1
|
Zhuang P, Chen X, Sun S, Li Y, Mo H. Bioaccessibility and bioavailability of Pb and Cd in rice is affected by propolis and its extracts and Fe intervention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175697. [PMID: 39182785 DOI: 10.1016/j.scitotenv.2024.175697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Increasing the intake of dietary supplements containing antioxidant components can reduce the oral bioavailability of lead (Pb) and cadmium (Cd) and benefit human health. In this study, the effects of propolis and its extracts (kaempferol (KAE), quercetin (QR), and caffeic acid phenethyl ester (CAPE)) in conjunction with proanthocyanidins (PA) on Pb and Cd bioaccessibility (BAC) and the relative bioavailability (RBA) in brown and polished rice are investigated. The results of in vitro tests showed that propolis and its extracts were effective in reducing Pb BAC in both brown and polished rice. A medium dose of PA had a significant reduction effect on Cd BAC (76 %) and RBA in both brown and polished rice. Based on mouse bioassays, the supplementation of propolis and its extracts significantly (p < 0.05) reduced the Pb-RBA in brown rice, resulting in a decrease in Pb RBA from 25 % in the control group to 16.5-17.6 %. The results showed that the BAC and RBA of Pb in brown rice with dietary supplements decreased significantly, which may be related to the enhanced inhibitory effect of high Fe. It was also found that the Pb RBA was negatively correlated with the Fe content in mice kidneys. This result provided evidence that antioxidants better inhibit the bioavailability of heavy metals, highlighting that propolis and PA may be alternative dietary supplements for intervening in human Pb and Cd exposure.
Collapse
Affiliation(s)
- Ping Zhuang
- Guangdong Provincial Key Laboratory of Applied Botany, Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China.
| | - Xianghua Chen
- Guangdong Provincial Key Laboratory of Applied Botany, Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Sun
- Guangdong Provincial Key Laboratory of Applied Botany, Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingwen Li
- Guangdong Provincial Key Laboratory of Applied Botany, Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China
| | - Hui Mo
- Guangdong Provincial Key Laboratory of Applied Botany, Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China
| |
Collapse
|
2
|
Fujimori T, Toyomaki H, Shiota K, Nakata H, Yabe J, Muzandu K, Chawinga K, Doya R, Soe NC, Ishizuka M, Nakayama SMM. Lead speciation in body tissues, gastrointestinal contents, and feces of lead-exposed wild rats (Rattus rattus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168297. [PMID: 37944609 DOI: 10.1016/j.scitotenv.2023.168297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
The toxic effects of lead (Pb) are an ongoing concern for which research continues to seek a solution. In Pb-contaminated areas, Pb concentrations in the environment and organisms are quantified to assess the degree of contamination. Understanding organismal uptake of Pb and its behavior in the body requires distinguishing Pb chemical species. We used Pb L3-edge X-ray absorption near-edge structure (XANES) to study the distribution of Pb species in body tissues, digestive tract contents, and feces of wild rats (Rattus rattus) collected from a heavily Pb-contaminated mining area in Zambia. Freeze-drying improved the XANES spectrum quality by approximately 10 μg-Pb/g-dry through concentrating the Pb without changing its chemical state from its wet state. We successfully identified and analyzed the Pb species in seven different tissues (bone, muscle, liver, kidney, spleen, lung, and brain), three different digestive-tract contents (stomach, small intestine, and colon), and feces from three wild rats. We described chemical-form-based details of Pb uptake and distribution that are common among rats, such as the increased Pb binding with thiol groups through the digestive system, distribution of mobile Pb to hematopoietic organs and vascular-related tissues, and Pb binding to thiol groups, especially in the liver and brain.
Collapse
Affiliation(s)
- Takashi Fujimori
- Ecology and Environmental Engineering Course, Faculty of Advanced Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan.
| | - Haruya Toyomaki
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Kenji Shiota
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540, Japan
| | - Hokuto Nakata
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - John Yabe
- School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia; School of Veterinary Medicine, University of Namibia, P.O. Box 13301, Windhoek 10005, Namibia
| | - Kaampwe Muzandu
- School of Veterinary Medicine, University of Namibia, P.O. Box 13301, Windhoek 10005, Namibia
| | - Kenneth Chawinga
- Central Province Veterinary Office, 53 Pauling Street, Kabwe, P.O. Box 80285, Zambia
| | - Rio Doya
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Nyein Chan Soe
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan; School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia.
| |
Collapse
|
3
|
Alankarage D, Betts A, Scheckel KG, Herde C, Cavallaro M, Juhasz AL. Remediation options to reduce bioaccessible and bioavailable lead and arsenic at a smelter impacted site - consideration of treatment efficacy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122881. [PMID: 37935301 PMCID: PMC10843775 DOI: 10.1016/j.envpol.2023.122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023]
Abstract
In this study, smelter contaminated soil was treated with various soil amendments (ferric sulfate [Fe2(SO4)3], triple superphosphate [TSP] and biochar) to determine their efficacy in immobilizing soil lead (Pb) and arsenic (As). In soils incubated with ferric sulfate (0.6M), gastric phase Pb bioaccessibility was reduced from 1939 ± 17 mg kg-1 to 245 ± 4.7 mg kg-1, while intestinal phase bioaccessibility was reduced from 194 ± 25 mg kg-1 to 11.9 ± 3.5 mg kg-1, driven by the formation of plumbojarosite. In TSP treated soils, there were minor reductions in gastric phase Pb bioaccessibility (to 1631 ± 14 mg kg-1) at the highest TSP concentration (6000 mg kg-1) although greater reductions were observed in the intestinal phase, with bioaccessibility reduced to 9.3 ± 2.2 mg kg-1. Speciation analysis showed that this was primarily driven by the formation of chloropyromorphite in the intestinal phase following Pb and phosphate solubilization in the low pH gastric fluid. At the highest concentration (10% w/w), biochar treated soils showed negligible decreases in Pb bioaccessibility in both gastric and intestinal phases. Validation of bioaccessibility outcomes using an in vivo mouse assay led to similar results, with treatment effect ratios (TER) of 0.20 ± 0.01, 0.76 ± 0.11 and 1.03 ± 0.10 for ferric sulfate (0.6M), TSP (6000 mg kg-1) and biochar (10% w/w) treatments. Results of in vitro and in vivo assays showed that only ferric sulfate treatments were able to significantly reduce As bioaccessibility and bioavailability with TER at the highest application of 0.06 ± 0.00 and 0.14 ± 0.04 respectively. This study highlights the potential application of ferric sulfate treatment for the immobilization of Pb and As in co-contaminated soils.
Collapse
Affiliation(s)
- Dileepa Alankarage
- Future Industries Institute, STEM, University of South Australia, SA, Australia.
| | - Aaron Betts
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Land Remediation and Pollution Control Division, Cincinnati, OH, USA
| | - Kirk G Scheckel
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Land Remediation and Pollution Control Division, Cincinnati, OH, USA
| | - Carina Herde
- South Australian Health and Medical Research Institute, Preclinical, Imaging and Research Laboratories, Adelaide, 5086, Australia
| | - Michelle Cavallaro
- South Australian Health and Medical Research Institute, Preclinical, Imaging and Research Laboratories, Adelaide, 5086, Australia
| | - Albert L Juhasz
- Future Industries Institute, STEM, University of South Australia, SA, Australia
| |
Collapse
|
4
|
Li Y, Yin N, Cai X, Wang P, Fan C, Chang X, Liu X, Geng Z, Cui L, Du X, Cui Y. Effects of calcium supplements on oral bioavailability of fluoride in soil based on In Vivo and In Vitro methods. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131663. [PMID: 37224715 DOI: 10.1016/j.jhazmat.2023.131663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/30/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
Dietary calcium (Ca) intake can alleviate fluoride (F) induced fluorosis to maintain bone health. However, it is unclear whether calcium supplements can reduce the oral bioavailability of F present in contaminated soils. Here we evaluated the effects of Ca supplements on F bioavailability in three soils using an in vitro method (Physiologically Based Extraction Test) and an in vivo mouse model. Seven Ca salts, commonly used in calcium supplements, significantly reduced the F bioaccessibility in the gastric and small intestinal phases. Particularly for Ca phosphate at 150 mg Ca supplementation, F bioaccessibility in the small intestinal phase was reduced from 35.1-38.8% to 0.7-1.9% where soluble F concentrations were less than 1 mg/L. Overall, the eight Ca tablets tested in this study showed greater efficiency at decreasing F solubility. The in vitro bioaccessibility after Ca supplementation was consistent with the relative bioavailability of F. As supported by X-ray photoelectron spectroscopy, a possible mechanism is that freed F can be bound by Ca to form insoluble CaF2 and exchanged with OH groups from Al/Fe hydroxide to strongly adsorb F. These findings provide evidence of Ca supplementation in reducing health risks associated soil F exposure.
Collapse
Affiliation(s)
- Yunpeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chuanfang Fan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xuhui Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaotong Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ziqi Geng
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Liwei Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xin Du
- CHINALCO Environmental protection and Energy Conservation Group Co. Ltd., Beijing 101300, PR China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
5
|
Huang X, Chang M, Han L, Li J, Li SW, Li HB. Variation of lead bioaccessibility in soil reference materials: Intra- and inter-laboratory assessments. CHEMOSPHERE 2023; 312:137293. [PMID: 36403811 DOI: 10.1016/j.chemosphere.2022.137293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Standard reference materials (SRMs) have been commonly used to perform quality assurance and quality control (QA/QC) in soil total metal concentration analyses or bioaccessibility assessment. In this study, 10 experimenters from 4 laboratories determined bioaccessibility of lead (Pb) in 4 widely-used SRMs (NIST 2710a, NIST 2587, BGS 102, and GBW 07405). Based on the gastric phase (GP) of the unified BARGE bioaccessibility method (UBM) and the Solubility Bioavailability Research Consortium procedure (SBRC), Pb bioaccessibility in SRMs was compared within and between laboratories to assess their intra-laboratory repeatability and inter-laboratory reproducibility. Lead bioaccessibility was 14.1 ± 2.44%-101 ± 2.48% in the 4 SRMs. The values were in vivo validated based on a mouse model in previous studies (R2 = 0.97-0.98), suggesting the reliability of Pb bioaccessibility data. Strong correlations were observed for Pb bioaccessibility among 7 experimenters (R2 = 0.94-0.99) at the Nanjing University (NJU) laboratory and similar strong correlations were also found between each two of the 4 laboratories (R2 = 0.94-0.98), illustrating consistency in intra- and inter-laboratory performance. The intra-laboratory repeatability and inter-laboratory reproducibility were generally acceptable with relative standard deviations (RSDs) of Pb bioaccessibility being ≤10% within laboratory and ≤20% between laboratories, except in a soil with low bioaccessible Pb (BSG 102). Our study suggested that measurements of Pb bioaccessibility in SRMs based on the two in vivo validated methods were repeatable and reproducible within and between laboratories, further verified their reliability being used as QA/QC samples during Pb bioaccessibility assessment.
Collapse
Affiliation(s)
- Xiaoyue Huang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Minghui Chang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Lei Han
- Jinan Environmental Research Institute (Jinan Yellow River Basin Ecological Protection Promotion Center), Jinan, 250102, China
| | - Jie Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250399, China
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
6
|
Wijayawardena MAA, Yan K, Liu Y, Naidu R. Can the mouse model successfully predict mixed metal(loid)s bioavailability in humans from contaminated soils? CHEMOSPHERE 2023; 311:137113. [PMID: 36356801 DOI: 10.1016/j.chemosphere.2022.137113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Mouse models have been employed by many scientific research groups worldwide to predict the bioavailability of metal (loid)s and other chemicals in humans. Their suitability for predicting mixed metal (loid) bioavailability has been questioned and debated for decades by many research teams. In this study soils contaminated by lead (Pb) and arsenic (As), either in the field or by spiking in the laboratory, were used in bioavailability and bioaccessibility tests. The spiked soils were aged for more than a year prior to testing to achieve steady state and eliminate soil ageing effects, as reported in previous research. The bioavailability of, firstly, Pb in the presence of As and secondly, As in the presence of Pb was determined using mice. Furthermore, bioaccessibility was determined using a range of in vitro methods: relative bioaccessibility leaching procedure (RBALP), the Unified Bioaccessibility Research Group Europe (BARGE) method (UBM) gastric and intestinal phases, and the National Institute for Public Health and the Environment (RIVM) gastric and intestinal phases. The correlations between Pb and As bioavailability and their in vitro bioaccessibility when they were present in mixtures were analysed. The results indicated that the bioavailability of Pb in mice kidney tissues significantly correlated with bioaccessibility of Pb in RBALP (p < 0.01), UBM gastric (p < 0.01) and intestinal phases (p < 0.01) and RIVM gastric phases when Pb is present in metal (loid) mixtures. Results of the current study reveal that the RBALP, and UBM gastric and intestinal phase were by far the best methods for predicting the RB of Pb when it is present in metal (loid) mixtures. Consequently, the mouse model can successfully explain the in vivo in vitro correlation (IVIVC) of Pb when it is present in metal (loid) mixtures. However, we did find that a mouse model may not be the best one to explain the IVIVC of As when it is present in metal (loid) mixtures.
Collapse
Affiliation(s)
- M A A Wijayawardena
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - K Yan
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Y Liu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building University of Newcastle, Callaghan, NSW, 2308, Australia
| | - R Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
7
|
George SE, Devereux R, James J, Wan Y, Diamond GL, Bradham KD, Thomas DJ. Dietary lead modulates the mouse intestinal microbiome: Subacute exposure to lead acetate and lead contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114430. [PMID: 37192935 PMCID: PMC10181873 DOI: 10.1016/j.ecoenv.2022.114430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The effect of dietary lead on the intestinal microbiome has not been fully elucidated. To determine if there was an association between microflora modulation, predicted functional genes, and Pb exposure, mice were provided diets amended with increasing concentrations of a single lead compound, lead acetate, or a well characterized complex reference soil containing lead, i.e. 6.25-25 mg/kg Pb acetate (PbOAc) or 7.5-30 mg/kg Pb in reference soil SRM 2710a having 0.552 % Pb among other heavy metals such as Cd. Feces and ceca were collected following 9 days of treatment and the microbiome analyzed by 16 S rRNA gene sequencing. Treatment effects on the microbiome were observed in both feces and ceca of mice. Changes in the cecal microbiomes of mice fed Pb as Pb acetate or as a constituent in SRM 2710a were statistically different except for a few exceptions regardless of dietary source. This was accompanied by increased average abundance of functional genes associated with metal resistance, including those related to siderophore synthesis and arsenic and/or mercury detoxification. Akkermansia, a common gut bacterium, was the highest ranked species in control microbiomes whereas Lactobacillus ranked highest in treated mice. Firmicutes/Bacteroidetes ratios in the ceca of SRM 2710a treated mice increased more than with PbOAc, suggestive of changes in gut microbiome metabolism that promotes obesity. Predicted functional gene average abundance related to carbohydrate, lipid, and/or fatty acid biosynthesis and degradation were greater in the cecal microbiome of SRM 2710a treated mice. Bacilli/Clostridia increased in the ceca of PbOAc treated mice and may be indicative of increased risk of host sepsis. Family Deferribacteraceae also was modulated by PbOAc or SRM 2710a possibly impacting inflammatory response. Understanding the relationship between microbiome composition, predicted functional genes, and Pb concentration, especially in soil, may provide new insights into the utility of various remediation methodologies that minimize dysbiosis and modulate health effects, thus assisting in the selection of an optimal treatment for contaminated sites.
Collapse
Affiliation(s)
- S. Elizabeth George
- U. S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement & Modeling, Gulf Ecosystem Measurement & Modeling Division, Gulf Breeze, FL 32561, United States
| | - Richard Devereux
- U. S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement & Modeling, Gulf Ecosystem Measurement & Modeling Division, Gulf Breeze, FL 32561, United States
| | - Joseph James
- U. S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement & Modeling, Gulf Ecosystem Measurement & Modeling Division, Gulf Breeze, FL 32561, United States
| | - Yongshan Wan
- U. S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement & Modeling, Gulf Ecosystem Measurement & Modeling Division, Gulf Breeze, FL 32561, United States
| | | | - Karen D. Bradham
- U. S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement & Modeling, Research Triangle Park, NC 27711, United States
| | - David J. Thomas
- U. S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure, Chemical Characterization & Exposure Division, Research Triangle Park, NC 27711, United States
| |
Collapse
|
8
|
Li HB, Xue RY, Chen XQ, Lin XY, Shi XX, Du HY, Yin NY, Cui YS, Li LN, Scheckel KG, Juhasz AL, Xue XM, Zhu YG, Ma LQ. Ca Minerals and Oral Bioavailability of Pb, Cd, and As from Indoor Dust in Mice: Mechanisms and Health Implications. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:127004. [PMID: 36541774 PMCID: PMC9769408 DOI: 10.1289/ehp11730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Elevating dietary calcium (Ca) intake can reduce metal(loid)oral bioavailability. However, the ability of a range of Ca minerals to reduce oral bioavailability of lead (Pb), cadmium (Cd), and arsenic (As) from indoor dust remains unclear. OBJECTIVES This study evaluated the ability of Ca minerals to reduce Pb, Cd, and As oral bioavailability from indoor dust and associated mechanisms. METHODS A mouse bioassay was conducted to assess Pb, Cd, and As relative bioavailability (RBA) in three indoor dust samples, which were amended into mouse chow without and with addition of CaHPO 4 , CaCO 3 , Ca gluconate, Ca lactate, Ca aspartate, and Ca citrate at 200 - 5,000 μ g / g Ca . The mRNA expression of Ca and phosphate (P) transporters involved in transcellular Pb, Cd and As transport in the duodenum of mice was quantified using real-time polymerase chain reaction. Serum 1,25-Dihydroxyvitamin D3 [1,25 ( OH ) 2 D 3 ], parathyroid hormone (PTH), and renal CYP27B1 activity controlling 1,25 ( OH ) 2 D 3 synthesis were measured using ELISA kits. Metal(loid) speciation in the feces of mice was characterized using X-ray absorption near-edge structure (XANES) spectroscopy. RESULTS In general, mice exposed to each of the Ca minerals exhibited lower Pb-, Cd-, and As-RBA for three dusts. However, RBAs with the different Ca minerals varied. Among minerals, mice fed dietary CaHPO 4 did not exhibit lower duodenal mRNA expression of Ca transporters but did have the lowest Pb and Cd oral bioavailability at the highest Ca concentration (5,000 μ g / g Ca ; 51%-95% and 52%-74% lower in comparison with the control). Lead phosphate precipitates (e.g., chloropyromorphite) were observed in feces of mice fed dietary CaHPO 4 . In comparison, mice fed organic Ca minerals (Ca gluconate, Ca lactate, Ca aspartate, and Ca citrate) had lower duodenal mRNA expression of Ca transporters, but Pb and Cd oral bioavailability was higher than in mice fed CaHPO 4 . In terms of As, mice fed Ca aspartate exhibited the lowest As oral bioavailability at the highest Ca concentration (5,000 μ g / g Ca ; 41%-72% lower) and the lowest duodenal expression of P transporter (88% lower). The presence of aspartate was not associated with higher As solubility in the intestine. DISCUSSION Our study used a mouse model of exposure to household dust with various concentrations and species of Ca to determine whether different Ca minerals can reduce bioavailability of Pb, Cd, and As in mice and elucidate the mechanism(s) involved. This study can contribute to the practical application of optimal Ca minerals to protect humans from Pb, Cd, and As coexposure in the environment. https://doi.org/10.1289/EHP11730.
Collapse
Affiliation(s)
- Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, China
| | - Xiao-Qiang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, China
| | - Xiao-Xia Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, China
| | - Hai-Yan Du
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Nai-Yi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Shan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Li-Na Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Kirk G. Scheckel
- National Risk Management Research Laboratory, Land Remediation and Pollution Control Division, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Albert L. Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Lena Q. Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Lin XY, Xue RY, Zhou L, Zhang YS, Wang HY, Zhang S, Li SW, Juhasz AL, Ma LQ, Zhou DM, Li HB. Effects of various Fe compounds on the bioavailability of Pb contained in orally ingested soils in mice: Mechanistic insights and health implications. ENVIRONMENT INTERNATIONAL 2022; 170:107664. [PMID: 36450209 DOI: 10.1016/j.envint.2022.107664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Reducing lead (Pb) exposure via oral ingestion of contaminated soils is highly relevant for child health. Elevating dietary micronutrient iron (Fe) intake can reduce Pb oral bioavailability while being beneficial for child nutritional health. However, the practical performance of various Fe compounds was not assessed. Here, based on mouse bioassays, ten Fe compounds applied to diets (100-800 mg Fe kg-1) reduced Pb oral relative bioavailability (RBA) in two soils variedly depending on Fe forms. EDTA-FeNa was most efficient, which reduced Pb-RBA in a soil from 79.5 ± 14.7 % to 23.1 ± 2.72 % (71 % lower) at 100 mg Fe kg-1 in diet, more effective than other 9 compounds at equivalent or higher doses (3.6-68 % lower). When EDTA-FeNa, ferrous gluconate, ferric citrate, and ferrous bisglycinate were supplemented, Fe-Pb co-precipitation was not observed in the intestinal tract. EDTA-FeNa, ferrous gluconate, ferric citrate, and ferrous sulfate suppressed duodenal divalent metal transporter 1 (DMT1)mRNA relative expression similarly (27-68 % lower). In comparison, among ten compounds, EDTA-FeNa elevated Fe concentrations in mouse liver, kidney, and blood (1.50-2.69-fold higher) most efficiently, suggesting the most efficient Fe absorption that competed with Pb. In addition, EDTA was unique from other organic ligands, ingestion of which caused 12.0-fold higher Pb urinary excretion, decreasing Pb concentrations in mouse liver, kidney, and blood by 68-88 %. The two processes (Fe-Pb absorption competition and Pb urinary excretion with EDTA) interacted synergistically, leading to the lowest Pb absorption with EDTA-FeNa. The results provide evidence of a better inhibition of Pb absorption by EDTA-FeNa, highlighting that EDTA-FeNa may be the most appropriate supplement for intervention on human Pb exposure. Future researches are needed to assess the effectiveness of EDTA-FeNa for intervention on human Pb exposure.
Collapse
Affiliation(s)
- Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yao-Sheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuo Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong-Mei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Yin N, Han Z, Jia W, Fu Y, Ma J, Liu X, Cai X, Li Y, Chen X, Cui Y. Effect of vitamin C supplement on lead bioaccessibility in contaminated soils using multiple in vitro gastrointestinal assays: Mechanisms and health risks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113968. [PMID: 35981483 DOI: 10.1016/j.ecoenv.2022.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Effects of vitamin C supplementation on the oral bioaccessibility of lead (Pb) present in contaminated soils were examined using a number of in vitro assays (PBET, SBRC, UBM and IVG). In the presence of vitamin C, an increase in Pb bioaccessibility was observed in the gastric phase by 1.3-fold (30.5%-85.5%) and in the intestinal phase by 3.1-fold (0.9%-58.9%). Lead mobilization was regulated by reductive dissolution of Fe(III) and sequestration of Pb on secondary Fe minerals. Sequential extraction by the Bureau Community of Reference (BCR) provided more evidence that reducible fraction and residual fraction were major contributor of gastric Pb bioaccessibility, as well as reduced fractions in intestinal Pb bioaccessibility. In addition, higher non-carcinogenic risks may occur based on target hazard quotient (THQ ≥ 1). For people exposed to Pb present in soil, the management of vitamin C supplements is of serious concern.
Collapse
Affiliation(s)
- Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zeliang Han
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wenbin Jia
- National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China.
| | - Yaqi Fu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jingnan Ma
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaotong Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yan Li
- Department of Agricultural, Forest and Food Sciences, University of Turin, Torino 10095, Italy
| | - Xiaochen Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
11
|
Xiao J, Shi Y, Deng Y, Liu Y, Feng W, Liao M, Cao H. Incorporating Tenax into the in vitro method to improve the predictive capability of bioaccessibility of triazole fungicides in grape. Food Chem 2022; 396:133740. [PMID: 35878443 DOI: 10.1016/j.foodchem.2022.133740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/09/2022] [Accepted: 07/16/2022] [Indexed: 12/07/2022]
Abstract
In vitro bioaccessibility assays have been developed for high-throughput prediction of relative bioavailability (RBA). However, methods to reliably and efficiently assess pesticide residues remain limited, hindering the precise estimation of pesticide exposure risk. The inclusion of a sorption sink material to simulate intestinal sorption could be a promising approach to optimize in vitro bioaccessibility methods. The current study aimed to explore the feasibility of incorporating Tenax into the Rijksinstituut voor Volksgezondheid en Milieu (RIVM) method for accurate evaluation of the bioaccessibility of triazole fungicides. The use of 1.0 g of Tenax enabled the valid trapping of triazole fungicides released from grape, resulting in a significant increase of 23.59-38.51 % in the value of bioaccessibility. A strong in vivo-in vitro correlation was observed between pesticide RBA and bioaccessibility, suggesting that the Tenax-assisted RIVM method is a suitable replacement for time-consuming and laborious in vivo alternatives. In addition, the exposure assessment indicated that the hazard quotients for triazole fungicides in grape may be overestimated by 5.79-27.34 % without considering bioaccessibility based on the Tenax-assisted RIVM method. These results provide further insights into the assessment of bioaccessibility-based human exposure to pesticides as well as dietary exposure and related risk for human health.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yajing Deng
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Wenzhe Feng
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China.
| |
Collapse
|
12
|
Ludolphy C, Kierdorf U, Kierdorf H. Antlers of European roe deer (Capreolus capreolus) as monitoring units to assess lead pollution in a floodplain contaminated by historical metal ore mining, processing, and smelting in the Harz Mountains, Germany. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119080. [PMID: 35245617 DOI: 10.1016/j.envpol.2022.119080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/20/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Lead concentrations in hard antlers of adult European roebucks (Capreolus capreolus) were analyzed to assess lead exposure of roe deer roaming the floodplain of the Innerste River, a river system contaminated due to historical metal ore mining, processing, and smelting in its upper reaches. Antler lead concentrations of roebucks culled in the period 1939-2018 within or close to the Innerste floodplain ranged between <0.17 mg Pb/kg (limit of detection) and 51.5 mg Pb/kg (air-dry weight). Median lead concentration in antlers of roebucks culled within the floodplain was 11.1 mg Pb/kg, compared to 2.3 mg Pb/kg in antlers of bucks culled in the floodplain vicinity (P < 0.01). Sampling year had no significant effect on antler lead concentrations (P = 0.748). Lead isotope ratios of antlers from the Innerste downstream area (206Pb/207Pb: 1.179-1.181; 208Pb/206Pb: 2.083-2.085) fell within the range of those reported for hydrothermal vein deposits from the upper catchment area of the Innerste River in the Harz Mountains. Our study demonstrates the long-lasting impact of the historical metal ore mining, processing, and smelting in the Harz Mountains on lead pollution in floodplains of rivers draining this area and the lead exposure of wild herbivores inhabiting the floodplains. Furthermore, it highlights the suitability of roe deer antlers for monitoring environmental lead levels and the usefulness of lead isotope signatures in antlers for source apportionment of lead pollution.
Collapse
Affiliation(s)
- Catharina Ludolphy
- Department of Biology, University of Hildesheim, Universitätsplatz 1, 31141, Hildesheim, Germany
| | - Uwe Kierdorf
- Department of Biology, University of Hildesheim, Universitätsplatz 1, 31141, Hildesheim, Germany
| | - Horst Kierdorf
- Department of Biology, University of Hildesheim, Universitätsplatz 1, 31141, Hildesheim, Germany.
| |
Collapse
|
13
|
Sowers TD, Bone SE, Noerpel MR, Blackmon MD, Karna RR, Scheckel KG, Juhasz AL, Diamond GL, Thomas DJ, Bradham KD. Plumbojarosite Remediation of Soil Affects Lead Speciation and Elemental Interactions in Soil and in Mice Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15950-15960. [PMID: 34806356 PMCID: PMC9606633 DOI: 10.1021/acs.est.1c06067] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Lead (Pb) contamination of soils is of global concern due to the devastating impacts of Pb exposure in children. Because early-life exposure to Pb has long-lasting health effects, reducing exposure in children is a critical public health goal that has intensified research on the conversion of soil Pb to low bioavailability phases. Recently, plumbojarosite (PLJ) conversion of highly available soil Pb was found to decrease Pb relative bioavailability (RBA <10%). However, there is sparse information concerning interactions between Pb and other elements when contaminated soil, pre- and post-remediation, is ingested and moves through the gastrointestinal tract (GIT). Addressing this may inform drivers of effective chemical remediation strategies. Here, we utilize bulk and micro-focused Pb X-ray absorption spectroscopy to probe elemental interactions and Pb speciation in mouse diet, cecum, and feces samples following ingestion of contaminated soils pre- and post-PLJ treatment. RBA of treated soils was less than 1% with PLJ phases transiting the GIT with little absorption. In contrast, Pb associated with organics was predominantly found in the cecum. These results are consistent with transit of insoluble PLJ to feces following ingestion. The expanded understanding of Pb interactions during GIT transit complements our knowledge of elemental interactions with Pb that occur at higher levels of biological organization.
Collapse
Affiliation(s)
- Tyler D Sowers
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Sharon E Bone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matthew R Noerpel
- Center for Environmental Solutions & Emergency Response, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Matthew D Blackmon
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Ranju R Karna
- Bennett Aerospace, Inc., Engineer Research and Development Center, USACE, Vicksburg, Mississippi 39183, United States
| | - Kirk G Scheckel
- Center for Environmental Solutions & Emergency Response, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Gary L Diamond
- SRC, Inc., North Syracuse, New York 13212, United States
| | - David J Thomas
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Karen D Bradham
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
14
|
Haque E, Thorne PS, Nghiem AA, Yip CS, Bostick BC. Lead (Pb) concentrations and speciation in residential soils from an urban community impacted by multiple legacy sources. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125886. [PMID: 34492824 PMCID: PMC8666965 DOI: 10.1016/j.jhazmat.2021.125886] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 05/20/2023]
Abstract
In many urban areas, elevated soil lead (Pb) concentrations are indicators of community-level Pb exposure. Here, we examine the spatial distribution and speciation of legacy soil Pb contamination in East Chicago, Ind., an industrial center with a wide range of Pb sources including a former lead smelter. In situ X-ray fluorescence spectroscopy (n = 358) revealed widespread soil Pb contamination above the Environmental Protection Agency regulatory limit for soils. This soil contamination was heterogenous across all neighborhoods, and mostly uncorrelated with distance from the former smelting site. Soil Pb levels increased with decreasing median household income in East Chicago's nine neighborhoods (r = -0.73, p = 0.03). Extended X-ray absorption fine structure spectroscopy (n = 44) indicated that the soil Pb was primarily adsorbed to iron and manganese oxides or humic acids, and as Pb hydroxycarbonate regardless of contamination levels. Crystalline insoluble forms of Pb, like pyromorphite, were not detected in significant concentrations. Thus, the unique chemical forms of potential Pb sources to soil, such as paint, ore and slag are not persistent and instead are extensively repartitioned into acid-soluble forms of Pb with greater bioavailability. These findings have implications for remediation efforts and human health as blood Pb levels in this community are significantly elevated.
Collapse
Affiliation(s)
- Ezazul Haque
- Human Toxicology Program, Graduate College, University of Iowa, USA; Department of Occupational and Environmental Health, College of Public Health, University of Iowa, USA
| | - Peter S Thorne
- Human Toxicology Program, Graduate College, University of Iowa, USA; Department of Occupational and Environmental Health, College of Public Health, University of Iowa, USA.
| | - Athena A Nghiem
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA; Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Caryn S Yip
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, USA
| | - Benjamin C Bostick
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA; Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA.
| |
Collapse
|
15
|
Li HB, Ning H, Li SW, Li J, Xue RY, Li MY, Wang MY, Liang JH, Juhasz AL, Ma LQ. An interlaboratory evaluation of the variability in arsenic and lead relative bioavailability when assessed using a mouse bioassay. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:593-607. [PMID: 33952142 DOI: 10.1080/15287394.2021.1919947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Animal bioassays have been developed to estimate oral relative bioavailability (RBA) of metals in soil, dust, or food for accurate health risk assessment. However, the comparability in RBA estimates from different labs remains largely unclear. Using 12 soil and soil-like standard reference materials (SRMs), this study investigated variability in lead (Pb) and arsenic (As) RBA estimates employing a mouse bioassay in 3 labs at Nanjing University, University of Jinan, and Shandong Normal University. Two performances of the bioassay at Nanjing University in 2019 and 2020 showed reproducible Pb and As RBA estimates, but increasing the number of mouse replicates in 2020 produced more precise RBA measurements. Although there were inter-lab variations in diet consumption rate and metal accumulation in mouse liver and kidneys following SRM ingestion due to differences in diet composition, bioassays at 3 labs in 2019 yielded overall similar Pb and As RBA estimates for the 12 SRMs with strong linear correlations between each 2 of the 3 labs for Pb (R2 = 0.95-0.98 and slope = 0.85-1.02) and As RBA outcomes (R2 = 0.46-0.86 and slope = 0.56-0.79). The consistency in RBA estimates was attributed to the relative nature of the final bioavailability outcome, which might overcome the inter-lab variation in diet consumption and metal uptake in mice. These results increased the confidence of use of mouse bioassays in bioavailability studies.
Collapse
Affiliation(s)
- Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Han Ning
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Jie Li
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, People's Republic of China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Meng-Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Jia-Hui Liang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
16
|
Pareja-Carrera J, Martinez-Haro M, Mateo R, Rodríguez-Estival J. Effect of mineral supplementation on lead bioavailability and toxicity biomarkers in sheep exposed to mining pollution. ENVIRONMENTAL RESEARCH 2021; 196:110364. [PMID: 33131708 DOI: 10.1016/j.envres.2020.110364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The chronic exposure of livestock to lead (Pb) pollution in historical mining areas may represent significant and unnecessary costs for farmers and primary producers, in addition to important food safety risks. Here, we evaluate the effect of mineral supplements, in the form of a commercial mineral block (MB), to reduce Pb bioavailability and toxicity in sheep through an experimental approach under real farming conditions in an abandoned mining area. Blood, fecal Pb levels, and soil ingestion, along with different blood and plasma biomarkers were studied. Experiment 1 was carried out with 3-months-old female lambs, n = 54, fenced in two contiguous MB and non-MB-supplemented plots. After 20 days of treatment, blood Pb level was lower in MB-supplemented sheep than in those that were non-MB-supplemented. Experiment 2 was carried out with 2-months-old female lambs, n = 34, fenced in a single plot and MB-supplemented during the first 20 days of experiment. After MB supplementation, blood Pb level in sheep was also reduced by almost half, falling below the threshold of subclinical intoxication, and then increased again after 20 days without MB. Experiment 3 was carried out with adult rams, n = 10, fenced in a single MB-supplemented plot during the first 20 days of experiment. In this case, blood Pb level decreased by day 40. Soil ingestion was not reduced by MB supplementation in any of the experiments. MB supplementation favored antioxidant status by increasing SOD activity and reducing GPX activity and MDA levels. In conclusion, the MB supplementation seemed to reduce Pb bioavailability by increasing its fecal excretion, but renal excretion and bone deposition may also have favored the reduction of blood Pb concentration. Mineral supplements may be a new easy-to-apply and cost-effective way to reduce livestock exposure in Pb polluted sites.
Collapse
Affiliation(s)
- Jennifer Pareja-Carrera
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Mónica Martinez-Haro
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005, Ciudad Real, Spain; Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), CIAG Del Chaparrillo, 13071, Ciudad Real, Spain.
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Jaime Rodríguez-Estival
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005, Ciudad Real, Spain; Instituto de Tecnología, Construcción y Telecomunicaciones (ITct), Universidad de Castilla-La Mancha (UCLM), Calle de Pedro Almodovar 1, 16002, Cuenca, Spain; Azeral Environmental Sciences, STIPA & AZERAL Environmental Services, S. L., Avenida de Los Alfares 24, 2° A, 16002, Cuenca, Spain
| |
Collapse
|
17
|
Sowers TD, Nelson CM, Diamond GL, Blackmon MD, Jerden ML, Kirby AM, Noerpel MR, Scheckel KG, Thomas DJ, Bradham KD. High Lead Bioavailability of Indoor Dust Contaminated with Paint Lead Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:402-411. [PMID: 33307690 PMCID: PMC8204915 DOI: 10.1021/acs.est.0c06908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
House dust and soils can be major sources of lead (Pb) exposure for children. The American Healthy Homes Survey (AHHS) was developed to estimate Pb exposure from house dust and soil, in addition to other potential household contaminants and allergens. We have combined X-ray absorption spectroscopic (XAS) fingerprinting and in vivo mouse relative bioavailability (RBA) measurements for a subset of house dust and residential soils collected in the AHHS, with the primary objective of gaining a better understanding of determinants of house dust Pb bioavailability. Lead speciation was well related to variations in RBA results and revealed that highly bioavailable Pb (hydroxy)carbonate (indicative of Pb-based paint) was the major Pb species present in house dusts. Measured Pb RBA was up to 100% and is likely driven by paint Pb. To our knowledge, this is the first report of in vivo Pb RBA for U.S. house dust contaminated in situ with paint Pb and corroborates results from a previous study that demonstrated high RBA of paint Pb added to soil. We also report a relatively low RBA (23%) in a residential soil where the major Pb species was found to be plumbojarosite, consistent with a previous report that plumbojarosite lowers Pb RBA in soils.
Collapse
Affiliation(s)
- Tyler D. Sowers
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, US
| | - Clay M. Nelson
- SRC, Inc., North Syracuse, New York 13212, United States
| | | | - Matt D. Blackmon
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, US
| | - Marissa L. Jerden
- Jacobs Technology, Inc., 109 T.W. Alexander Drive, RTP, North Carolina 27711, US
| | - Alicia M. Kirby
- Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830, US
| | - Matthew R. Noerpel
- Center for Environmental Solutions & Emergency Response, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio 45268, US
| | - Kirk G. Scheckel
- Center for Environmental Solutions & Emergency Response, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio 45268, US
| | - David J. Thomas
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, US
| | - Karen D. Bradham
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, US
| |
Collapse
|
18
|
Abstract
Exposure to lead (Pb) during early life has persistent adverse health effects. During childhood, ingestion of bioavailable Pb in contaminated soils can be a major route of Pb absorption. Remediation to alter physiochemical properties of soil-borne Pb can reduce Pb bioavailability. Our laboratory-based approach for soil Pb remediation uses addition of iron (Fe) sulfate and application of heat to promote formation of plumbojarosite (PLJ), a sparingly soluble Pb-Fe hydroxysulfate mineral. We treated two soils with anthropogenic Pb contamination and samples of clean topsoil spiked with various Pb compounds (i.e., carbonate, chloride, phosphate [P], or sulfate) to convert native Pb species to PLJ and used a mouse assay to assess relative bioavailability (RBA) of Pb in untreated (U) and remediated soils. Bone and blood Pb levels were significantly lower (P < 0.001, Student's t test) in mice that consumed diets amended with remediated soils than with U soils. Estimated RBA for Pb in both remediated natural soils and Pb-mineral spiked soils were reduced by >90% relative to Pb RBA for U soils, which is substantially more effective than other soil amendments, including P. X-ray absorption spectroscopy showed that >90% of all Pb species in remediated soils were converted to PLJ, and ingested PLJ was not chemically transformed during gastrointestinal tract transit. Post treatment neutralization of soil pH did not affect PLJ stability, indicating the feasibility in field conditions. These results suggest that formation of PLJ in contaminated soils can reduce the RBA of Pb and minimize this medium's role as a source of Pb exposure for young children.
Collapse
|
19
|
Yin N, Han Z, Du H, Wang P, Li Y, Chen X, Sun G, Cui Y, Hu Z. Effect of dietary vitamins in oral bioaccessibility of lead in contaminated soils based on the physiologically based extraction test. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141299. [PMID: 32791414 DOI: 10.1016/j.scitotenv.2020.141299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/25/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
To determine the effect of vitamin supplements on the oral bioaccessibility of Pb in soils, Pb bioaccessibility was measured in the presence of 9 vitamins by a physiologically based extraction test. Gastric Pb bioaccessibility (G-BA, 2.6-83.3%) was found to be mostly reduced (1.1-3.1 fold) in the presence of B vitamins, specifically vitamins B1, B6, and B9. In contrast, a significant increase in Pb G-BA was observed with vitamin C and E involved. In the small intestinal phases, Pb bioaccessibility (I-BA) ranged from 0.1% to 16.0%, being 5-50 fold lower than the corresponding G-BA values. Vitamin C supplementation showed a 7-fold increase in Pb I-BA, with a similar increase presented in approximately 30% of samples treated to vitamin B involvement. Lead liberation in gastrointestinal digests was associated with the dissolution of Fe and Mn regulated by vitamins. In conclusion, the addition of B vitamins resulted in the reduction of gastric Pb bioaccessibility, but the bioaccessibility value increased in participation of vitamin C and E. Elevated intestinal bioaccessibility was found especially for vitamin C. This should contribute to more accurate assessment of health risks from contaminated soils. Nutritional management aimed at preventing Pb-induced toxicity can benefit from knowledge of vitamin influence on soil Pb bioaccessibility.
Collapse
Affiliation(s)
- Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Zeliang Han
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; College of Environment and Resources, Fuzhou University, Fujian, Fuzhou 350116, PR China
| | - Huili Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yunpeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaochen Chen
- College of Environment and Resources, Fuzhou University, Fujian, Fuzhou 350116, PR China
| | - Guoxin Sun
- Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Zhengyi Hu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
20
|
Pareja-Carrera J, Rodríguez-Estival J, Mateo R, Martinez-Haro M. In vitro assessment of mineral blocks as a cost-effective measure to reduce oral bioavailability of lead (Pb) in livestock. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25563-25571. [PMID: 32347506 DOI: 10.1007/s11356-020-08898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Soil contamination in former mining districts is a persistent problem resulting from the historic lack of legal requirements as regards land restoration after mine closures. Much of this polluted land is currently being used worldwide for livestock and big game production, with the consequent health risks for the animals exposed and the subsequent threats to food safety. Soil remediation and restoration may be unfeasible or difficult to accomplish in the short term when pollution affects large territories and other alternatives must, therefore, be explored in order to reduce the probability of grazing animals being exposed to this contamination. In this paper, we study the use of mineral blocks (MBs) as a potential alternative by which to reduce the oral bioavailability of lead (Pb) in polluted soils by means of a simplified in vitro assay simulating gastrointestinal pH conditions. Experiments were carried out with twelve commercial MBs of different compositions in order to identify the most useful to be tested in further in vivo bioavailability studies. The results showed that one of them reduced the bioaccessibility of Pb from polluted soil by 88.2% and 75.9% under gastric and intestinal conditions, respectively, when compared with assays containing only polluted soil without MBs. The MB in question had the highest phosphorus content (7%) and one of the highest calcium contents (10%) of all those tested. Furthermore, negative correlations were detected between the content of calcium and phosphorus in the MBs and the percentage of bioaccessible Pb under gastric conditions, and between phosphorus and bioaccessible Pb under intestinal conditions. The use of MBs with a high phosphorus and calcium content should consequently be tested in vivo as a cost-effective (€ 0.6-1.5/sheep/month) tool by which to reduce the bioavailability of Pb for extensive grazing livestock reared in contaminated areas.
Collapse
Affiliation(s)
- Jennifer Pareja-Carrera
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005, Ciudad Real, Spain.
| | - Jaime Rodríguez-Estival
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005, Ciudad Real, Spain
- Instituto de Tecnología, Construcción y Telecomunicaciones (ITct), Universidad de Castilla-La Mancha (UCLM), Calle de Pedro Almodovar 1, 16002, Cuenca, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Mónica Martinez-Haro
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005, Ciudad Real, Spain
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), CIAG del Chaparrillo, 13071, Ciudad Real, Spain
| |
Collapse
|
21
|
Li SW, Li MY, Sun HJ, Li HB, Ma LQ. Lead bioavailability in different fractions of mining- and smelting-contaminated soils based on a sequential extraction and mouse kidney model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114253. [PMID: 32179223 DOI: 10.1016/j.envpol.2020.114253] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Lead bioavailability in contaminated soils varies considerably depending on Pb speciation and sources of contamination. However, little information is available on bioavailability of Pb associated with different fractions. In this study, the Tessier sequential extraction was used to fractionate Pb in 3 contaminated soils to exchangeable (F1), carbonate-bound (F2), Fe/Mn oxides-bound (F3), organic-bound (F4), and residual fractions (F5). In addition, soil residues after F1-F2 extraction (F345), F1-F3 extraction (F45), and F1-F4 extraction (F5) were measured for Pb relative bioavailability (RBA) using a mouse kidney model. Based on the mouse model, Pb-RBA in the soils was 44-93%, which decreased to 43-89%, 28-75%, and 15-68% in the F345, F45, and F5 fractions, respectively. Based on Pb-RBA in the soil residues, Pb-RBA in different fractions was calculated based on a mass balance. The data showed that Pb-RBA was the highest (∼100%) in the exchangeable and carbonate fraction, and the lowest (15-68%) in the residual fraction. In addition, Pb in the first three fractions (F1-F3) contributed most (83-89%) to bioavailable Pb in contaminated soils. Our study shed light on oral bioavailability of Pb in contaminated soils of different fractions based on sequential extraction and provide important information for soil remediation.
Collapse
Affiliation(s)
- Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hong-Jie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Noerpel M, Pribil M, Rutherford D, Law P, Bradham K, Nelson C, Weber R, Gunn G, Scheckel K. Lead speciation, bioaccessibility and source attribution in Missouri's Big River watershed. APPLIED GEOCHEMISTRY : JOURNAL OF THE INTERNATIONAL ASSOCIATION OF GEOCHEMISTRY AND COSMOCHEMISTRY 2020; 123:10.1016/j.apgeochem.2020.104757. [PMID: 33424107 PMCID: PMC7787989 DOI: 10.1016/j.apgeochem.2020.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Southeast Missouri Lead District is among the most productive lead deposits exploited in modern times. Intensive mining conducted prior to regulations resulted in a legacy of lead contaminated soil, large piles of mine tailings and elevated childhood blood lead levels. This study seeks to identify the source of the lead contamination in the Big River and inform risk to the public. Isotopic analysis indicated the mine tailing piles at the head of the Big River are the primary source of the lead contamination. The isotopic signature of the lead in these mine tailings matched the lead over 100 km downstream. All of the other potential lead sources investigated had different isotopic signatures. Lead concentrations in soils and sediments decrease with distance downstream of the mine tailings piles. Additionally, the speciation of the lead changes from predominantly mineralized forms, such as galena, to adsorbed lead. This is reflected in the in-vitro bioaccessibility assay (IVBA) analysis which shows higher bioaccessibility further downstream, demonstrating the importance of speciation in risk evaluation.
Collapse
Affiliation(s)
- Matthew Noerpel
- United States Environmental Protection Agency, Office of Research and Development, 5995 Center Hill Ave. Cincinnati, Ohio, 45224, United States
| | - Michael Pribil
- United States Geological Survey, Denver Federal Center, MS 973, Denver, Co, 80225, USA
| | - Danny Rutherford
- United States Geological Survey, Denver Federal Center, MS 973, Denver, Co, 80225, USA
| | - Preston Law
- United States Environmental Protection Agency, Region 7, 11201 Renner Blvd, Lenexa, KS, 66219, United States
| | - Karen Bradham
- United States Environmental Protection Agency, Office of Research and Development, 109 Alexander Dr, Research Triangle Park, NC, 27711, United States
| | - Clay Nelson
- United States Environmental Protection Agency, Office of Research and Development, 109 Alexander Dr, Research Triangle Park, NC, 27711, United States
| | - Rob Weber
- United States Environmental Protection Agency, Region 7, 11201 Renner Blvd, Lenexa, KS, 66219, United States
| | - Gene Gunn
- United States Environmental Protection Agency, Region 7, 11201 Renner Blvd, Lenexa, KS, 66219, United States
| | - Kirk Scheckel
- United States Environmental Protection Agency, Office of Research and Development, 5995 Center Hill Ave. Cincinnati, Ohio, 45224, United States
| |
Collapse
|