated the effects of BPA on human epidermal keratinocyte cell lines, which is relevant for skin exposure. BPA treatment reduced cell viability in a time- and concentration-dependent manner and elevated oxidative and endoplasmic reticulum (ER) stress. N-acetylcysteine (NAC), an oxidative stress inhibitor, reduced BPA-induced reactive oxygen species (ROS) levels. However, only 10% of the decreased cell viability was restored at the highest NAC concentration. Treatment with tauroursodeoxycholic acid (TUDCA), which is an ER stress inhibitor, effectively countered the increase in ER stress-related proteins induced by BPA. Moreover, TUDCA treatment led to a reduction in oxidative stress, as demonstrated by the decrease in ROS levels, maintenance of mitochondrial membrane potential, and modulation of stress signaling proteins. Consequently, TUDCA significantly improved BPA-induced cytotoxicity in a concentration-dependent manner. Notably, combined treatment using TUDCA and NAC further reduced the BPA-induced ROS levels; however, no significant difference in cell viability was observed compared with that for TUDCA treatment alone. These findings indicated that the oxidative stress observed following BPA exposure was exacerbated by ER stress. Moreover, the principal factor driving BPA-induced cytotoxicity was indeed ER stress, which has potential implications for developing therapeutic strategies for diseases associated with similar stress responses.
Collapse
Affiliation(s)
- Sou Hyun Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Dong Wan Kang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Doyoung Kwon
- College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
4
|
Kalyva ME, Vist GE, Diemar MG, López-Soop G, Bozada TJ, Luechtefeld T, Roggen EL, Dirven H, Vinken M, Husøy T. Accessible methods and tools to estimate chemical exposure in humans to support risk assessment: A systematic scoping review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124109. [PMID: 38718961 DOI: 10.1016/j.envpol.2024.124109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Exposure assessment is a crucial component of environmental health research, providing essential information on the potential risks associated with various chemicals. A systematic scoping review was conducted to acquire an overview of accessible human exposure assessment methods and computational tools to support and ultimately improve risk assessment. The systematic scoping review was performed in Sysrev, a web platform that introduces machine learning techniques into the review process aiming for increased accuracy and efficiency. Included publications were restricted to a publication date after the year 2000, where exposure methods were properly described. Exposure assessments methods were found to be used for a broad range of environmental chemicals including pesticides, metals, persistent chemicals, volatile organic compounds, and other chemical classes. Our results show that after the year 2000, for all the types of exposure routes, probabilistic analysis, and computational methods to calculate human exposure have increased. Sixty-three mathematical models and toolboxes were identified that have been developed in Europe, North America, and globally. However, only twelve occur frequently and their usefulness were associated with exposure route, chemical classes and input parameters used to estimate exposure. The outcome of the combined associations can function as a basis and/or guide for decision making for the selection of most appropriate method and tool to be used for environmental chemical human exposure assessments in Ontology-driven and artificial intelligence-based repeated dose toxicity testing of chemicals for next generation risk assessment (ONTOX) project and elsewhere. Finally, the choice of input parameters used in each mathematical model and toolbox shown by our analysis can contribute to the harmonization process of the exposure models and tools increasing the prospect for comparison between studies and consistency in the regulatory process in the future.
Collapse
Affiliation(s)
- Maria E Kalyva
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway.
| | - Gunn E Vist
- Norwegian Institute of Public Health, Division for Health Services, Oslo, Norway
| | | | - Graciela López-Soop
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
| | - T J Bozada
- Toxtrack LLC, Baltimore, MD, United States
| | - Thomas Luechtefeld
- Toxtrack LLC, Baltimore, MD, United States; Insilica LLC, Bethesda, MD, United States
| | - Erwin L Roggen
- 3Rs Management and Consulting ApS, Kongens Lyngby, Denmark
| | - Hubert Dirven
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Trine Husøy
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
| |
Collapse
|
5
|
Maridevaru MC, Dube A, Kaimal R, Souwaileh AA, Kannadasan S, Anandan S. An iron metal-organic framework-based electrochemical sensor for identification of Bisphenol-A in groundwater samples. Analyst 2024; 149:3325-3334. [PMID: 38695769 DOI: 10.1039/d4an00499j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Bisphenol A (BPA) is an endocrine disruptor that leaches into food and is significantly employed in food and beverage storage, and source water cycles. To ensure an outstanding and sustainable biosphere while safeguarding human health and well-being, BPA detection is essential, necessitating an efficient detection methodology. Here, we describe an easy-to-use, inexpensive, and overly sensitive electrochemical detector that uses Fe-MOF nanotextures for identifying BPA in groundwater. This sensing electrode device combines the excellent guest interaction potential of organic ligands with the substantial surface area of metal. Using various analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and powder X-ray diffraction (XRD), the structural and physicochemical behaviors of the as-synthesized material were evaluated. Electrochemical BPA detection was enabled by a diffusion-controlled oxidation procedure with a comparable number of both protons and electrons. With a 0.1 μM detection limit, the sensor displayed a linear sensitivity of around 0.1 μM and 15 μM. Additionally, the sensors demonstrated an outstanding recovery with actual water samples as well as a repeatable and steady performance over the course of a month exhibiting minimal interference from typical inorganic and organic species. Due to its notable sensitivity, inexpensive cost, robust selectivity, excellent repeatability, and reuse ability, the electroanalytical possibilities of the Fe-MOF-modified GCE suggest that the device can be implemented into real-world applications in its primed condition.
Collapse
Affiliation(s)
- Madappa C Maridevaru
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| | - Aashutosh Dube
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| | - Reshma Kaimal
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| | - Abdullah Al Souwaileh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sathananthan Kannadasan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | - Sambandam Anandan
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| |
Collapse
|
6
|
Li N, Liu J, Ying G, Lee JCK, Leung TF, Covaci A, Deng WJ. Endocrine disrupting chemicals in children's and their parents' urine: Is the exposure related to the Chinese and Western lifestyle? Int J Hyg Environ Health 2024; 259:114383. [PMID: 38652942 DOI: 10.1016/j.ijheh.2024.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Children are known to be more vulnerable to exposure to endocrine-disrupting chemicals (EDCs) compared to adults, but evaluating the exposure pathways can be challenging. This research employed target and non-target analysis (NTA) to examine the exposure characteristics of EDCs in spot urine samples collected from 46 children's (aged 3-12 years) and their parents in Hong Kong (Chinese/Western lifestyle) and Guangzhou (mainly Chinese lifestyle). The results revealed that the geometric mean concentrations of phthalate esters metabolites (mPAEs) and bisphenols (BPs) in children's urine were 127.3 μg/gcrea and 2.5 μg/gcrea in Guangzhou, and 93.7 μg/gcrea and 2.9 μg/gcrea in Hong Kong, respectively, which were consistent with global levels. NTA identified a total of 1069 compounds, including 106 EDCs, commonly detected in food, cosmetics, and drugs. Notable regional differences were observed between Guangzhou and Hong Kong with potential sources of EDCs including dietary and cosmetic additives, toys, flooring and dust, as well as differences in lifestyles, diet, and living environment. However, age was found to significantly impact EDC exposure. The quantified EDCs (mPAEs and BPs) posed possible health risks to 60% of the children. Moreover, the presence of caffeine in children's urine, which exhibited higher detection rates in children from Hong Kong (95.6%) and Guangzhou (44.4%), warrants further attention. The sources of EDCs exposure in these regions need to be fully confirmed.
Collapse
Affiliation(s)
- Na Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Liu
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Guangguo Ying
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - John Chi-Kin Lee
- Academy of Applied Policy Studies and Education Futures, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China
| | - Ting Fan Leung
- Department of Paediatrics & Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Wen-Jing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China.
| |
Collapse
|
7
|
Lin YJ, Chen HC, Chang JW, Huang HB, Chang WT, Huang PC. Exposure characteristics and cumulative risk assessment of bisphenol A and its substitutes: the Taiwan environmental survey for toxicants 2013. Front Public Health 2024; 12:1396147. [PMID: 38846618 PMCID: PMC11153798 DOI: 10.3389/fpubh.2024.1396147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Ever since the use of bisphenol A (BPA) has been restricted, concerns have been raised regarding the use of its substitutes, such as bisphenol S (BPS) and bisphenol F (BPF). Meanwhile, the EU European Food Safety Authority (EFSA) issued the new tolerable daily intake (TDI) after the latest re-risk assessment for BPA, which enforced the need for cumulative risk assessment in the population. This study was conducted to identify BPA and its substitute's exposure characteristics of the general Taiwanese population and estimate the cumulative risk of bisphenol exposure. Methods Urine samples (N = 366 [adult, 271; minor, 95]) were collected from individuals who participated in the Taiwan Environmental Survey for Toxicants 2013. The samples were analyzed for BPA, BPS, and BPF through ultraperformance liquid chromatography-tandem mass spectrometry. Daily intake (DI) levels were calculated for each bisphenol. Hazard quotients (HQs) were calculated with the consideration of tolerable DI and a reference dose. Additionally, hazard index (HI; sum of HQs for each bisphenol) values were calculated. Results Our study found that the median level of BPA was significantly higher in adults (9.63 μg/g creatinine) than in minors (6.63 μg/g creatinine) (p < 0.001). The DI of BPS was higher in female (0.69 ng/kg/day) than in male (0.49 ng/kg/day); however, the DIs of BPF and BPS were higher in boys (1.15 and 0.26 ng/kg/day, respectively) than in girls (0.57 and 0.20 ng/kg/day, respectively). Most HI values exceeded 1 (99% of the participants) after EFSA re-establish the TDI of BPA. Discussion Our study revealed that the exposure profiles and risk of BPA and its substitute in Taiwanese varied by age and sex. Additionally, the exposure risk of BPA was deemed unacceptable in Taiwan according to new EFSA regulations, and food contamination could be the possible source of exposure. We suggest that the risk of exposure to BPA and its substitutes in most human biomonitoring studies should be reassessed based on new scientific evidence.
Collapse
Affiliation(s)
- Yu-Jung Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Chang Chen
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Ting Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan
| |
Collapse
|
8
|
Sieck NE, Bruening M, van Woerden I, Whisner C, Payne-Sturges DC. Effects of Behavioral, Clinical, and Policy Interventions in Reducing Human Exposure to Bisphenols and Phthalates: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:36001. [PMID: 38477609 PMCID: PMC10936218 DOI: 10.1289/ehp11760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND There is growing interest in evidence-based interventions, programs, and policies to mitigate exposures to bisphenols and phthalates and in using implementation science frameworks to evaluate hypotheses regarding the importance of specific approaches to individual or household behavior change or institutions adopting interventions. OBJECTIVES This scoping review aimed to identify, categorize, and summarize the effects of behavioral, clinical, and policy interventions focused on exposure to the most widely used and studied bisphenols [bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF)] and phthalates with an implementation science lens. METHODS A comprehensive search of all individual behavior, clinical, and policy interventions to reduce exposure to bisphenols and phthalates was conducted using PubMed, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Google Scholar. We included studies published between January 2000 and November 2022. Two reviewers screened references in CADIMA, then extracted data (population characteristics, intervention design, chemicals assessed, and outcomes) for studies meeting inclusion criteria for the present review. RESULTS A total of 58 interventions met the inclusion criteria. We classified interventions as dietary (n = 27 ), clinical (n = 13 ), policy (n = 14 ), and those falling outside of these three categories as "other" (n = 4 ). Most interventions (81%, 47/58) demonstrated a decrease in exposure to bisphenols and/or phthalates, with policy level interventions having the largest magnitude of effect. DISCUSSION Studies evaluating policy interventions that targeted the reduction of phthalates and BPA in goods and packaging showed widespread, long-term impact on decreasing exposure to bisphenols and phthalates. Clinical interventions removing bisphenol and phthalate materials from medical devices and equipment showed overall reductions in exposure biomarkers. Dietary interventions tended to lower exposure with the greatest magnitude of effect in trials where fresh foods were provided to participants. The lower exposure reductions observed in pragmatic nutrition education trials and the lack of diversity (sociodemographic backgrounds) present limitations for generalizability to all populations. https://doi.org/10.1289/EHP11760.
Collapse
Affiliation(s)
- Nicole E. Sieck
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Meg Bruening
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Irene van Woerden
- Department of Community and Public Health, Idaho State University, Pocatello, Idaho, USA
| | - Corrie Whisner
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Devon C. Payne-Sturges
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
9
|
Meng H, Xu R, Xu K, Leng D, Liu L, Ju H, Liu X, Wei Q. A photoelectrochemical aptasensing platform assembled at the heterojunction interface of Cu 3BiS 3 sensitized CuV 2O 6 for bisphenol A. Mikrochim Acta 2024; 191:89. [PMID: 38206415 DOI: 10.1007/s00604-023-06144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
The interaction between the sensitive interfaces of photoelectrochemical (PEC) semiconductor nanomaterials and microscopic matter creates endless potential for the efficient detection of endocrine disruptor. This work presents the development of a high-efficiency PEC aptasensor for bisphenol A (BPA) monitoring based on Cu3BiS3 sensitized CuV2O6 nanocomposites with exceptional visible-light PEC activity. We implemented the integration of Cu3BiS3 nanosheet photosensitizer to sensitize the CuV2O6 nanowire structure that was synthesized utilizing a facile hydrothermal approach. The band gap alignment between Cu3BiS3 and CuV2O6 facilitated enduring PEC response yielding an efficient interfacial structure. The surface of the CuV2O6/Cu3BiS3 electrode was modified with BPA aptamer, enabling specific binding with BPA and precise quantification of its content. The developed aptamer sensors possess a wide detection range of 5.00 × 10-1 to 5.00 × 104 ng/mL, and a low detection limit of 1.60 × 10-1 ng/mL (at S/N = 3). After undergoing 20 testing cycles and enduring long-term storage, the sensor maintained its stability and showcased excellent repeatability and reproducibility. This study presents a promising methodology for the detection of BPA in environmental settings.
Collapse
Affiliation(s)
- Han Meng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Rui Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Kun Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Dongquan Leng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Lei Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xuejing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
10
|
Wang Y, Zhang X, Guo F, Li A, Fan J. Estimating the temporal and spatial distribution and threats of bisphenol A in temperate lakes using machine learning models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115750. [PMID: 38043415 DOI: 10.1016/j.ecoenv.2023.115750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/03/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Bisphenol A (BPA) is easily enriched in many human-disturbed watersheds, particularly lakes with poor water mobility, which is posing a threat to aquatic biota. While previous studies have focused on the concentration of BPA in water and its toxicity to aquatic organisms, a small amount of measured data is not enough to reveal the temporal and spatial distribution and threats of BPA, and estimate the ecological risk in watersheds. Therefore, we collected 164 measured BPA data points from Taihu Lake to develop machine learning models using random forest (RF), support vector machine (SVM) and least square regression (LSR) and created month-by-month watershed prediction maps in temperate lakes to estimate the spatiotemporal distribution and threats of BPA. Due to RF's superior robustness to noisy data, the RF model exhibits the best performance among the three algorithms. The RF model showed acceptable predictive performance on the modeling dataset (coefficients of determination and root-mean-square error for the training set were 0.927 and 17.499, respectively, and 0.607, 39.645 for the validation set, respectively). The maps indicated that areas susceptible to anthropogenic activities were more severely polluted by BPA, and rainy climate may favor the migration of BPA to aquatic ecosystems. The model was also applied to predict 42 data points of BPA collected from Dianchi Lake, and the results showed that most predicted data were within a factor of 10 of the measured data, but the prediction accuracy of the model has declined. The ecological risks in the two lakes were evaluated and attention should be paid to the regions with higher risks. Our study provided a novel idea for comprehensive monitoring of an unconventional trace pollutant with endocrine disrupting effects in aquatic ecosystems and analyzing their spatiotemporal distribution, which will contribute to the scientific assessment of the ecological risk of BPA.
Collapse
Affiliation(s)
- Yilin Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaotian Zhang
- Chongqing Ecological and Environmental Monitoring Center, Chongqing 401147, China.
| | - Fen Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 511458, China
| | - Aopu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
11
|
Chen J, Zhao S, Wesseling S, Kramer NI, Rietjens IM, Bouwmeester H. Acetylcholinesterase Inhibition in Rats and Humans Following Acute Fenitrothion Exposure Predicted by Physiologically Based Kinetic Modeling-Facilitated Quantitative In Vitro to In Vivo Extrapolation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20521-20531. [PMID: 38008925 PMCID: PMC10720383 DOI: 10.1021/acs.est.3c07077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
Worldwide use of organophosphate pesticides as agricultural chemicals aims to maintain a stable food supply, while their toxicity remains a major public health concern. A common mechanism of acute neurotoxicity following organophosphate pesticide exposure is the inhibition of acetylcholinesterase (AChE). To support Next Generation Risk Assessment for public health upon acute neurotoxicity induced by organophosphate pesticides, physiologically based kinetic (PBK) modeling-facilitated quantitative in vitro to in vivo extrapolation (QIVIVE) approach was employed in this study, with fenitrothion (FNT) as an exemplary organophosphate pesticide. Rat and human PBK models were parametrized with data derived from in silico predictions and in vitro incubations. Then, PBK model-based QIVIVE was performed to convert species-specific concentration-dependent AChE inhibition obtained from in vitro blood assays to corresponding in vivo dose-response curves, from which points of departure (PODs) were derived. The obtained values for rats and humans were comparable with reported no-observed-adverse-effect levels (NOAELs). Humans were found to be more susceptible than rats toward erythrocyte AChE inhibition induced by acute FNT exposure due to interspecies differences in toxicokinetics and toxicodynamics. The described approach adequately predicts toxicokinetics and acute toxicity of FNT, providing a proof-of-principle for applying this approach in a 3R-based chemical risk assessment paradigm.
Collapse
Affiliation(s)
- Jiaqi Chen
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | | | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Nynke I. Kramer
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Ivonne M.C.M. Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
12
|
Delmaar CJE, Schreurs R, Bakker MI, Minnema J, Bokkers BGH. PACEMweb: a tool for aggregate consumer exposure assessment. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:971-979. [PMID: 36522445 PMCID: PMC10733135 DOI: 10.1038/s41370-022-00509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND To ascertain the safe use of chemicals that are used in multiple consumer products, the aggregate human exposure, arising from combined use of multiple consumer products needs to be assessed. OBJECTIVE In this work the Probabilistic Aggregate Consumer Exposure Model (PACEM) is presented and discussed. PACEM is implemented in the publicly available web tool, PACEMweb, for aggregate consumer exposure assessment. METHODS PACEM uses a person-oriented simulation method that is based on realistic product usage information obtained in surveys from several European countries. PACEM evaluates aggregate exposure in a population considering individual use and co-use patterns as well as variation in product composition. Product usage data is included on personal care products (PCPs) and household cleaning products (HCPs). RESULTS PACEM has been implemented in a web tool that supports broad use in research as well as regulatory risk assessment. PACEM has been evaluated in a number of applications, testing and illustrating the advantage of the person-oriented modeling method. Also, PACEM assessments have been evaluated by comparing its results with biomonitoring information. SIGNIFICANCE PACEM enables the assessment of realistic aggregate exposure to chemicals in consumer products. It provides detailed insight into the distribution of exposure in a population as well as products that contribute the most to exposure. This allows for better informed decision making in the risk management of chemicals. IMPACT Realistic assessment of the total, aggregate exposure of consumers to chemicals in consumer products is necessary to guarantee the safe use of chemicals in these products. PACEMweb provides, for the first time, a publicly available tool to assist in realistic aggregate exposure assessment of consumers to chemicals in consumer products.
Collapse
Affiliation(s)
- Christiaan J E Delmaar
- National Institute for Public Health and the Environment-RIVM, Bilthoven, The Netherlands.
| | - Roel Schreurs
- National Institute for Public Health and the Environment-RIVM, Bilthoven, The Netherlands
| | - Martine I Bakker
- National Institute for Public Health and the Environment-RIVM, Bilthoven, The Netherlands
| | - Jordi Minnema
- National Institute for Public Health and the Environment-RIVM, Bilthoven, The Netherlands
| | - Bas G H Bokkers
- National Institute for Public Health and the Environment-RIVM, Bilthoven, The Netherlands
| |
Collapse
|
13
|
Yu Y, Ren Z, Wang H, Sang J, Chen Y, Zhang M, Zhu Y, Wang Y, Ge RS. Benzene ring bisphenol A substitutes potently inhibit human, rat, and mouse gonadal 3β-hydroxysteroid dehydrogenases: Structure-activity relationship and in silico docking analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115461. [PMID: 37703809 DOI: 10.1016/j.ecoenv.2023.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Bisphenol A (BPA) is a chemical used in the production of certain plastics and resins. Recent research has found that BPA can inhibit the activity of 3β-hydroxysteroid dehydrogenase/Δ5,4-isomerases (3β-HSDs). Whether benzene ring BPA substitutes can inhibit human, rat, and mouse gonadal 3β-HSDs, the structure-activity relationship and the underlying mechanism remain unclear. In this study, we compared 6 benzene ring BPA substitutes to BPA in the inhibition of human, rat, and mouse gonadal 3β-HSDs and conducted structure-activity relationship and in silico docking analysis. The inhibitory activity (IC50) of human 3β-HSD2 in KGN cells ranged from about 0.02 μM for bisphenol H to 8.75 μM for BPA, that of rat 3β-HSD1 in testicular microsomes ranged from 0.099 μM for bisphenol H to 31.32 μM for BPA, and that of mouse 3β-HSD6 ranged from 0.021 μM for BPH to ineffectiveness for 100 μM BPA. These compounds acted as mixed inhibitors with LogP inversely correlated with IC50 and ΔG positively correlated with IC50 value. Docking analysis showed that these compounds bind to the steroid active site of the 3β-HSD enzymes. In conclusion, some benzene ring BPA substitutes potently inhibit gonadal 3β-HSD in various species, and lipophilicity and binding affinity determine their inhibitory strength.
Collapse
Affiliation(s)
- Yang Yu
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zheyuan Ren
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hong Wang
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianmin Sang
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ya Chen
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minjie Zhang
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, and Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
14
|
Wang Y, Ge Y, Wang R, Liu Z, Yin Z, Yang Z, Liu F, Yang W. MOF-Derived Ni/ZIF-8/ZnO Arrays on Carbon Fiber Cloth for Efficient Adsorption-Catalytic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2303928. [PMID: 37625020 DOI: 10.1002/smll.202303928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/02/2023] [Indexed: 08/27/2023]
Abstract
The catalytic oxidation of toxic organic pollutants in water requires enhanced efficiency for commercial applications. A ZnO nanorod array grown on a carbon fiber cloth (CFC) serves as the zinc source to ensure that the Ni/ZIF-8/ZnO nanoreactor is constructed. The Ni/ZIF-8/ZnO/CFC nanoreactor efficiently activates peroxymonosulfate (PMS) for bisphenol A (BPA) degradation owing to its high density of active sites, high adsorbability, and dispersibility structure, which concentrates catalytic and adsorptive sites within a confined space. Experimental and theoretical calculations clearly show that the introduction of Ni is beneficial for improving the adsorption of BPA and the activation of PMS. The synergistic mechanism of BPA adsorption-PMS activation is also investigated, and the degradation pathway of BPA is examined. Moreover, a filter catalytic unit is constructed using Ni/ZIF-8/ZnO/CFC to achieve a continuous zero discharge of BPA, which is convenient for nanocatalyst recycling. This study aims to develop a new strategy for the removal of emerging organic pollutants from water using a system with strong adsorption and catalytic capabilities.
Collapse
Affiliation(s)
- Yue Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yu Ge
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ruoding Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zifan Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhonglong Yin
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhen Yang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Fuqiang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Weiben Yang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
15
|
Chen J, Noorlander A, Wesseling S, Bouwmeester H, Kramer NI, Rietjens IMCM. Integrating In Vitro Data and Physiologically Based Kinetic Modeling to Predict and Compare Acute Neurotoxic Doses of Saxitoxin in Rats, Mice, and Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37478462 PMCID: PMC10399293 DOI: 10.1021/acs.est.3c01987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Current climate trends are likely to expand the geographic distribution of the toxigenic microalgae and concomitant phycotoxins, making intoxications by such toxins a global phenomenon. Among various phycotoxins, saxitoxin (STX) acts as a neurotoxin that might cause severe neurological symptoms in mammals following consumptions of contaminated seafood. To derive a point of departure (POD) for human health risk assessment upon acute neurotoxicity induced by oral STX exposure, a physiologically based kinetic (PBK) modeling-facilitated quantitative in vitro to in vivo extrapolation (QIVIVE) approach was employed. The PBK models for rats, mice, and humans were built using parameters from the literature, in vitro experiments, and in silico predictions. Available in vitro toxicity data for STX were converted to in vivo dose-response curves via the PBK models established for these three species, and POD values were derived from the predicted curves and compared to reported in vivo toxicity data. Interspecies differences in acute STX toxicity between rodents and humans were found, and they appeared to be mainly due to differences in toxicokinetics. The described approach resulted in adequate predictions for acute oral STX exposure, indicating that new approach methodologies, when appropriately integrated, can be used in a 3R-based chemical risk assessment paradigm.
Collapse
Affiliation(s)
- Jiaqi Chen
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, Wageningen, Gelderland 6708 WE, The Netherlands
| | - Annelies Noorlander
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, Wageningen, Gelderland 6708 WE, The Netherlands
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, Wageningen, Gelderland 6708 WE, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, Wageningen, Gelderland 6708 WE, The Netherlands
| | - Nynke I Kramer
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, Wageningen, Gelderland 6708 WE, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, Wageningen, Gelderland 6708 WE, The Netherlands
| |
Collapse
|
16
|
Hu M, Zhang Z, Zhang Y, Zhan M, Qu W, He G, Zhou Y. Development of human dermal PBPK models for the bisphenols BPA, BPS, BPF, and BPAF with parallel-layered skin compartment: Basing on dermal administration studies in humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161639. [PMID: 36649768 DOI: 10.1016/j.scitotenv.2023.161639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Risk assessment of human exposure to bisphenols (BPs) including bisphenol A, S, F and AF (BPA, BPS, BPF and BPAF) have suggested that except for ingestion, health risk resulting from dermal contact is not negligible. However, the absorption kinetics of BPA substitutes in humans following dermal exposure have been poorly studied. This study aimed to address the knowledge gap in physiologically based pharmacokinetic (PBPK) modeling of BPA and its high-concerned substitutes (BPS, BPF and BPAF) following dermal administration. Parallel-layered skin compartmental model for dermal absorption of BPs was for the first time proposed and human dermal administration studies were conducted to determine dermal bio-accessibility of BPS from thermal paper (TP) (n = 4), BPF (n = 4) and BPAF (n = 5) from personal care products (PCPs). Further, pharmacokinetics of BPS and its metabolites following human handling TP were investigated and the dermal PBPK models for BPA and BPS were validated using the available human biomonitoring data. Overall, 28.03 % ± 13.76 % of BPS in TP was transferred to fingers followed by absorption of 96.17 % ± 2.78 % of that. The dermal bio-accessibilities of BPs in PCPs were 31.65 % ± 2.90 % for BPF and 12.49 % ± 1.66 % for BPAF. Monte Carlo analysis indicated that 90 % of the predicted variability fell within one order of magnitude, which suggested that the developed PBPK models had medium uncertainty. Global sensitivity analysis revealed that the model uncertainty is mainly attributed to the variabilities of dermal absorption parameters. Compared with the previous models for BPs, the developed dermal PBPK models were capable of more accurate predictions of the internal dose metric in target organs following human dermal exposure to BPs via TP and PCPs routes. These results suggested that the developed human dermal PBPK models would provide an alternative tool for assessing the risk of human exposure to BPs through dermal absorption.
Collapse
Affiliation(s)
- Man Hu
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China; Pudong New Area Centers for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, China
| | - Zhichun Zhang
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China; Pudong New Area Centers for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, China
| | - Yining Zhang
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China; Pudong New Area Centers for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, China
| | - Ming Zhan
- Pudong New Area Centers for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, China
| | - Weidong Qu
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China
| | - Gengsheng He
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China
| | - Ying Zhou
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China; Pudong New Area Centers for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, China.
| |
Collapse
|
17
|
Zhang T, Cao Y, Chen M, Xie L. Recent advances in CNTs-based sensors for detecting the quality and safety of food and agro-product. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
18
|
Hubal R, Cohen Hubal EA. Simulating patterns of life: More representative time-activity patterns that account for context. ENVIRONMENT INTERNATIONAL 2023; 172:107753. [PMID: 36682205 PMCID: PMC11057331 DOI: 10.1016/j.envint.2023.107753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Complex contributions of environment to health are intimately connected to human behavior. Modeling of human behaviors and their influences helps inform important policy decisions related to critical environmental and public health challenges. A typical approach to human behavior modeling involves generating daily schedules based on time-activity patterns of individual humans, simulating 'agents' with these schedules, and interpreting patterns of life that emerge from the simulation to inform a research question. Current behavior modeling, however, rarely incorporates the context that surrounds individuals' truly broad scope of activities and influences on those activities. OBJECTIVES We describe in detail a range of elements involved in generating time-activity patterns and connect work in the social science field of behavior modeling with applications in exposure science and environmental health. We propose a framework for behavior modeling that takes a systems approach and considers the broad scope of activities and influences required to simulate more representative patterns of life and thus improve modeling that underlies understanding of environmental contributions to health and associated decisions to promote and protect public health. METHODS We describe an agent-based modeling approach reliant on generating a population's schedules, filtering the schedules, simulating behavior using the schedules, analyzing the emergent patterns, and interrogating results that leverages general empirical information in a systems context to inform fit-for-purpose action. DISCUSSION We propose a centralized and standardized program to codify behavior information and generate population schedules that researchers can select from to simulate human behavior and holistically characterize human-environment interactions for a variety of public health applications.
Collapse
|
19
|
Wang X, Zhao X, Shi D, Dong Z, Zhang X, Liang W, Liu L, Wang X, Wu F. Integrating Physiologically Based Pharmacokinetic Modeling-Based Forward Dosimetry and in Vitro Bioassays to Improve the Risk Assessment of Organophosphate Esters on Human Health. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1764-1775. [PMID: 36591971 DOI: 10.1021/acs.est.2c04576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The ability to accurately assess the health risks of contaminants is limited by the shortcomings of toxicological standards. Using organophosphate esters (OPEs) as an example, this study attempted to integrate physiologically based pharmacokinetic (PBPK)-based forward dosimetry and in vitro bioassays to assess the likelihood of contaminants inducing biological effects in humans. The total exposure level of OPEs for Chinese residents was 19.5 ± 8.71 ng/kg/day with inhalation being the main exposure pathway. Then, human PBPK models were developed for individual OPEs to predict their steady-state concentrations in human tissues, and the predicted median levels in blood were close to the measurements. The reference doses (RfDs) of OPEs based on in vitro bioassays were comparable to in vivo animal-derived RfDs, demonstrating the reliability of in vitro bioassays. Therefore, the likelihood of OPEs inducing bioactivities in humans (RQin-vitro) was calculated using in vitro toxicity data and OPE levels in human tissues. The RQin-vitros of tris(2-chloroisopropyl) phosphate, tris(1,3-dichloropropyl) phosphate, and triphenyl phosphate (7.68 × 10-5-3.18 × 10-3) were comparable to the risks assessed using traditional RfDs (5.22 × 10-5-1.94 × 10-3), indicating the credibility of the method proposed in this study. This study establishes a new framework to improve the health risk assessment of contaminants without sufficient toxicity data and minimize the need for animal experimentation.
Collapse
Affiliation(s)
- Xiaolei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Di Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, Beijing 100191, P. R. China
| | - Xiao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Lingling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| |
Collapse
|
20
|
Huang Y, Zhang W, Cui N, Xiao Z, Zhao W, Wang R, Giesy JP, Su X. Fluorene-9-bisphenol regulates steroidogenic hormone synthesis in H295R cells through the AC/cAMP/PKA signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113982. [PMID: 35987080 DOI: 10.1016/j.ecoenv.2022.113982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Fluorene-9-bisphenol (BHPF), which has been used as a substitute for bisphenol A (BPA) in consumer goods and industrial products, can be detected in environmental media and human urine. BHPF has been reported to have endocrine-disrupting effects, whereas deleterious effects on steroidogenesis in H295R cells and underlying mechanisms are still unclear. Here, we investigated effects of BHPF on steroidogenesis using human adrenocortical carcinoma cells (H295R). Cytotoxicity was initially assessed and half-maximal inhibitory concentration (IC50) was determined based on proliferation of cells. Responses of four steroid hormones, aldosterone, cortisol, testosterone and 17β-estradiol (E2), and ten critical genes, StAR, HMGR, CYP11A1, CYP11B1, CYP11B1, HSD3B2, CYP21, CYP17, 17β-HSD, and CYP19, involved in steroidogenesis after exposure to non-cytotoxic concentrations of BHPF were determined in the presence or absence of 100 μM dbcAMP. Adenylate cyclase (AC) activity, intracellular concentrations of cAMP, PKA activity and amounts of steroidogenic factor-1 (SF-1) gene and expressions of proteins were determined to elucidate underlying mechanisms of effects on steroidogenesis. BHPF was cytotoxic to H295R cells in a dose- and time-dependent manner. Effects on production of hormones results demonstrated that exposure to greater concentrations of BHPF inhibited productions of aldosterone, cortisol, testosterone and E2 by down-regulation of steroidogenic genes. Inhibition of AC activity, intercellular cAMP content and PKA activity after exposure to BHPF implied that the AC/cAMP/PKA signaling pathway was involved in BHPF-induced suppression of steroidogenesis in H295R cells. Additionally, BHPF inhibited steroidogenesis and expressions of steroidogenic genes via decreasing expression of SF-1 protein, both in basal and dbcAMP-induced treatment. These results contributed to understanding molecular mechanisms of BHPF-induced effects on steroidogenesis and advancing the comprehensive risk assessment of BPs.
Collapse
Affiliation(s)
- Yuan Huang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Wei Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Na Cui
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Zhiming Xiao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Wenyu Zhao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences, and Toxicology Center, University of Saskatchewan, 52 Campus Dr, Saskatoon, SK S7N 5B4, Canada; Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, 784 Wilson Rd, East Lansing, MI 48824, USA; Department of Environmental Science, Baylor University, 97266 One Bear Place, Waco, TX 76798, USA.
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| |
Collapse
|
21
|
Schlüter U, Meyer J, Ahrens A, Borghi F, Clerc F, Delmaar C, Di Guardo A, Dudzina T, Fantke P, Fransman W, Hahn S, Heussen H, Jung C, Koivisto J, Koppisch D, Paini A, Savic N, Spinazzè A, Zare Jeddi M, von Goetz N. Exposure modelling in Europe: how to pave the road for the future as part of the European Exposure Science Strategy 2020-2030. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:499-512. [PMID: 35918394 PMCID: PMC9349043 DOI: 10.1038/s41370-022-00455-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 05/26/2023]
Abstract
Exposure models are essential in almost all relevant contexts for exposure science. To address the numerous challenges and gaps that exist, exposure modelling is one of the priority areas of the European Exposure Science Strategy developed by the European Chapter of the International Society of Exposure Science (ISES Europe). A strategy was developed for the priority area of exposure modelling in Europe with four strategic objectives. These objectives are (1) improvement of models and tools, (2) development of new methodologies and support for understudied fields, (3) improvement of model use and (4) regulatory needs for modelling. In a bottom-up approach, exposure modellers from different European countries and institutions who are active in the fields of occupational, population and environmental exposure science pooled their expertise under the umbrella of the ISES Europe Working Group on exposure models. This working group assessed the state-of-the-art of exposure modelling in Europe by developing an inventory of exposure models used in Europe and reviewing the existing literature on pitfalls for exposure modelling, in order to identify crucial modelling-related strategy elements. Decisive actions were defined for ISES Europe stakeholders, including collecting available models and accompanying information in a living document curated and published by ISES Europe, as well as a long-term goal of developing a best-practices handbook. Alongside these actions, recommendations were developed and addressed to stakeholders outside of ISES Europe. Four strategic objectives were identified with an associated action plan and roadmap for the implementation of the European Exposure Science Strategy for exposure modelling. This strategic plan will foster a common understanding of modelling-related methodology, terminology and future research in Europe, and have a broader impact on strategic considerations globally.
Collapse
Affiliation(s)
- Urs Schlüter
- Federal Institute for Occupational Safety and Health (BAuA), Friedrich-Henkel-Weg 1-25, D-44149, Dortmund, Germany.
| | - Jessica Meyer
- Federal Institute for Occupational Safety and Health (BAuA), Friedrich-Henkel-Weg 1-25, D-44149, Dortmund, Germany
| | - Andreas Ahrens
- Exposure and Supply Chain Unit, European Chemicals Agency (ECHA), P.O. Box 400, FI-00121, Helsinki, Finland
| | - Francesca Borghi
- Department of Science and High Technology, University of Insubria, 22100, Como, Italy
| | - Frédéric Clerc
- National Institute for Research and Safety (INRS), Pollutants Metrology Division, Nancy, France
| | - Christiaan Delmaar
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, 22100, Como, Italy
| | - Tatsiana Dudzina
- Exxon Mobil Petroleum and Chemical B.V., Hermeslaan 2, 1831, Machelen, Belgium
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs, Lyngby, Denmark
| | - Wouter Fransman
- TNO, Department Risk Analysis for Products in Development, P.O. Box 80015, 3508 TA, Utrecht, The Netherlands
| | - Stefan Hahn
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Henri Heussen
- Cosanta BV, Stationsplein Noord-Oost 202, 1117 CJ, Schiphol-Oost, The Netherlands
| | - Christian Jung
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, D-10589, Berlin, Germany
| | - Joonas Koivisto
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, PL 64, FI-00014, UHEL, Helsinki, Finland
| | - Dorothea Koppisch
- Section 1.3 Exposure Monitoring-MGU, Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Alte Heerstr. 111, 53757, Sankt Augustin, Germany
| | - Alicia Paini
- European Commission Joint Research Centre (JRC), Ispra, Italy
| | - Nenad Savic
- Center for Primary Care and Public Health, Unisanté, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Andrea Spinazzè
- Department of Science and High Technology, University of Insubria, 22100, Como, Italy
| | - Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Natalie von Goetz
- Swiss Federal Institute of Technology (ETH Zurich), Rämistrasse 101, 8092, Zurich, Switzerland.
- Swiss Federal Office of Public Health (FOPH), Schwarzenburgstrasse 157, 3003, Bern, Switzerland.
| |
Collapse
|
22
|
The Mixture of Bisphenol-A and Its Substitutes Bisphenol-S and Bisphenol-F Exerts Obesogenic Activity on Human Adipose-Derived Stem Cells. TOXICS 2022; 10:toxics10060287. [PMID: 35736896 PMCID: PMC9229358 DOI: 10.3390/toxics10060287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/13/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022]
Abstract
Bisphenol A (BPA) and its substitutes, bisphenol F (BPF) and S (BPS), have previously shown in vitro obesogenic activity. This study was designed to investigate their combined effect on the adipogenic differentiation of human adipose-derived stem cells (hASCs). Cells were exposed for 14 days to an equimolar mixture of bisphenols (MIX) (range 10 nM–10 µM). Oil Red staining was used to measure intracellular lipid accumulation, quantitative real-time polymerase chain reaction (qRT-PCR) to study gene expression of adipogenic markers (PPARγ, C/EBPα, LPL, and FABP4), and Western Blot to determine their corresponding proteins. The MIX promoted intracellular lipid accumulation in a dose-dependent manner with a maximal response at 10 µM. Co-incubation with pure antiestrogen (ICI 182,780) inhibited lipid accumulation, suggesting that the effect was mediated by the estrogen receptor. The MIX also significantly altered the expression of PPARγ, C/EBPα, LPL, and FABP4 markers, observing a non-monotonic (U-shaped) dose-response, with maximal gene expression at 10 nM and 10 µM and lesser expression at 1 µM. This pattern was not observed when bisphenols were tested individually. Exposure to MIX (1–10 µM) also increased all encoded proteins except for FABP4, which showed no changes. Evaluation of the combined effect of relevant chemical mixtures is needed rather than single chemical testing.
Collapse
|
23
|
Huang M, Huang X, Yong L, Jia D, Miao W, Liu H, Yi Z. Insight on the microscopic binding mechanism of bisphenol compounds (BPs) with transthyretin (TTR) based on multi-spectroscopic methods and computational simulations. Anal Bioanal Chem 2022; 414:3765-3780. [PMID: 35394160 DOI: 10.1007/s00216-022-04028-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
Thyroid hormones are involved in numerous physiological processes as regulators of metabolism, regulating organ growth, and mental state. Bisphenol compounds (BPs) are recognized as chemicals that interfere with endocrine balance. Because BPs have a similar structure to thyroxine, they can compete for binding to thyroid protein and disrupt the normal physiological activity of the thyroid system. In this study, three typical bisphenol compounds were selected to explore the interaction between BPs and TTR by computer simulations and multi-spectroscopic methods. The results revealed that BPs quenched the endogenous fluorescence of TTR via the combination of static quenching and non-radiative energy transfer, and the van der Waals forces and hydrogen bonding played a synergistic role in the binding process of BPs and TTR. Furthermore, the three-dimensional fluorescence spectroscopy, UV-vis spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy, which were employed to determine the conformation of protein, revealed that binding of BPs with TTR could induce conformational changes in TTR. In addition, the binding sites and the residues surrounding the BPs within the TTR were determined through molecular docking and molecular dynamics simulation. Therefore, this work provides new insights into the interaction between BPs and TTR to evaluate the potential toxicity of BPs.
Collapse
Affiliation(s)
- Muwei Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Xiaomei Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Li Yong
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Dan Jia
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Wangli Miao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Hongyan Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Zhongsheng Yi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
24
|
Baralla E, Pasciu V, Varoni MV, Nieddu M, Demuro R, Demontis MP. Bisphenols' occurrence in bivalves as sentinel of environmental contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147263. [PMID: 33930805 DOI: 10.1016/j.scitotenv.2021.147263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Bisphenols are massively used in several manufacture processes such that bisphenol A (BPA) is ubiquitous in environment worldwide. After the implementation of regulations about BPA use, manufacturers have moved their production toward alternative substances structurally similar to it. Unfortunately, BPA analogues, given their structural similarity, exert also similar adverse effects. This review aims to investigate the occurrence of bisphenols (BPs) in bivalve molluscs. In this way, valuable information on the amount of BPs released into the environment in different areas are given. The current research indicates that BPA presence in bivalve molluscs has been investigated in Asia (Indian Ocean and Pacific Ocean), Europe (Mediterranean Sea, Baltic Sea and Atlantic Ocean) and America (Lake Mead, Nevada) with the highest amount of studies reported in bivalves harvested in Asian Coasts. BPA analogues are frequently detected in several matrices and their levels will continuously increase in the environment. Nevertheless, there is a current lack of studies analysing BPs other than BPA in bivalves. Further investigations should be conducted in this direction, in order to assess environmental distribution and the hazard for animals and human health given that seafood consumption could be an important pathway of bisphenols intake.
Collapse
Affiliation(s)
- Elena Baralla
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari, Italy.
| | - Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari, Italy
| | - Maria Vittoria Varoni
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari, Italy
| | - Maria Nieddu
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23, Sassari, Italy
| | - Roberto Demuro
- Revenue Agency, Provincial Division of Sassari, Territory Office, piazzale Falcone 5e, Sassari, Italy
| | - Maria Piera Demontis
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari, Italy
| |
Collapse
|
25
|
Huang M, Li X, Jia S, Liu S, Fu L, Jiang X, Yang M. Bisphenol AF induces apoptosis via estrogen receptor beta (ERβ) and ROS-ASK1-JNK MAPK pathway in human granulosa cell line KGN. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116051. [PMID: 33189448 DOI: 10.1016/j.envpol.2020.116051] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol AF (BPAF) is an emerging environmental pollutant. Although BPAF is widely spread in the environment and human surroundings, its interference with ovarian function has not been fully elucidated. The aim of this study was to identify the mechanism underlying the effect of BPAF on the apoptosis of KGN cells, which maintain the physiological characteristics of ovarian granulosa cells. Our results indicated that BPAF induces KGN cell apoptosis in a concentration- and time-dependent manner. Meanwhile, BPAF exposure significantly promoted the expression of pro-apoptotic proteins, including Bax, Bid and Bak, while the expression of anti-apoptotic proteins, such as Bcl-2, Bcl-xL and Mcl-1, decreased significantly. We further detected a significant increase in intracellular ROS levels in response to high concentrations of BPAF exposure. After blocking the corresponding pathway, it was found that ROS mediates ASK1 and JNK activation. Furthermore, the role of Ca2+ overload and estrogen receptor β (ERβ) in BPAF-induced KGN cell apoptosis was also confirmed by using inhibitors. These results suggest that BPAF has potential reproductive toxicity for females, and ROS-ASK1-JNK axis may play a key role in BPAF-induced ovarian dysfunction. In addition, Ca2+ overload and ERβ pathway activation may also be an important mechanism of reproductive toxicity of BPAF.
Collapse
Affiliation(s)
- Mingquan Huang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Sichuan Treatment Center for Gynaecologic and Breast Diseases (Breast Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xingjie Li
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Shengjun Jia
- Animal Disease Prevention and Control Center of Zhongshan District, Liupanshui, 553000, China
| | - Shuang Liu
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Li Fu
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xue Jiang
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Meng Yang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
26
|
Xu L, Duan W, Chen F, Zhang J, Li H. A photoelectrochemical aptasensor for the determination of bisphenol A based on the Cu (I) modified graphitic carbon nitride. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123162. [PMID: 32563909 DOI: 10.1016/j.jhazmat.2020.123162] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) has been penetrating every corner of our daily life via the entities of children's toys, food containers and electronic equipment. The ubiquitous exposure of BPA urges the implementation of supervising its emission in environment. This work designs a method of photoelectrochemical (PEC) aptasensing for the determination of BPA based on the Cu(I) modified carbon nitride (Cu/g-C3N4). The Cu/g-C3N4 was prepared by solvothermal reaction with the ionic liquid bis(1-hexadecyl-3-methylimidazolium) tetrachlorocuprate (II) as Cu source. Cu/g-C3N4 displays excellent PEC performances due to the introduction of Cu(I). The visible light absorption capacity and conductivity of g-C3N4 can be enhanced by introducing Cu(I). With the help of BPA-binding aptamer immobilized on the surface of Cu/g-C3N4, the Cu/g-C3N4 PEC aptasensor has adopted for the determination of BPA. The PEC aptasensor exhibits a well-fitted linear correlation between the response photocurrent signal and the logarithm of the concentration of BPA. The PEC aptasensor shows a distinguished capability of BPA detection with a wide detection range of 5.00 × 10-11 to 5.00 × 10-5 g L-1 and low detection limit of 1.60 × 10-11 g L-1 (at S/N = 3). This work provides a profound insight for detecting BPA in environmental water.
Collapse
Affiliation(s)
- Li Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Wei Duan
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Feng Chen
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, PR China
| | - Jianming Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Henan Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China.
| |
Collapse
|
27
|
Wang Y, Guan J, Li L, Wang Z, Yuan X, Yan Y, Li X, Lu N. Graphite-bridged indirect Z-scheme system TiO 2-C-BiVO 4 film with enhanced photoelectrocatalytic activity towards serial bisphenols. ENVIRONMENTAL RESEARCH 2020; 191:110221. [PMID: 32946890 DOI: 10.1016/j.envres.2020.110221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/02/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Due to the increase in the occurrence of bisphenols (BPs) in the environments, it is urgent to develop efficient and ecofriendly methods for their removal. A novel, indirect Z-scheme TiO2-C-BiVO4 film was prepared by a sol-gel method combined with hydrothermal carbonization. The doped graphite carbon was generated in situ from glucose, which acted as an electron-transfer bridge for the Z-scheme system to enhance the heterojunction tightness between TiO2 and BiVO4. This resulted in an increasing separation efficiency of photogenerated electrons and holes and a stronger redox ability of the TiO2-C-BiVO4 film for the degradation and detoxification of BPs. The degradation efficiency of BPs was over 95% in 240 min, except for that of 4,4'-sulphonyldiphenol (BPS) due to the presence of the OSO group, and all of the BPs were nearly completely mineralized when the reaction time reached 360 min. Consequently, the inhibition ratio towards Vibrio fischeri decreased significantly along with the loss and mineralization of aromatic intermediates during photoelectrocatalytic degradation. 2,2-bis(4-Hydroxyphenyl) butane (BPB), 4,4'-(1-phenylethylidene)-bisphenol (BPAP), and (4,4'-hexafluoroisopropylidene) diphenol (BPAF), with relatively high toxicity levels and lipophilicity and as toxic product precursors, require attention in terms of environmental safety. Overall, this work provides a promising and environmentally friendly way to remove BPs from water.
Collapse
Affiliation(s)
- Yaqi Wang
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Lu Li
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Zirui Wang
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Xing Yuan
- School of Environment, Northeast Normal University, Changchun, 130117, PR China.
| | - Yu Yan
- Institute of Environmental Assessment, China Northeast Municipal Engineering Design & Research Institute Co., Ltd, Changchun, 130021, PR China
| | - Xiaodan Li
- Institute of Environmental Assessment, China Northeast Municipal Engineering Design & Research Institute Co., Ltd, Changchun, 130021, PR China
| | - Nan Lu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China.
| |
Collapse
|
28
|
Lin YJ, Lin Z. In vitro-in silico-based probabilistic risk assessment of combined exposure to bisphenol A and its analogues by integrating ToxCast high-throughput in vitro assays with in vitro to in vivo extrapolation (IVIVE) via physiologically based pharmacokinetic (PBPK) modeling. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122856. [PMID: 32937695 DOI: 10.1016/j.jhazmat.2020.122856] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/25/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Combined risk assessment of endocrine effects of bisphenol A (BPA) and its analogues, such as bisphenols S, F, and AF (BPS, BPF, and BPAF), is challenging due to lack of related common toxicity metrics. This study conducted a population-based in vitro-to-in vivo extrapolation using physiologically based pharmacokinetic (PBPK) models coupled with Monte Carlo simulations to convert ToxCast in vitro estrogen receptor (ER) assays to human equivalent doses (HEDs). The ER pathway-based HEDs were compared with HEDs from animal studies and used to assess the combined risks for different populations across different countries/regions in a probabilistic manner. The estimated ER pathway-based HEDs for the four bisphenols (BPs) matched the animal-derived HEDs. The HEDs for the ER gene transcription (the common biological process target among BPs) were 0.40 (2.5th-97.5th percentiles: 0.06-5.42), 4.43 (0.69-53.84), 3.30 (0.51-626.57), and 1.12 (0.16-9.73) mg/kg/day for BPA, BPS, BPF, and BPAF, respectively. Results suggest a potentially moderate concern for combined risks of activating the ER pathway for toddlers and adults with high dietary exposures. This study presents in vitro-based credible HEDs for the four BPs and represents an advancement in the application of in vitro-in silico-based alternative approaches in human health risk assessment.
Collapse
Affiliation(s)
- Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, 11221, Taiwan; Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
29
|
López-Moreno A, Suárez A, Avanzi C, Monteoliva-Sánchez M, Aguilera M. Probiotic Strains and Intervention Total Doses for Modulating Obesity-Related Microbiota Dysbiosis: A Systematic Review and Meta-analysis. Nutrients 2020; 12:E1921. [PMID: 32610476 PMCID: PMC7400323 DOI: 10.3390/nu12071921] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a growing health threat worldwide. Administration of probiotics in obesity has also parallelly increased but without any protocolization. We conducted a systematic review exploring the administration pattern of probiotic strains and effective doses for obesity-related disorders according to their capacity of positively modulating key biomarkers and microbiota dysbiosis. Manuscripts targeting probiotic strains and doses administered for obesity-related disorders in clinical studies were sought. MEDLINE, Scopus, Web of Science, and Cochrane Library databases were searched using keywords during the last fifteen years up to April 2020. Two independent reviewers screened titles, abstracts, and then full-text papers against inclusion criteria according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. From 549 interventional reports identified, we filtered 171 eligible studies, from which 24 full-text assays were used for calculating intervention total doses (ITD) of specific species and strains administered. Nine of these reports were excluded in the second-step because no specific data on gut microbiota modulation was found. Six clinical trials (CT) and 9 animal clinical studies were retained for analysis of complete outcome prioritized (body mass index (BMI), adiposity parameters, glucose, and plasma lipid biomarkers, and gut hormones). Lactobacillus spp. administered were double compared to Bifidobacterium spp.; Lactobacillus as single or multispecies formulations whereas most Bifidobacteria only through multispecies supplementations. Differential factors were estimated from obese populations' vs. obesity-induced animals: ITD ratio of 2 × 106 CFU and patterns of administrations of 11.3 weeks to 5.5 weeks, respectively. Estimation of overall probiotics impact from selected CT was performed through a random-effects model to pool effect sizes. Comparisons showed a positive association between the probiotics group vs. placebo on the reduction of BMI, total cholesterol, leptin, and adiponectin. Moreover, negative estimation appeared for glucose (FPG) and CRP. While clinical trials including data for positive modulatory microbiota capacities suggested that high doses of common single and multispecies of Lactobacillus and Bifidobacterium ameliorated key obesity-related parameters, the major limitation was the high variability between studies and lack of standardized protocols. Efforts in solving this problem and searching for next-generation probiotics for obesity-related diseases would highly improve the rational use of probiotics.
Collapse
Affiliation(s)
- Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (M.M.-S.)
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada Armilla, 18016 Granada, Spain;
| | - Antonio Suárez
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada Armilla, 18016 Granada, Spain;
| | - Camila Avanzi
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (M.M.-S.)
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (M.M.-S.)
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada Armilla, 18016 Granada, Spain;
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (M.M.-S.)
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada Armilla, 18016 Granada, Spain;
- IBS: Instituto de Investigación Biosanitaria ibs., 18012 Granada, Spain
| |
Collapse
|
30
|
Zhao Y, Chi Y, Tian C, Liu Y, Li H, Wang A. Recycling of titanium-coagulated algae-rich sludge for enhanced photocatalytic oxidation of phenolic contaminants through oxygen vacancy. WATER RESEARCH 2020; 177:115789. [PMID: 32304907 DOI: 10.1016/j.watres.2020.115789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
In the 21st century, sludge disposal and resource recycling are global issues. Titanium coagulation has received increasing attention due its strong coagulation capability and sludge recycling. Titanium coagulation is highly efficient for the treatment of algae-laden micro-polluted surface water; however, the safe disposal of titanium-coagulated algae-rich sludge remains a challenge. Here, we report on the recycling of titanium-coagulated algae-rich sludge for the production of functional TiO2 nanoflowers (TNFs) through a simple hydrothermal and calcination process. Anatase TNFs (particle size of 10-15 nm) with petal-like structures (mesoporous), relatively high specific surface areas, i.e. 299.4 m2g-1, and low band gaps, i.e. 2.67 eV (compared to P-25), were obtained. Additionally, oxygen vacancy (OV) was generated on the surface of the recycled TNFs based on electron paramagnetic resonance (EPR) results, which were verified by the first-principles calculations within density-functional theory. These TNFs display high photocatalytic performance for the degradation of diverse phenolic organic contaminants, such as bisphenol A, diphenyl phenol, p-tert-butyl phenol, and resorcinol, i.e. > 95%, under mild ultraviolet light irradiation and without any sacrificial reagents. Formation of OV on TNFs not only efficiently inhibited the recombination of photo-generated electrons and holes but also facilitated contaminant adsorption and photo-generated electron transfer on the surface of the recycled TNFs, thereby promoting the generation of holes and hydroxyl and superoxide radicals which were regarded as the reactive oxygen species for attacking contaminants in the reactions. This study proposes a new perspective on recycling chemical-coagulated sludge for producing functional nanomaterials as photocatalysts.
Collapse
Affiliation(s)
- Yanxia Zhao
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China.
| | - Yuantong Chi
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China
| | - Chang Tian
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, 250353, Jinan, Shandong, China
| | - Yan Liu
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China
| | - Haibo Li
- Environmental Engineering Department, Research Development Center, China Vanke Co., Ltd., 518083, Shenzhen, China
| | - Aizhu Wang
- Shandong Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| |
Collapse
|
31
|
Alam AU, Deen MJ. Bisphenol A Electrochemical Sensor Using Graphene Oxide and β-Cyclodextrin-Functionalized Multi-Walled Carbon Nanotubes. Anal Chem 2020; 92:5532-5539. [DOI: 10.1021/acs.analchem.0c00402] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Arif U. Alam
- Electrical and Computer Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada
| | - M. Jamal Deen
- Electrical and Computer Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
32
|
Karrer C, Andreassen M, von Goetz N, Sonnet F, Sakhi AK, Hungerbühler K, Dirven H, Husøy T. The EuroMix human biomonitoring study: Source-to-dose modeling of cumulative and aggregate exposure for the bisphenols BPA, BPS, and BPF and comparison with measured urinary levels. ENVIRONMENT INTERNATIONAL 2020; 136:105397. [PMID: 31884417 DOI: 10.1016/j.envint.2019.105397] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bisphenol A (BPA) and, with increasing occurrence, its analogs bisphenol S (BPS) and bisphenol F (BPF) are applied in many consumer products, leading to humans being exposed from a vast number of sources and via several routes. Estrogenic and anti-androgenic effects are exerted by the chemical BPA, and also by its analogs. Therefore, realistic exposure assessments are needed for assessing risks related to cumulative exposure. OBJECTIVES Biomonitoring for BPA, BPS, and BPF was conducted in a human study embedded in the EU project EuroMix and the measured urinary concentrations were compared to source-to-dose calculations for source allocation and plausibility test of the model. METHODS For two 24-hour study periods separated by 2-3 weeks, 144 adult volunteers in Norway kept detailed diaries on food consumption, personal care product (PCP) use, and thermal paper (TP) handling. Concurrently, 24 h urine was collected and urinary levels of BPA, BPS, and BPF were analyzed using ultra-high performance liquid chromatography and tandem mass spectrometry (UPLC-MS-MS). In line with the information obtained from the first study day, bisphenol exposure from food, PCPs, TP, and dust was modeled primarily individual-based with probabilistic models. Estimates for BP excretion over 24 h were obtained with the models and compared to measured amounts. RESULTS Modeled aggregate internal exposures covered the full range of measured urinary amounts for all BP analogs. In general, individual-based medians of modeled BPA exposures were in good agreement with the measurements, but individual-specific correlation was lacking. Modeled exposures mostly underestimated BPS and BPF levels in participants with positive measurements (53% and 8%), except for the P95 values of modeled BPS exposure that were higher than measured amounts if TP was handled. Most likely, diet and TP were the sources contributing the most to BP exposure in this study. Urinary measurements did not reveal a significant correlation between the amounts of canned food consumed, the number of PCPs used, or the number of TP handling events and levels of BPA, BPS, or BPF. CONCLUSIONS The good agreement between the ranges of modeled BPA exposure and measured BPA amounts indicates that available concentrations, especially from the main exposure source food, mirror the exposure situation realistically, and suggests that the exposure model considers the relevant exposure sources. The lack of individual-specific correlations means that the individual measured amounts and modeled exposures did not vary in parallel, e.g. due to mismatch of BP concentrations in food, TP, and other sources, or delayed internal exposure. The underestimation of modeled BPS and BPF exposure suggests that not all relevant sources were included in the respective exposure models. This could be due to a lack of input data, e.g. for food items, or due to an increased replacement of BPA with structural analogs compared to the used concentration and occurrence data.
Collapse
Affiliation(s)
- Cecile Karrer
- Swiss Federal Institute of Technology (ETH) Zurich, Institute for Chemical and Bioengineering, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Monica Andreassen
- Norwegian Institute of Public Health, Department of Toxicology and Risk Assessment, Lovisenberggata 6, 0456 Oslo, Norway
| | - Natalie von Goetz
- Swiss Federal Institute of Technology (ETH) Zurich, Institute for Chemical and Bioengineering, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland; Federal Office of Public Health, Schwarzenburgstrasse 157, 3003 Bern, Switzerland.
| | - Friederike Sonnet
- Norwegian Institute of Public Health, Department of Toxicology and Risk Assessment, Lovisenberggata 6, 0456 Oslo, Norway
| | - Amrit Kaur Sakhi
- Norwegian Institute of Public Health, Department of Environmental Exposure and Epidemiology, Lovisenberggata 8, 0456 Oslo, Norway
| | - Konrad Hungerbühler
- Swiss Federal Institute of Technology (ETH) Zurich, Institute for Chemical and Bioengineering, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Hubert Dirven
- Norwegian Institute of Public Health, Department of Toxicology and Risk Assessment, Lovisenberggata 6, 0456 Oslo, Norway
| | - Trine Husøy
- Norwegian Institute of Public Health, Department of Toxicology and Risk Assessment, Lovisenberggata 6, 0456 Oslo, Norway
| |
Collapse
|