1
|
Langer S, Weschler CJ, Bekö G, Morrison G, Sjöblom A, Giovanoulis G, Wargocki P, Wang N, Zannoni N, Yang S, Williams J. Squalene Depletion in Skin Following Human Exposure to Ozone under Controlled Chamber Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6693-6703. [PMID: 38577981 DOI: 10.1021/acs.est.3c09394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A major component of human skin oil is squalene, a highly unsaturated hydrocarbon that protects the skin from atmospheric oxidants. Skin oil, and thus squalene, is continuously replenished on the skin surface. Squalene is also quickly consumed through reactions with ozone and other oxidants. This study examined the extent of squalene depletion in the skin oils of the forearm of human volunteers after exposure to ozone in a climate chamber. Temperature, relative humidity (RH), skin coverage by clothing, and participants' age were varied in a controlled manner. Concentrations of squalene were determined in skin wipe samples collected before and after ozone exposure. Exposures to ozone resulted in statistically significant decreases in post-exposure squalene concentrations compared to pre-exposure squalene concentrations in the skin wipes when squalene concentrations were normalized by concentrations of co-occurring cholesterol but not by co-occurring pyroglutamic acid (PGA). The rate of squalene loss due to ozonolysis was lower than its replenishment on the skin surface. Within the ranges examined, temperature and RH did not significantly affect the difference between normalized squalene levels in post-samples versus pre-samples. Although not statistically significant, skin coverage and age of the volunteers (three young adults, three seniors, and three teenagers) did appear to impact squalene depletion on the skin surfaces.
Collapse
Affiliation(s)
- Sarka Langer
- IVL Swedish Environmental Research Institute, Environmental Chemistry, 40014 Göteborg, Sweden
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Division Building Services Engineering, 412 96 Göteborg, Sweden
| | - Charles J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, United States
- International Centre for Indoor Environment and Energy, Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
- Healthy and Sustainable Built Environment Research Centre, Ajman University, P.O. Box 346 Ajman, United Arab Emirates
| | - Glenn Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, United States
| | - Ann Sjöblom
- IVL Swedish Environmental Research Institute, Environmental Chemistry, 40014 Göteborg, Sweden
| | - Georgios Giovanoulis
- IVL Swedish Environmental Research Institute, Environmental Chemistry, 40014 Göteborg, Sweden
| | - Pawel Wargocki
- International Centre for Indoor Environment and Energy, Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Nijing Wang
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Nora Zannoni
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Shen Yang
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jonathan Williams
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
2
|
Zhang R, He X, Liu J, Xiong J. VOC transport in an occupied residence: Measurements and predictions via deep learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164559. [PMID: 37263430 DOI: 10.1016/j.scitotenv.2023.164559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
Monitoring and prediction of volatile organic compounds (VOCs) in realistic indoor settings are essential for source characterization, apportionment, and exposure assessment, while it has seldom been examined previously. In this study, we conducted a field campaign on ten typical VOCs in an occupied residence, and obtained the time-resolved VOC dynamics. Feature importance analysis illustrated that air change rate (ACR) has the greatest impact on the VOC concentration levels. We applied three multi-feature (temperature, relative humidity, ACR) deep learning models to predict the VOC concentrations over ten days in the residence, indicating that the long short-term memory (LSTM) model owns the best performance, with predictions the closest to the observed data, compared with the other two models, i.e., recurrent neural network (RNN) model and gated recurrent unit (GRU) model. We also found that human activities could significantly affect VOC emissions in some observed erupted peaks. Our study provides a promising pathway of estimating long-term transport characteristics and exposures of VOCs under varied conditions in realistic indoor environments via deep learning.
Collapse
Affiliation(s)
- Rui Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinglei He
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jialong Liu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, United States; State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
3
|
Liu J, Zhang R, Xiong J. Machine learning approach for estimating the human-related VOC emissions in a university classroom. BUILDING SIMULATION 2023; 16:915-925. [PMID: 37192916 PMCID: PMC10009360 DOI: 10.1007/s12273-022-0976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 05/18/2023]
Abstract
Indoor air quality becomes increasingly important, partly because the COVID-19 pandemic increases the time people spend indoors. Research into the prediction of indoor volatile organic compounds (VOCs) is traditionally confined to building materials and furniture. Relatively little research focuses on estimation of human-related VOCs, which have been shown to contribute significantly to indoor air quality, especially in densely-occupied environments. This study applies a machine learning approach to accurately estimate the human-related VOC emissions in a university classroom. The time-resolved concentrations of two typical human-related (ozone-related) VOCs in the classroom over a five-day period were analyzed, i.e., 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA). By comparing the results for 6-MHO concentration predicted via five machine learning approaches including the random forest regression (RFR), adaptive boosting (Adaboost), gradient boosting regression tree (GBRT), extreme gradient boosting (XGboost), and least squares support vector machine (LSSVM), we find that the LSSVM approach achieves the best performance, by using multi-feature parameters (number of occupants, ozone concentration, temperature, relative humidity) as the input. The LSSVM approach is then used to predict the 4-OPA concentration, with mean absolute percentage error (MAPE) less than 5%, indicating high accuracy. By combining the LSSVM with a kernel density estimation (KDE) method, we further establish an interval prediction model, which can provide uncertainty information and viable option for decision-makers. The machine learning approach in this study can easily incorporate the impact of various factors on VOC emission behaviors, making it especially suitable for concentration prediction and exposure assessment in realistic indoor settings.
Collapse
Affiliation(s)
- Jialong Liu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Rui Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081 China
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720 USA
- State Key Laboratory of Green Building in Western China, Xi’an University of Architecture and Technology, Xi’an, 710055 China
| |
Collapse
|
4
|
Butman JL, Thomson RJ, Geiger FM. Unanticipated Hydrophobicity Increases of Squalene and Human Skin Oil Films Upon Ozone Exposure. J Phys Chem B 2022; 126:9417-9423. [PMID: 36331532 DOI: 10.1021/acs.jpcb.2c04849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The C-H and O-H oscillators on the surfaces of thin films of human-derived skin oil and squalene are probed under ambient conditions (300 K, 1 atm total pressure, 40% RH) using second-order vibrational spectroscopy and contact angle goniometry before and after exposure to ppb amounts of ozone. Skin oil and squalene are found to produce different vibrational sum frequency generation spectra in the C-H stretching region, while exposure to ozone results in surface spectra for both materials that is consistent with a loss of C-H oscillators. The measured contact angles show that the hydrophobicity of the films increases following exposure to ozone, consistent with the reduction in C═C···H2O ("πH") bonding interactions that is expected from C═C double bond loss due to ozonolysis and indicating that the polar functional groups formed point toward the films' interiors. Implications for heterogeneous indoor chemistry are discussed.
Collapse
Affiliation(s)
- Jana L Butman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Pytel K, Marcinkowska R, Rutkowska M, Zabiegała B. Recent advances on SOA formation in indoor air, fate and strategies for SOA characterization in indoor air - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156948. [PMID: 35753459 DOI: 10.1016/j.scitotenv.2022.156948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Recent studies proves that indoor air chemistry differs in many aspects from atmospheric one. People send up to 90 % of their life indoors being exposed to pollutants present in gas, particle and solid phase. Particle phase indoor is composed of particles emitted from various sources, among which there is an indoor source - secondary chemical reactions leading to formation of secondary organic aerosol (SOA). Lately, researchers' attentions turned towards the ultrafine particles, for there are still a lot of gaps in knowledge concerning this field of study, while there is evidence of negative influence of ultrafine particles on human health. Presented review sums up current knowledge about secondary particle formation in indoor environment and development of analytical techniques applied to study those processes. The biggest concern today is studying ROS, for their lifetime in indoor air is very short due to reactions at the very beginning of terpene oxidation process. Another interesting aspect that is recently discovered is monoterpene autooxidation process that leads to HOMs formation that in turn can influence SOA formation yield. A complex studies covering gas phase and particle phase characterization, but also toxicological studies are crucial to fully understand indoor air chemistry leading to ultrafine particle formation.
Collapse
Affiliation(s)
- Klaudia Pytel
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańnsk, Poland
| | - Renata Marcinkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańnsk, Poland
| | - Małgorzata Rutkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańnsk, Poland
| | - Bożena Zabiegała
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańnsk, Poland.
| |
Collapse
|
6
|
Abstract
The world population is ageing, in particular in the developed world, with a significant increase in the percentage of people above 60 years old. They represent a segment of the population that is more vulnerable to adverse environmental conditions. Among them, indoor air quality is one of the most relevant, as elders spend comparatively more time indoors than younger generations. Furthermore, the recent COVID-19 pandemic contributed immensely to raising awareness of the importance of breathing air quality for human health and of the fact that indoor air is a vector for airborne infections and poisoning. Hence, this work reviews the state of the art regarding indoor air quality in elderly centers, considering the type of pollutants involved, their emission sources, and their health effects. Moreover, the influence of ventilation on air quality is also addressed. Notwithstanding the potential health problems with the corresponding costs and morbidity effects, only a few studies have considered explicitly indoor air quality and its impacts on elderly health. More studies are, therefore, necessary to objectively identify what are the impacts on the health of elderly people due to the quality of indoor air and how it can be improved, either by reducing the pollutants emission sources or by more adequate ventilation and thermal comfort strategies.
Collapse
|
7
|
Coffaro B, Weisel CP. Reactions and Products of Squalene and Ozone: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7396-7411. [PMID: 35648815 PMCID: PMC9231367 DOI: 10.1021/acs.est.1c07611] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 05/15/2023]
Abstract
This critical review describes the squalene-ozone (SqOz) reaction, or squalene ozonolysis. Ambient ozone penetrates indoors and drives indoor air chemistry. Squalene, a component of human skin oil, contains six carbon-carbon double bonds and is very reactive with ozone. Bioeffluents from people contribute to indoor air chemistry and affect the indoor air quality, resulting in exposures because people spend the majority of their time indoors. The SqOz reaction proceeds through various formation pathways and produces compounds that include aldehydes, ketones, carboxylic acids, and dicarbonyl species, which have a range of volatilities. In this critical review of SqOz chemistry, information on the mechanism of reaction, reaction probability, rate constants, and reaction kinetics are compiled. Characterizations of SqOz reaction products have been done in laboratory experiments and real-world settings. The effect of multiple environmental parameters (ozone concentration, air exchange rate (AER), temperature, and relative humidity (RH)) in indoor settings are summarized. This critical review concludes by identifying the paucity of available exposure, health, and toxicological data for known reaction products. Key knowledge gaps about SqOz reactions leading to indoor exposures and adverse health outcomes are provided as well as an outlook on where the field is headed.
Collapse
Affiliation(s)
- Breann Coffaro
- Environmental
and Health Sciences Institute and Graduate Program in Exposure Science, Rutgers, The State University of New Jersey, Piscataway Township, New
Jersey 08854, United
States
| | - Clifford P. Weisel
- Environmental
and Health Sciences Institute and School of Public Health, Rutgers, The State University of New Jersey, Piscataway Township, New
Jersey 08854, United
States
| |
Collapse
|
8
|
Zhang M, Gao Y, Xiong J. Characterization of the off-body squalene ozonolysis on indoor surfaces. CHEMOSPHERE 2022; 291:132772. [PMID: 34742760 DOI: 10.1016/j.chemosphere.2021.132772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/09/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Chemical reaction and physical transport characteristics of indoor surfaces play an important role in indoor air quality. This study presents a kinetic model to describe the reaction of ozone with squalene on indoor surfaces in a family house, by incorporating external and internal mass transfer, surface partitioning, and chemical reaction on indoor surfaces. Field experiments were performed in the family house. The first 3-days of data, collected when the house was unoccupied, are used to derive the key parameters in the model, which are then used for predicting the concentrations in other unoccupied days. Comparison of squalene oxidation products during the occupied and unoccupied periods shows that even if the house is unoccupied for several days, the indoor concentrations of 6-methyl-5-hepten-2-one (6-MHO) and 4-oxopentanal (4-OPA) remain substantial, demonstrating that surface reaction of ozone with off-body squalene can significantly impact the composition of indoor air. Model predictions of the three compounds (ozone, 6-MHO, and 4-OPA) agree well with the experimental observations for all test days. Furthermore, we make the first attempt to estimate the duration of typical polyunsaturated aldehydes (TOP, TOT, and TTT), which indicated that these compounds, as well as off-body squalene, can persist on indoor surfaces for a relatively long period in the examined residence.
Collapse
Affiliation(s)
- Meixia Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ying Gao
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, 94720, United States.
| |
Collapse
|
9
|
Wu T, Tasoglou A, Huber H, Stevens PS, Boor BE. Influence of Mechanical Ventilation Systems and Human Occupancy on Time-Resolved Source Rates of Volatile Skin Oil Ozonolysis Products in a LEED-Certified Office Building. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16477-16488. [PMID: 34851619 DOI: 10.1021/acs.est.1c03112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Building mechanical ventilation systems are a major driver of indoor air chemistry as their design and operation influences indoor ozone (O3) concentrations, the dilution and transport of indoor-generated volatile organic compounds (VOCs), and indoor environmental conditions. Real-time VOC and O3 measurements were integrated with a building sensing platform to evaluate the influence of mechanical ventilation modes and human occupancy on the dynamics of skin oil ozonolysis products (SOOPs) in an office in a LEED-certified building during the winter. The ventilation system operated under variable recirculation ratios (RRs) from RR = 0 (100% outdoor air) to RR = 1 (100% recirculation air). Time-resolved source rates for 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA), and decanal were highly dynamic and changed throughout the day with RR and occupancy. Total SOOP source rates during high-occupancy periods (10:00-18:00) varied from 2500-3000 μg h-1 when RR = 0.1 to 6300-6700 μg h-1 when RR = 1. Source rates for gas-phase reactions, outdoor air, and occupant-associated emissions generally decreased with increasing RR. The recirculation air source rate increased with RR and typically became the dominant source for RR > 0.5. SOOP emissions from surface reservoirs were also a prominent source, contributing 10-50% to total source rates. Elevated per person SOOP emission factors were observed, potentially due to multiple layers of soiled clothing worn during winter.
Collapse
Affiliation(s)
- Tianren Wu
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| | - Antonios Tasoglou
- RJ Lee Group Incorporated, Monroeville, Pennsylvania 15146, United States
| | - Heinz Huber
- Edelweiss Technology Solutions, Limited Liability Company, Novelty, Ohio 44072, United States
| | - Philip S Stevens
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Brandon E Boor
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Abstract
Outdoor ozone transported indoors initiates oxidative chemistry, forming volatile organic products. The influence of ozone chemistry on indoor air composition has not been directly quantified in normally occupied residences. Here, we explore indoor ozone chemistry in a house in California with two adult inhabitants. We utilize space- and time-resolved measurements of ozone and volatile organic compounds (VOCs) acquired over an 8-wk summer campaign. Despite overall low indoor ozone concentrations (mean value of 4.3 ppb) and a relatively low indoor ozone decay constant (1.3 h-1), we identified multiple VOCs exhibiting clear contributions from ozone-initiated chemistry indoors. These chemicals include 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA), nonenal, and C8-C12 saturated aldehydes, which are among the commonly reported products from laboratory studies of ozone interactions with indoor surfaces and with human skin lipids. These VOCs together accounted for ≥12% molecular yield with respect to house-wide consumed ozone, with the highest net product yield for nonanal (≥3.5%), followed by 6-MHO (2.7%) and 4-OPA (2.6%). Although 6-MHO and 4-OPA are prominent ozonolysis products of skin lipids (specifically squalene), ozone reaction with the body envelopes of the two occupants in this house are insufficient to explain the observed yields. Relatedly, we observed that ozone-driven chemistry continued to produce 6-MHO and 4-OPA even after the occupants had been away from the house for 5 d. These observations provide evidence that skin lipids transferred to indoor surfaces made substantial contributions to ozone reactivity in the studied house.
Collapse
|
11
|
Zhang M, Xiong J, Liu Y, Misztal PK, Goldstein AH. Physical-Chemical Coupling Model for Characterizing the Reaction of Ozone with Squalene in Realistic Indoor Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1690-1698. [PMID: 33464056 DOI: 10.1021/acs.est.0c06216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Squalene can react with indoor ozone to generate a series of volatile and semi-volatile organic compounds, some of which may be skin or respiratory irritants, causing adverse health effects. Better understanding of the ozone/squalene reaction and product transport characteristics is thus important. In this study, we developed a physical-chemical coupling model to describe the behavior of ozone/squalene reaction products, that is, 6-methyl-5-hepten-2-one (6-MHO) and 4-oxopentanal (4-OPA) in the gas phase and skin, by considering the chemical reaction and physical transport processes (external convection, internal diffusion, and surface uptake). Experiments without intervention were performed in a single-family house in California utilizing time- and space-resolved measurements. The key parameters in the model were extracted from 5 day data and then used to predict the behaviors in some other days. Predictions from the present model can reproduce the concentration profiles of the three compounds (ozone, 6-MHO, and 4-OPA) well (R2 = 0.82-0.89), indicating high accuracy of the model. Exposure analysis shows that the total amount of 6-MHO and 4-OPA entering the blood capillaries in 4 days can reach 14.6 and 30.1 μg, respectively. The contribution of different sinks to ozone removal in the tested realistic indoor environment was also analyzed.
Collapse
Affiliation(s)
- Meixia Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
| | - Yingjun Liu
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Pawel K Misztal
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Morrison GC, Eftekhari A, Majluf F, Krechmer JE. Yields and Variability of Ozone Reaction Products from Human Skin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:179-187. [PMID: 33337871 DOI: 10.1021/acs.est.0c05262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The skin of 20 human participants was exposed to ∼110 ppb O3 and volatile products of the resulting chemistry were quantified in real time. Yields (ppb product emitted/ppb ozone consumed) for 40 products were quantified. Major products of the primary reaction of ozone-squalene included 6-methyl 5-hepten-2-one (6-MHO) and geranyl acetone (GA) with average yields of 0.22 and 0.16, respectively. Other major products included decanal, methacrolein (or methyl vinyl ketone), nonanal, and butanal. Yields varied widely among participants; summed yields ranged from 0.33 to 0.93. The dynamic increase in emission rates during ozone exposure also varied among participants, possibly indicative of differences in the thickness of the skin lipid layer. Factor analysis indicates that much of the variability among participants is due to factors associated with the relative abundance of (1) "fresh" skin lipid constituents (such as squalene and fatty acids), (2) oxidized skin lipids, and (3) exogenous compounds. This last factor appears to be associated with the presence of oleic and linoleic acids and could be accounted for by uptake of cooking oils or personal care products to skin lipids.
Collapse
Affiliation(s)
- Glenn C Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Azin Eftekhari
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Francesca Majluf
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Jordan E Krechmer
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| |
Collapse
|
13
|
Peng S, Chen Q, Liu E. The role of computational fluid dynamics tools on investigation of pathogen transmission: Prevention and control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:142090. [PMID: 33027870 PMCID: PMC7458093 DOI: 10.1016/j.scitotenv.2020.142090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 05/17/2023]
Abstract
Transmission mechanics of infectious pathogen in various environments are of great complexity and has always been attracting many researchers' attention. As a cost-effective and powerful method, Computational Fluid Dynamics (CFD) plays an important role in numerically solving environmental fluid mechanics. Besides, with the development of computer science, an increasing number of researchers start to analyze pathogen transmission by using CFD methods. Inspired by the impact of COVID-19, this review summarizes research works of pathogen transmission based on CFD methods with different models and algorithms. Defining the pathogen as the particle or gaseous in CFD simulation is a common method and epidemic models are used in some investigations to rise the authenticity of calculation. Although it is not so difficult to describe the physical characteristics of pathogens, how to describe the biological characteristics of it is still a big challenge in the CFD simulation. A series of investigations which analyzed pathogen transmission in different environments (hospital, teaching building, etc) demonstrated the effect of airflow on pathogen transmission and emphasized the importance of reasonable ventilation. Finally, this review presented three advanced methods: LBM method, Porous Media method, and Web-based forecasting method. Although CFD methods mentioned in this review may not alleviate the current pandemic situation, it helps researchers realize the transmission mechanisms of pathogens like viruses and bacteria and provides guidelines for reducing infection risk in epidemic or pandemic situations.
Collapse
Affiliation(s)
- Shanbi Peng
- School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
| | - Qikun Chen
- School of Engineering, Cardiff University, CF24 0DE, UK.
| | - Enbin Liu
- School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
14
|
Wang H, Zheng J, Yang T, He Z, Zhang P, Liu X, Zhang M, Sun L, Yu X, Zhao J, Liu X, Xu B, Tong L, Xiong J. Predicting the emission characteristics of VOCs in a simulated vehicle cabin environment based on small-scale chamber tests: Parameter determination and validation. ENVIRONMENT INTERNATIONAL 2020; 142:105817. [PMID: 32521348 PMCID: PMC7485589 DOI: 10.1016/j.envint.2020.105817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/04/2020] [Accepted: 05/09/2020] [Indexed: 05/21/2023]
Abstract
Volatile organic compounds (VOCs) emitted from vehicle parts and interior materials can seriously affect in-cabin air quality. Prior studies mainly focused on indoor material emissions, while studies of emissions in-cabins were relatively scarce. The emission behaviors of VOCs from vehicle cabin materials can be characterized by three key emission parameters: the initial emittable concentration (C0), diffusion coefficient (Dm), and partition coefficient (K). Based on a C-history method, we have performed a series of tests with a 30 L small-scale chamber to determine these three key emission parameters for six VOCs, benzene, toluene, ethylbenzene, xylene, formaldehyde, and acetaldehyde, from typical vehicle cabin materials, car roof upholstery, carpet, and seat. We found that acetaldehyde had the highest level in the gas-phase concentration and C0, which differs from residential indoor environments where formaldehyde is usually the most prevalent pollutant. The influence of temperature on the key emission parameters was also investigated. When the temperature rose from 25 °C to 65 °C, C0 increased by 40-640%, Dm increased by 40-170%, but K decreased by 38-71% for different material-VOC combinations. We then performed an independent validation to demonstrate the accuracy of the measured key emission parameters. Furthermore, considering that in reality, several materials coexist in vehicle cabins, we made a first attempt at applying a multi-source model to predict VOC emission behaviors in a simulated 3 m3 vehicle cabin, using the key emission parameters obtained from the small-scale chamber tests. The good agreement between the predictions and experiments (R2 = 0.82-0.99) demonstrated that the three key emission parameters measured via chamber tests can be scaled to estimate emission scenarios in realistic vehicle cabin environments. A pollution contribution analysis for the tested materials indicated that the car seat could significantly contribute to the total emissions.
Collapse
Affiliation(s)
- Haimei Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jihu Zheng
- Automotive Data Center, China Automotive Technology and Research Center Co. Ltd, Tianjin 300300, China
| | - Tao Yang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhangcan He
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Peng Zhang
- Automotive Data Center, China Automotive Technology and Research Center Co. Ltd, Tianjin 300300, China
| | - Xuefeng Liu
- Automotive Data Center, China Automotive Technology and Research Center Co. Ltd, Tianjin 300300, China
| | - Meixia Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lihua Sun
- Beijing Products Quality Supervision and Inspection Institute, Beijing 101776, China
| | - Xuefei Yu
- Beijing Products Quality Supervision and Inspection Institute, Beijing 101776, China
| | - Jing Zhao
- Beijing Products Quality Supervision and Inspection Institute, Beijing 101776, China
| | - Xiaoyu Liu
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC27711, USA
| | - Baoping Xu
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
| | - Liping Tong
- Automotive Data Center, China Automotive Technology and Research Center Co. Ltd, Tianjin 300300, China.
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
15
|
Wolkoff P. Indoor air chemistry: Terpene reaction products and airway effects. Int J Hyg Environ Health 2020; 225:113439. [PMID: 32044535 DOI: 10.1016/j.ijheh.2019.113439] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022]
Abstract
Reactive chemistry is ubiquitous indoors with a wealth of complex oxidation reactions; some of these are initiated by both homogeneous and heterogeneous reaction of ozone with unsaturated organic compounds and subsequent the hydroxyl radical, either in the gas-phase or on reactive surfaces. One major focus has been the reaction of common and abundant terpene-based fragrances in indoor air emitted from many wood-based materials, a variety of consumer products, and citrus fruits and flowers. Inhalation of the terpenes themselves are generally not considered a health concern (both acute and long-term) due to their low indoor air concentrations; however, their gas- and surface reactions with ozone and the hydroxyl radical produce a host of products, both gaseous, i. a. formaldehyde, and ultrafine particles formed by condensation/nucleation processes. These reaction products may be of health concern. Human cell bioassays with key reaction products from ozone-initiated terpene reactions have shown some inflammatory reactions, but results are difficult to interpret for human exposure and risk assessment. Acute effects like sensory irritation in eyes and airways are unlikely or present at very low intensity in real life conditions based on rodent and human exposure studies and known thresholds for sensory irritation in eyes and airways and derived human reference values for airflow limitation and pulmonary irritation. Some fragrances and their ozone-initiated reaction products may possess anti-inflammatory properties. However, long-term effects of the reaction products as ultrafine particles are poorly explored. Material and product surfaces with high ozone deposition velocities may significantly impact the perceived air quality by altered emissions from both homogeneous and heterogeneous surface reactions.
Collapse
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, NRCWE, Lersø Parkallé 105, 2920, Copenhagen, Denmark.
| |
Collapse
|