1
|
Kim DH, Lee H, Kim K, Kim S, Kim JH, Ko YW, Hawes I, Oh JE, Kim JT. Persistent organic pollutants in the Antarctic marine environment: The influence impacts of human activity, regulations, and climate change. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125100. [PMID: 39389244 DOI: 10.1016/j.envpol.2024.125100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
This study investigates the presence, distribution, and potential impacts of perfluoroalkyl substances (PFASs) and hexabromocyclododecanes (HBCDs) on the Antarctic marine environment. The analysis results from the King Sejong Station, the Jang Bogo Station, and Cape Evans revealed the highest concentrations of both PFASs and HBCDs at King Sejong Station, indicating the significant influence of human activity. Short-chain perfluorocarboxylic acids (PFCAs) dominated the seawater samples, with PFPeA at the highest concentration (0.076 ng/L) at King Sejong Station, whereas perfluorosulfonic acids (PFSAs) were prevalent in the sediments, with PFHxS reaching 0.985 ng/g. Total PFASs in benthos ranged from N.D. to 2.40 ng/g ww across all stations. This indicated the effects of long-range transport and glacial meltwater. α-HBCD was the most common diastereomer in benthos samples, detected in 58.3% of samples, suggesting its selective persistency. Although risk quotient analysis revealed low immediate risks to lower-trophic organisms, potential risks remain owing to their persistence and bioaccumulation potential. Contaminant patterns changed after regulations: perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) levels decreased, unregulated PFASs increased, HBCD stereoisomer ratios shifted towards α-HBCD dominance, and overall HBCD concentrations declined. Widespread persistence of regulated substances was observed in Antarctic environments, highlighting the need for comprehensive and long-term monitoring strategies. This study provides essential baseline data on contaminant distributions across the Southern Ocean, contributing to our understanding of emerging pollutants in Antarctic regions and informing future environmental protection efforts.
Collapse
Affiliation(s)
- Da-Hye Kim
- Department of Civil and Environmental Engineering, Pusan National University (PNU), 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Hyemin Lee
- Center for Sustainable Environmental Research, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Sanghee Kim
- Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Ji Hee Kim
- Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Young Wook Ko
- Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, 58 Cross Road, Tauranga, 3110, New Zealand
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University (PNU), 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Jun-Tae Kim
- Center for Sustainable Environmental Research, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Energy & Environment Technology, Korea University of Science and Technology (UST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
2
|
Yang PF, Ma WL, Xiao H, Hansen KM, Wang L, Sun JJ, Liu LY, Zhang ZF, Jia HL, Li YF. Temperature dependence of the rain-gas and snow-gas partition coefficients for nearly a thousand chemicals. CHEMOSPHERE 2024; 362:142565. [PMID: 38871187 DOI: 10.1016/j.chemosphere.2024.142565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Compared to the particle-gas partition coefficients (KPG), the rain-gas (KRG) and snow-gas (KSG) partition coefficients are also essential in studying the environmental behavior and fate of chemicals in the atmosphere. While the temperature dependence for the KPG have been extensively studied, the study for KRG and KSG are still lacking. Adsorption coefficients between water surface-air (KIA) and snow surface-air (KJA), as well as partition coefficients between water-air (KWA) and octanol-air (KOA) are vital in calculating KRG and KSG. These four basic adsorption and partition coefficients are also temperature-dependent, given by the well-known two-parameters Antoine equation logKXY = AXY + BXY/T, where KXY is the adsorption or partition coefficients, AXY and BXY are Antoine parameters (XY stand for IA, JA, WA, and OA), and T is the temperature in Kelvin. In this study, the parameters AXY and BXY are calculated for 943 chemicals, and logKXY can be estimated at any ambient temperature for these chemicals using these Antoine parameters. The results are evaluated by comparing these data with published experimental and modeled data, and the results show reasonable accuracy. Based on these coefficients, temperature-dependence of logKRG and logKSG is studied. It is found that both logKRG and logKSG are linearly related to 1/T, and Antoine parameters for logKRG and logKSG are also estimated. Distributions of the 943 chemicals in the atmospheric phases (gas, particle, and rain/snow), are illustrated in a Chemical Space Map. The findings reveal that, at environmental temperatures and precipitation days, the dominant state for the majority of chemicals is the gaseous phase. All the AXY and BXY values for logKSG, logKRG, and basic adsorption and partition coefficients, both modeled by this study and collected from published work, are systematically organized into an accessible dataset for public utilization.
Collapse
Affiliation(s)
- Pu-Fei Yang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China; Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Hang Xiao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315800, China
| | - Kaj M Hansen
- Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| | - Liang Wang
- Laboratory of Marine Ecological Environment Early Warning and Monitoring, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Jing-Jing Sun
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Hong-Liang Jia
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China; IJRC-PTS-NA, Toronto, ON, M2J 3N8, Canada.
| |
Collapse
|
3
|
Li X, Wang Y, Cui J, Shi Y, Cai Y. Occurrence and Fate of Per- and Polyfluoroalkyl Substances (PFAS) in Atmosphere: Size-Dependent Gas-Particle Partitioning, Precipitation Scavenging, and Amplification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9283-9291. [PMID: 38752583 DOI: 10.1021/acs.est.4c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The concerns about the fate of per- and polyfluoroalkyl substances (PFAS) in the atmosphere are continuously growing. In this study, size-fractionated particles, gas, and rainwater samples were simultaneously collected in Shijiazhuang, China, to investigate the multiphase distribution of PFAS in the atmosphere. Perfluoroalkyl carboxylic acids (PFCAs) dominated the total concentration of PFAS in atmospheric media. A strong positive relationship (0.79 < R2 < 0.99) was observed between the concentration of PFCAs and organic matter fraction (fOM) in different particle size fractions, while no such relationship for perfluoroalkyl sulfonic acids (PFSAs) and fOM, suggesting fOM may be an important factor influencing the size-dependent distribution of PFCAs. Temperature played a key role in the gas-particle partitioning of PFAS, while it did not significantly affect their particle-size-dependent distribution. The associative concentration fluctuation of particle and particle-bound PFAS during precipitation suggested that precipitation scavenging was an important mechanism for the removal of PFAS from the atmosphere. Furthermore, temporary increases in atmospheric PFAS concentrations were observed during the precipitation. Fugacity ratios of PFAS in rainwater and gas phase (log fR/fG ranged between 2.0 and 6.6) indicated a strong trend for PFAS to diffuse from the rainwater to the gas phase during the precipitation, which may explain that the concentration of PFAS in the gas phase continued to increase even at the end of the precipitation.
Collapse
Affiliation(s)
- Xiaotong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jiansheng Cui
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Zhang X, Peng Z, Hou S, Sun Q, Yuan H, Yin D, Zhang W, Zhang Y, Tang J, Zhang S, Cai Z. Ubiquitous occurrence of p-Phenylenediamine (PPD) antioxidants and PPD-quinones in fresh atmospheric snow and their amplification effects on associated aqueous contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133409. [PMID: 38211520 DOI: 10.1016/j.jhazmat.2023.133409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
p-Phenylenediamine (PPD) antioxidants are heavily used for protection of commercial rubber products (e.g., vehicle tire), resulting in their widespread contamination in ecosystem. PPD-quinones (PPDQs), the toxic quinone derivatives of PPDs, are also discovered as novel environmental pollutants. However, the contamination characteristics of PPDs/PPDQs in fresh atmospheric snow (without deposition on the Earth surface) have seldom been studied. This work first reports the broad distributions of PPDs and PPDQs in fresh atmospheric snow collected from seven Chinese urban areas. Individual median values of detected concentrations were in the ranges of 0.4 to 260 pg g-1 (PPDs) and 0.7 to 104 pg g-1 (PPDQs). The concentration deviation by long-term deposition on the ground was eliminated. In most sampling regions, wearing of vehicle rubber tires was possibly responsible for spatial-dependent PPDs' pollution level variations, and high concentrations of PPDs promoted PPDQs' formation in snow from atmosphere. Yet, excessive O3 may further oxidize and reduce PPDQs in atmospheric fresh snow from Zhengzhou, which is different from previous research. Furthermore, snowfall was noticed might amplify concentrations of three PPDs and PPDQs in an inland lake, which possibly worsen corresponding pollution in water system. Current study elucidates the potential impacts of snow-bound PPDs/PPDQs on ecosystems should not be underestimated.
Collapse
Affiliation(s)
- Xu Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zifang Peng
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, PR China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shijiao Hou
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, PR China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qiannan Sun
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, PR China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hang Yuan
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, PR China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Wenfen Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, PR China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yanhao Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative Region of China.
| | - Jianwei Tang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shusheng Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, PR China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| |
Collapse
|
5
|
Shi T, Li R, Fu J, Hou C, Gao H, Cheng G, Zhang H, Jin S, Kong L, Na G. Fate of organophosphate esters from the Northwestern Pacific to the Southern Ocean: Occurrence, distribution, and fugacity model simulation. J Environ Sci (China) 2024; 137:347-357. [PMID: 37980021 DOI: 10.1016/j.jes.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 11/20/2023]
Abstract
Eleven organophosphate esters (OPEs) in the air and seawater were investigated from the northwestern Pacific Ocean to the Southern Ocean during the 2018 Chinese 34th Antarctic Scientific Expedition. The concentration of total OPEs ranged from 164.82 to 3501.79 pg/m3 in air and from 4.54 to 70.09 ng/L in seawater. Two halogenated OPEs, tri(chloropropyl) phosphate (TCPP) and tri (2-chloroethyl) phosphate (TCEP), were generally more abundant than the non-halogenated OPEs. A level III fugacity model was developed to simulate the transfer and fate of seven OPEs in the air and seawater regions of the central Ross Sea. The model results indicate that OPEs are transferred from the air to the seawater in the central Ross Sea in summer, during which the Ross Sea acts as a final OPE sink. Dry and wet deposition dominated the processes involving OPE transfer to seawater. The OPE degradation process was also found to be more pervasive in the atmosphere than in the seawater region. These findings highlights the importance of long-range transport of OPEs and their air-seawater interface behavior in the Antarctic.
Collapse
Affiliation(s)
- Tengda Shi
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China; National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Ruijing Li
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Jie Fu
- National Marine Environmental Monitoring Center, Dalian 116023, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Chao Hou
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; NCS Testing Technology Co., Ltd., Beijing 10081, China
| | - Hui Gao
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Guanjie Cheng
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China; National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Haibo Zhang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shuaichen Jin
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Liang Kong
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Guangshui Na
- Laboratory for coastal marine eco-environment process and carbon sink of Hainan province/Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
6
|
Qin M, Ma WL, Yang PF, Li WL, Wang L, Shi LL, Li L, Li YF. A level IV fugacity-based multimedia model based on steady-state particle/gas partitioning theory and its application to study the spatio-temporal trends of PBDEs in atmosphere of northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168622. [PMID: 37979874 DOI: 10.1016/j.scitotenv.2023.168622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Particle/gas (P/G) partitioning can significantly affect the environmental behavior of atmospheric pollutants. In this study, we established a large-scale level IV fugacity-based multimedia model (the S-L4MF Model) based on the steady-state P/G partitioning theory. The spatial and temporal trends with the atmospheric contamination of polybrominated diphenyl ethers (PBDEs) in northeastern China under various climate conditions were simulated by the model. There is a reasonable agreement between the simulated and measured gaseous and particulate concentrations of 3 selected PBDE congeners (BDE-47, -99 and -209). For BDE-47, -99 and -209, 91.9 %, 94.8 % and 86.2 % of data points in the evaluation of the spatial trend, whereas 97.4 %, 98.2 % and 91.6 % of data points in the evaluation of the temporal trend, exhibit discrepancies between the modeled and measured data within 1 order of magnitude. The S-L4MF Model performed better than the other model with the same configuration but an equilibrium-state P/G partitioning assumption. The sensitivity and uncertainty analysis indicated that the air temperature and hexadecane-air partition coefficient were the dominant influencing factors on atmospheric concentrations. In addition, the model was successfully applied to study the inter-annual and seasonal variations of gaseous and particulate concentrations of the three PBDEs during 1971-2020 in Harbin, a northeastern Chinese city. Finally, we illustrated the potential to use the model to understand P/G partitioning behavior and the effects of snow and ice on atmospheric concentrations. In summary, the S-L4MF Model provided a powerful and effective tool for studying the environmental behavior of atmospheric organic pollutants, especially in cold regions.
Collapse
Affiliation(s)
- Meng Qin
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China.
| | - Pu-Fei Yang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China
| | - Wen-Long Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environmental, Nanjing 210042, China
| | - Li-Li Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environmental, Nanjing 210042, China
| | - Li Li
- School of Public Health, University of Nevada, Reno, Reno, NV 89557, USA
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China; IJRC-PTS-NA, Toronto, Ontario M2J 3N8, Canada
| |
Collapse
|
7
|
Luarte T, Hirmas-Olivares A, Höfer J, Giesecke R, Mestre M, Guajardo-Leiva S, Castro-Nallar E, Pérez-Parada A, Chiang G, Lohmann R, Dachs J, Nash SB, Pulgar J, Pozo K, Přibylová PP, Martiník J, Galbán-Malagón C. Occurrence and diffusive air-seawater exchanges of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in Fildes Bay, King George Island, Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168323. [PMID: 37949125 DOI: 10.1016/j.scitotenv.2023.168323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
We report the levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in seawater and air, and the air-sea dynamics through diffusive exchange analysis in Fildes Bay, King George Island, Antarctica, between November 2019 and January 30, 2020. Hexachlorobenzene (HCB) was the most abundant compound in both air and seawater with concentrations around 39 ± 2.1 pg m-3 and 3.2 ± 2.4 pg L-1 respectively. The most abundant PCB congener was PCB 11, with a mean of 3.16 ± 3.7 pg m-3 in air and 2.0 ± 1.1 pg L-1 in seawater. The fugacity gradient estimated for the OCP compounds indicate a predominance of net atmospheric deposition for HCB, α-HCH, γ-HCH, 4,4'-DDT, 4,4'-DDE and close to equilibrium for the PeCB compound. The observed deposition of some OCs may be driven by high biodegradation rates and/or settling fluxes decreasing the concentration of these compounds in surface waters, which is supported by the capacity of microbial consortium to degrade some of these compounds. The estimated fugacity gradients for PCBs showed differences between congeners, with net volatilization predominating for PCB-9, a trend close to equilibrium for PCB congeners 11, 28, 52, 101, 118, 138, and 153, and deposition for PCB 180. Snow amplification may play an important role for less hydrophobic PCBs, with volatilization predominating after snow/glacier melting. As hydrophobicity increases, the biological pump decreases the concentration of PCBs in seawater, reversing the fugacity gradient to atmospheric deposition. This study highlights the potential impacts of climate change, through glacier retreat, on the biogeochemistry of POPs, remobilizing those compounds previously trapped within the cryosphere which in turn will transform the Antarctic cryosphere into a secondary source of the more volatile POPs in coastal areas, influenced by snow and ice melting.
Collapse
Affiliation(s)
- Thais Luarte
- Programa de Doctorado en Medicina de la Conservación, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile; GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago 8580745, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA.
| | - Andrea Hirmas-Olivares
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago 8580745, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Department of Ecology and Biodiversity, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile
| | - Juan Höfer
- Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Ricardo Giesecke
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Independencia 631, Valdivia, Chile
| | - Mireia Mestre
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain; Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Chile
| | - Sergio Guajardo-Leiva
- Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile; Centro de Ecología Integrativa, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Eduardo Castro-Nallar
- Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile; Centro de Ecología Integrativa, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Andrés Pérez-Parada
- Departamento de Desarrollo Tecnológico, Centro Universitario Regional del Este (CURE), Universidad de la República, Ruta 9 y Ruta 15, Rocha 27000, Uruguay
| | - Gustavo Chiang
- Department of Ecology and Biodiversity, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile; Centro de Investigación para Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Jordi Dachs
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, Barcelona, Catalunya 08034, Spain
| | - Susan Bengtson Nash
- Southern Ocean Persistent Organic Pollutants Program, Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - José Pulgar
- Department of Ecology and Biodiversity, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile
| | - Karla Pozo
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción, Chile; Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Petra P Přibylová
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jakub Martiník
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Cristóbal Galbán-Malagón
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago 8580745, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA.
| |
Collapse
|
8
|
Cao Y, Wang J, Xin M, Wang B, Lin C. Spatial distribution and partition of polycyclic aromatic hydrocarbons (PAHs) in the water and sediment of the southern Bohai Sea: Yellow River and PAH property influences. WATER RESEARCH 2024; 248:120873. [PMID: 37980864 DOI: 10.1016/j.watres.2023.120873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
The marginal Bohai Sea, connected to the northwestern Pacific Ocean, is threatened by human activity. The Yellow River, the second largest river in China, drains large amounts of water, silts, and polycyclic aromatic hydrocarbons (PAHs) into the southern Bohai Sea; however, to what extent the Yellow River inputs influence the spatial distributions and partitions of PAHs in the southern Bohai Sea is not well known. Therefore, this study collected surface water, bottom water, and sediment samples from the southern Bohai Sea and analyzed them to examine the spatial distributions and partitions of 15 priority PAHs. The results showed that PAH concentrations ranged from 26.9 to 50.1 ng L-1 in surface water, 18.8 to 44.1 ng L-1 in bottom water, and 7.4 to 143.9 ng g-1 in sediment, with higher proportions of four-, five-, and six-ring PAHs in sediment than in water. PAH inputs from the Yellow River and sea coastal currents determined the spatial distribution of PAH concentrations in water and sediment, with an overall decrease from the estuary to the southeast. However, the solid dilution effect of input silts from the Yellow River and the liquid dilution effect of water from the Yellow River and Yellow Sea led to lower PAH concentrations in the water and sediment of the southern Bohai Sea than those in other areas of the Bohai Sea. PAH exchange between the atmosphere and seawater led to significantly higher individual PAH concentrations (except for acenaphthylene) in the surface water than in the bottom water, with ratios significantly related to the PAH n-octanol-water partition coefficient, organic carbon-water partition coefficient, and Henry's law constants. These parameters also determined PAH partitioning between the bottom water and sediment. Individual and total PAH concentrations in the sediment were significantly correlated with organic matter, clay, and silt contents. Therefore, the partitions and spatial distributions of PAHs in the southern Bohai Sea comprehensively depend on PAH properties, PAH inputs from the Yellow River and the atmosphere, sea currents, and seawater and sediment properties. The ecological risks posed by individual PAHs in both water and sediment were negligible or acceptable.
Collapse
Affiliation(s)
- Yuanxin Cao
- Beijing Normal University, Beijing 100875, China; School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Jing Wang
- Beijing Normal University, Beijing 100875, China.
| | - Ming Xin
- The First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China
| | - Baodong Wang
- The First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China
| | - Chunye Lin
- Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Mamontova EA, Mamontov AA. Persistent Organic Pollutants and Suspended Particulate Matter in Snow of Eastern Siberia in 2009-2023: Temporal Trends and Effects of Meteorological Factors and Recultivation Activities at Former Industrial Area. TOXICS 2023; 12:11. [PMID: 38250967 PMCID: PMC10819055 DOI: 10.3390/toxics12010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Suspended particulate matter (SPM), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCP) were studied in the snow cover at urban and suburban localities in the Irkutsk region, Eastern Siberia for their temporal variations in 2009-2023, daily deposition fluxes (DDFs), and effects of some meteorological factors, as well as the effects of different technogenic activities in the industrial area of the former organochlorine enterprises of Usol'ekhimprom. SPM loads at both stations were found to be at a low level of pollution. The levels of HCB, α + γ-HCH, and ∑p,p'-DDX were lower than Russian maximum permissible levels (MPLs) in drinking water, groundwater, and surface water for household drinking and cultural purposes. The sums of all organochlorine compounds studied in snow were higher than the MPL in freshwater water bodies for fishery purposes. The levels of the DDFs of HCHs, DDTs, and heptachlorinated PCB decreased, di- and trichlorinated PCB levels increased, and HCB levels changed at a polynomial line during 2009-2023. The change in the relative composition of PCBs was found as a result of recultivation activities at the industrial area of the former organochlorine enterprise of Usol'ekhimprom. The air humidity and temperature are the key meteorological factors affecting the DDFs of PCBs and OCPs.
Collapse
|
10
|
Casas G, Iriarte J, D'Agostino LA, Roscales JL, Martinez-Varela A, Vila-Costa M, Martin JW, Jiménez B, Dachs J. Inputs, amplification and sinks of perfluoroalkyl substances at coastal Antarctica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122608. [PMID: 37742857 DOI: 10.1016/j.envpol.2023.122608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
The sources, biogeochemical controls and sinks of perfluoroalkyl substances, such as perfluoroalkyl acids (PFAAs), in polar coastal regions are largely unknown. These were evaluated by measuring a large multi-compartment dataset of PFAAs concentrations at coastal Livingston and Deception Islands (maritime Antarctica) during three austral summers. PFAAs were abundant in atmospheric-derived samples (aerosols, rain, snow), consistent with the importance of atmospheric deposition as an input of PFAAs to Antarctica. Such PFAAs deposition was unequivocally demonstrated by the occurrence of PFAAs in small Antarctic lakes. Several lines of evidence supported the relevant amplification of PFAAs concentrations in surface waters driven by snow scavenging of sea-spray aerosol-bound PFAAs followed by snow-melting. For example, vertical profiles showed higher PFAAs concentrations at lower-salinity surface seawaters, and PFAAs concentrations in snow were significantly higher than in seawater. The higher levels of PFAAs at Deception Island than at Livingston Island are consistent with the semi-enclosed nature of the bay. Concentrations of PFOS decreased from 2014 to 2018, consistent with observations in other oceans. The sink of PFAAs due to the biological pump, transfer to the food web, and losses due to sea-spray aerosols alone are unlikely to have driven the decrease in PFOS concentrations. An exploratory assessment of the potential sinks of PFAAs suggests that microbial degradation of perfluoroalkyl sulfonates should be a research priority for the evaluation of PFAAs persistence in the coming decade.
Collapse
Affiliation(s)
- Gemma Casas
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Catalonia, Barcelona, Spain; Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, Spanish National Research Council (IQOG-CSIC), Madrid, Spain; BETA Tech Center, University of Vic, Catalonia, Vic, Spain
| | - Jon Iriarte
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Catalonia, Barcelona, Spain
| | - Lisa A D'Agostino
- Department of Environmental Science (ACES, Exposure & Effects), Science for Life Laboratory, Stockholm University, Stockholm, 106 91, Sweden
| | - Jose L Roscales
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, Spanish National Research Council (IQOG-CSIC), Madrid, Spain
| | - Alicia Martinez-Varela
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Catalonia, Barcelona, Spain
| | - Maria Vila-Costa
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Catalonia, Barcelona, Spain
| | - Jonathan W Martin
- Department of Environmental Science (ACES, Exposure & Effects), Science for Life Laboratory, Stockholm University, Stockholm, 106 91, Sweden
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, Spanish National Research Council (IQOG-CSIC), Madrid, Spain
| | - Jordi Dachs
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Catalonia, Barcelona, Spain.
| |
Collapse
|
11
|
Martinez-Varela A, Casas G, Berrojalbiz N, Lundin D, Piña B, Dachs J, Vila-Costa M. Metatranscriptomic responses and microbial degradation of background polycyclic aromatic hydrocarbons in the coastal Mediterranean and Antarctica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119988-119999. [PMID: 37934408 DOI: 10.1007/s11356-023-30650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Although microbial degradation is a key sink of polycyclic aromatic hydrocarbons (PAH) in surface seawaters, there is a dearth of field-based evidences of regional divergences in biodegradation and the effects of PAHs on site-specific microbial communities. We compared the magnitude of PAH degradation and its impacts in short-term incubations of coastal Mediterranean and the Maritime Antarctica microbiomes with environmentally relevant concentrations of PAHs. Mediterranean bacteria readily degraded the less hydrophobic PAHs, with rates averaging 4.72 ± 0.5 ng L h-1. Metatranscriptomic responses showed significant enrichments of genes associated to horizontal gene transfer, stress response, and PAH degradation, mainly harbored by Alphaproteobacteria. Community composition changed and increased relative abundances of Bacteroidota and Flavobacteriales. In Antarctic waters, there was no degradation of PAH, and minimal metatranscriptome responses were observed. These results provide evidence for factors such as geographic region, community composition, and pre-exposure history to predict PAH biodegradation in seawater.
Collapse
Affiliation(s)
- Alicia Martinez-Varela
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain
| | - Gemma Casas
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain
| | - Naiara Berrojalbiz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, 35195, Kalmar, Sweden
| | - Benjamin Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain
| | - Maria Vila-Costa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain.
| |
Collapse
|
12
|
Galbán-Malagón C, Gómez-Aburto VA, Hirmas-Olivares A, Luarte T, Berrojalbiz N, Dachs J. Dichlorodiphenyltrichloroethane (DDT) and Dichlorodiphenyldichloroethylene (DDE) levels in air and surface sea waters along the Antarctic Peninsula. MARINE POLLUTION BULLETIN 2023; 197:115699. [PMID: 37924734 DOI: 10.1016/j.marpolbul.2023.115699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
Persistent organic pollutants (POPs) are widespread worldwide, even reaching polar regions. Among POPs, dichlorodiphenyltrichloroethane (DDT) and their metabolites have been reported scarcely in the Antarctic environment. Here we report the levels of p,p'-DDT, o,p'-DDT, p,p'-DDE, and o,p'-DDE in air and water samples collected during austral summer 2009. The levels found ranged from 0.25 to 4.26 pg m-3 in the atmospheric samples while in the water samples ranged from 0.07 to 0.25 pg L-1. These concentrations were within the range of the reported concentrations in the last 20 years in Antarctica. However, the source ratio showed that most of p,p'-DDT comes from fresh applications and Dicofol formulations. The back-trajectories estimated for the air masses revealed that most of the p,p'-DDT came from the continental Antarctic peninsula and surrounding waters. The diffusive exchange direction showed that Antarctic surface waters are the final sink of the studied compounds during the survey period.
Collapse
Affiliation(s)
- Cristóbal Galbán-Malagón
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Institute for Environment, Florida International University, Miami, FL, USA.
| | | | - Andrea Hirmas-Olivares
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - Thais Luarte
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile; PhD Program in Conservation Medicine, Universidad Andrés Bello, Santiago, Chile
| | - Naiara Berrojalbiz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| |
Collapse
|
13
|
Xiao CH, Meng XZ, Li BX, Gao HW. A systematic review and meta-analysis of pollutants in environmental media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113205-113217. [PMID: 37858014 DOI: 10.1007/s11356-023-30347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Environmental pollutants are ubiquitous in our environmental media, resulting in detrimental impacts on both humans and the environment. An evidence-based review, particularly a systematic review and meta-analysis, performs a crucial function in assessing the pollution status of pollutants in environmental media at national and global scales. We selected and thoroughly investigated 76 papers focusing on systematic reviews and meta-analyses of contaminants in environmental media. The need to broaden the scope of studies was observed with an increase in the total number of publications, and there were greater focuses on food safety, water pollution, biological pollution, and environmental risks. Furthermore, this review outlined the fundamental procedures involved in a systematic review and meta-analysis, including literature searching, screening of articles, study quality analysis, data extraction and synthesis, and meta-analysis. A meta-analysis typically comprises fixed- and/or random-effects meta-analysis, identifying and measuring heterogeneity, sensitivity analysis, publication bias, subgroup analysis, and meta-regression. We specifically explored the application of meta-analysis to assess the presence of contaminants in environmental media based on two different pollutant categories, namely, non-biological and biological pollutants. The mean value is commonly utilized to assess the pooled concentration of non-biological pollutants, while the prevalence serves as the effect size of biological pollutants. Additionally, we summarized the innovative applications, frequent misuses, and problems encountered in systematic reviews and meta-analyses. Finally, we proposed several suggestions for future research endeavors.
Collapse
Affiliation(s)
- Chun-Hong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Ben-Xiang Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hong-Wen Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
14
|
Lyu L, Zhang S. Chlorinated Paraffin Pollution in the Marine Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11687-11703. [PMID: 37503949 DOI: 10.1021/acs.est.3c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Chlorinated paraffins (CPs) are ubiquitous in the environment due to their large-scale usage, persistence, and long-range atmospheric transport. The oceans are a critical environment where CPs transformation occurs. However, the broad impacts of CPs on the marine environment remain unclear. This review describes the sources, occurrence and transport pathways, environmental processes, and ecological effects of CPs in the marine environment. CPs are distributed in the global marine environment by riverine input, ocean currents, and long-range atmospheric transport from industrial areas. Environmental processes, such as the deposition of particle-bound compounds, leaching of plastics, and microbial degradation of CPs, are the critical drivers for regulating CPs' fate in water columns or sediment. Bioaccumulation and trophic transfer of CPs in marine food webs may threaten marine ecosystem functions. To elucidate the biogeochemical processes and environmental impacts of CPs in marine environments, future work should clarify the burden and transformation process of CPs and reveal their ecological effects. The results would help readers clarify the current research status and future research directions of CPs in the marine environment and provide the scientific basis and theoretical foundations for the government to assess marine ecological risks of CPs and to make policies for pollution prevention and control.
Collapse
Affiliation(s)
- Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 Xingangxi Road, Guangzhou 510301, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 Xingangxi Road, Guangzhou 510301, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China
| |
Collapse
|
15
|
Egas C, Galbán-Malagón C, Castro-Nallar E, Molina-Montenegro MA. Role of Microbes in the degradation of organic semivolatile compounds in polar ecosystems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163046. [PMID: 36965736 DOI: 10.1016/j.scitotenv.2023.163046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
The Arctic and the Antarctic Continent correspond to two eco-regions with extreme climatic conditions. These regions are exposed to the presence of contaminants resulting from human activity (local and global), which, in turn, represent a challenge for life forms in these environments. Anthropogenic pollution by semi-volatile organic compounds (SVOCs) in polar ecosystems has been documented since the 1960s. Currently, various studies have shown the presence of SVOCs and their bioaccumulation and biomagnification in the polar regions with negative effects on biodiversity and the ecosystem. Although the production and use of these compounds has been regulated, their persistence continues to threaten biodiversity and the ecosystem. Here, we summarize the current literature regarding microbes and SVOCs in polar regions and pose that bioremediation by native microorganisms is a feasible strategy to mitigate the presence of SVOCs. Our systematic review revealed that microbial communities in polar environments represent a wide reservoir of biodiversity adapted to extreme conditions, found both in terrestrial and aquatic environments, freely or in association with vegetation. Microorganisms adapted to these environments have the potential for biodegradation of SVOCs through a variety of genes encoding enzymes with the capacity to metabolize SVOCs. We suggest that a comprehensive approach at the molecular and ecological level is required to mitigate SVOCs presence in these regions. This is especially patent when considering that SVOCs degrade at slow rates and possess the ability to accumulate in polar ecosystems. The implications of SVOC degradation are relevant for the preservation of polar ecosystems with consequences at a global level.
Collapse
Affiliation(s)
- Claudia Egas
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile
| | - Cristóbal Galbán-Malagón
- Centro de Genómica, Ecología y Medio Ambiente (GEMA), Universidad Mayor, Campus Huechuraba, Santiago, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA
| | - Eduardo Castro-Nallar
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Marco A Molina-Montenegro
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile; Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
16
|
Weatherly S, Lyons R. The photolytic conversion of 4-nonylphenol to 4-nonylcatechol within snowpack of the Palisade Glacier, Sierra Nevada, CA, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162835. [PMID: 36924957 DOI: 10.1016/j.scitotenv.2023.162835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
4-Nonylphenol (4-NP), an environmental pollutant with potent ecotoxicological effects, has been discovered in significant quantities in glacial ice and snow of the Sierra Nevada Mountain Range, CA. Photolysis of 4-NP is suspected to be a major, if not the sole, breakdown pathway in snow. However, the photolysis process has yet to be characterized in detail for this unique environment. This study therefore seeks to (1) confirm the presence of the major photolysis product within snowpack and snowmelt samples from the Palisade Glacier, CA, (2) determine key photolysis parameters through laboratory assays in snow analogs, and (3) compute environmentally relevant photolysis rates in snowpack via a spectral solar irradiance model parameterized for the Palisade Glacier. The primary photooxidation product of 4-NP, 4-nonylcatechol (4-NC), was synthesized and characterized by NMR and GC-MS for use as a reference standard in the detection of 4-NC in environmental samples. 4-NP was detected in all snowpack (n = 4) and snowmelt (n = 5) samples, with concentrations of 1.05 (± 0.11) μg L-1 and 1.28 (± 0.12) μg L-1, respectively. 4-NC was detected in all snowmelt outflow samples and all but one snow samples (88 % detection frequency) but was below the limit of quantification for the given method. All samples were collected during a sampling regime at the Palisade Glacier in August of 2021. Quantum yields of photolysis at the 277 nm absorption band were determined to be 0.36 (±0.06) and 0.21 (±0.06) in ultrapure water and liquid snow, respectively. Under clear sky conditions at the Palisade Glacier, half-lives for 4-NP are estimated to range from 235 to 251 h (9.8-10.5 days) based on assays conducted in liquid snowmelt and irradiance modeling. These results suggest that the photolysis of 4-NP, and hence the production of 4-NC, is occurring at significant rates within the snowpack where 4-NC is inevitably released to downstream catchment areas via snowmelt. 4-NC is significantly more toxic than its precursor, thereby raising amplified concerns for downstream human and wildlife populations. Furthermore, the ubiquity of 4-NP among the Earth's environments presents this as an issue of potentially global concern.
Collapse
Affiliation(s)
- Shaun Weatherly
- University of Redlands, 1200 E Colton Ave., Redlands, CA 92373, United States of America.
| | - Rebecca Lyons
- University of Redlands, 1200 E Colton Ave., Redlands, CA 92373, United States of America
| |
Collapse
|
17
|
Singh S, Rawat M, Malyan SK, Singh R, Tyagi VK, Singh K, Kashyap S, Kumar S, Sharma M, Panday BK, Pandey RP. Global distribution of pesticides in freshwater resources and their remediation approaches. ENVIRONMENTAL RESEARCH 2023; 225:115605. [PMID: 36871947 DOI: 10.1016/j.envres.2023.115605] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The role of pesticides in enhancing global agricultural production is magnificent. However, their unmanaged use threatens water resources and individual health. A significant pesticide concentration leaches to groundwater or reaches surface waters through runoff. Water contaminated with pesticides may cause acute or chronic toxicity to impacted populations and exert adverse environmental effects. It necessitates the monitoring and removing pesticides from water resources as prime global concerns. This work reviewed the global occurrences of pesticides in potable water and discussed the conventional and advanced technologies for the removal of pesticides. The concentration of pesticides highly varies in freshwater resources across the globe. The highest concentration of α-HCH (6.538 μg/L, at Yucatan, Mexico), lindane (6.08 μg/L at Chilka lake, Odisha, India), 2,4, DDT (0.90 μg/L, at Akkar, Lebanon), chlorpyrifos (9.1 μg/L, at Kota, Rajasthan, India), malathion (5.3 μg/L, at Kota, Rajasthan, India), atrazine (28.0 μg/L, at Venado Tuerto City, Argentina), endosulfan (0.78 μg/L, at Yavtmal, Maharashtra, India), parathion (4.17 μg/L, at Akkar, Lebanon), endrin (3.48 μg/L, at KwaZuln-Natl Province, South Africa) and imidacloprid (1.53 μg/L, at Son-La province, Vietnam) are reported. Pesticides can be significantly removed through physical, chemical, and biological treatment. Mycoremediation technology has the potential for up to 90% pesticide removal from water resources. Complete removal of the pesticides through a single biological treatment approach such as mycoremediation, phytoremediation, bioremediation, and microbial fuel cells is still a challenging task, however, the integration of two or more biological treatment approaches can attain complete removal of pesticides from water resources. Physical methods along with oxidation methods can be employed for complete removal of pesticides from drinking water.
Collapse
Affiliation(s)
- Sandeep Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, 247667, India
| | - Meenakshi Rawat
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, 247667, India; Department of Biological and Agricultural Engineering, Kansas State University, Kansas, 66506, USA
| | - Sandeep K Malyan
- Department of Environmental Studies, Dyal Singh Evening College, University of Delhi, New Delhi, 110003, India
| | - Rajesh Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, 247667, India.
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, 247667, India
| | - Kaptan Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, 247667, India; Civil Engineering Department, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, 273010, India
| | - Sujata Kashyap
- Axa Parenteral Limited, Roorkee, Uttarakhand, 247667, India
| | - Sumant Kumar
- Groundwater Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, 247667, India
| | - Manish Sharma
- Department of Botany, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India
| | - B K Panday
- State Water and Sanitation Mission, Government of Uttarakhand, Dehradun, Uttarakhand, 248002, India
| | - R P Pandey
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
18
|
Pala N, Jiménez B, Roscales JL, Bertolino M, Baroni D, Figuerola B, Avila C, Corsolini S. First evidence of legacy chlorinated POPs bioaccumulation in Antarctic sponges from the Ross sea and the South Shetland Islands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121661. [PMID: 37085102 DOI: 10.1016/j.envpol.2023.121661] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Antarctica is no longer pristine due to the confirmed presence of anthropogenic contaminants like Persistent Organic Pollutants (POPs). Benthic organisms are poorly represented in contamination studies in Antarctica although they are known to bioaccumulate contaminants. Sponges (Phylum Porifera) are dominant members in Antarctic benthos, both in terms of abundance and biomass, and are an important feeding source for other organisms, playing key functional roles in benthic communities. To the best of our knowledge, legacy chlorinated POPs such as polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), and dichlorodiphenyltrichloroethane (DDT) and their metabolites have never been investigated in this Phylum in Antarctica. The aim of this work was to evaluate the bioaccumulation of PCBs, HCB, o,p'- and p,p'-DDT and their DDE and DDD isomers in 35 sponge samples, belonging to 17 different species, collected along the coast of Terra Nova Bay (Adèlie Cove and Tethys Bay, Ross Sea), and at Whalers Bay (Deception Island, South Shetland Islands) in Antarctica. Lipid content showed a significant correlation with the three pollutant classes. The overall observed pattern in the three study sites was ΣPCBs>ΣDDTs>HCB and it was found in almost every species. The ΣPCBs, ΣDDTs, and HCB ranged from 54.2 to 133.7 ng/g lipid weight (lw), from 17.5 to 38.6 ng/g lw and from 4.8 to 8.5 ng/g lw, respectively. Sponges showed contamination levels comparable to other Antarctic benthic organisms from previous studies. The comparison among sponges of the same species from different sites showed diverse patterns for PCBs only in one out of four cases. The concentration of POPs did not vary significantly among the three sites. The predominance of lower chlorinated organochlorines in the samples suggested that long-range atmospheric transportation (LRAT) could be the major driver of contamination as molecules with a high long range transport potential (e.g. low chlorinated PCBs, HCB) prevails on heavier ones.
Collapse
Affiliation(s)
- Nicolas Pala
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Jose L Roscales
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Marco Bertolino
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Davide Baroni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| | - Blanca Figuerola
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona & Biodiversity Research Institute (IRBio), Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Simonetta Corsolini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy.
| |
Collapse
|
19
|
Vudamala K, Chakraborty P, Chatragadda R, Tiwari AK, Qureshi A. Distribution of organochlorine pesticides in surface and deep waters of the Southern Indian Ocean and coastal Antarctic waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121206. [PMID: 36738882 DOI: 10.1016/j.envpol.2023.121206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Antarctica is a remote and pristine region. Yet it plays a vital role in biogeochemical cycles of global anthropogenic contaminants, such as persistent organic pollution (POPs). This work reports the distribution of legacy and new POPs in surface and depth profiles/deeper water of the Southern Indian Ocean (SIO) and the coast of Antarctica (COA). Samples were collected during the 10th Indian Southern Ocean expedition (SOE-10) in the year 2017. Concentrations of ∑HCH (hexachlorocyclohexane), ∑DDT (dichlorodiphenyltrichloroethane), and ∑ENDO (endosulfan) in surface seawater from the SIO region ranged between not detected (ND) to 1.21 pg/Liter (pg L-1) (average. ± s.d.: 0.35 ± 0.42 pg L-1), ND to 1.83 pg L-1 (0.69 ± 84 pg L-1), and ND - to 2.06 pg L-1 (0.56 ± 0., 88 pg L-1), respectively. The concentrations of ∑HCH, ∑DDT, and ∑ENDO in COA ranged from ND to 0.98 pg L-1 (0.25 ± 0.27 pg L-1), ND to 3.61 pg L-1(0.50 ± 1.08 pg L-1), and ND to 2.09 pg L-1 (0.45 ± 0.84 pg L-1), respectively. Concentrations of isomers of endosulfan, and largely of HCHs, suggested an aged source. Some concentration ratios of α-to γ-HCH were close to 1, indicating a contribution from ongoing sources. Results indicate the important role of ocean currents in mediating the transport and detection of OCPs. As such, OCPs dynamics in deeper oceans may play an important role in OCPs cycling in the marine environment.
Collapse
Affiliation(s)
- Krushna Vudamala
- Integrative Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India; Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India.
| | - Paromita Chakraborty
- Environmental Science and Technology Research Group, Centre for Research in Environment, Sustainability Advocacy and Climate Change, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Ramesh Chatragadda
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Anoop Kumar Tiwari
- Environmental Impact Assessment Group, National Centre for Polar and Ocean Research Headland Sada, Vasco da Gama, Goa, 403802, India
| | - Asif Qureshi
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India; Department of Climate Change, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India
| |
Collapse
|
20
|
Wu Z, Lin T, Sun H, Li R, Liu X, Guo Z, Ma X, Yao Z. Polycyclic aromatic hydrocarbons in Fildes Peninsula, maritime Antarctica: Effects of human disturbance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120768. [PMID: 36473643 DOI: 10.1016/j.envpol.2022.120768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/12/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
This study provides the first data on the distribution, sources, and transport dynamics of polycyclic aromatic hydrocarbons (PAHs) in Fildes Peninsula, Antarctica via summertime analyses of lakes, seawater, snow, and air in 2013. Relatively high PAH levels and similar composition profiles (dominance of two- and three-ring PAHs) in the investigated marine and terrestrial environmental matrices were found, indicating substantial primary emissions of petrogenic PAHs. This result was corroborated by nonequilibrium partitioning of atmospheric PAHs caused by release of anthropically-derived lighter PAHs and air mass movement trajectories mainly originated from the Antarctic marginal seas. Notable geographical disparities of PAH pollution in the various types of samples consistently suggested impacts of station-related activities, rather than long-range atmospheric transport, on PAHs in Fildes Peninsula. The lack for temperature dependence for gas-phase concentrations and various molecular diagnostic ratios of atmospheric PAHs demonstrated that the impact of local anthropogenic inputs on air PAH variability supersedes the re-emission effect. The derived air-water and air-snow exchanges of PAHs in this remote region indicated a disequilibrium state, partially associated with intense local emissions of PAHs. PAH outgassing from, and absorption into, lake and marine waters were both observed, probably due to differences in anthropogenic influences among sites, while the net deposition of gaseous PAHs into snow prevailed. The results of this study shed lights on the major importance of native anthropogenic sources in the footprint and fate of PAHs in the Fildes Peninsula, which merits further monitoring.
Collapse
Affiliation(s)
- Zilan Wu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Sun
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Ruijing Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Xing Liu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Zhigang Guo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Institute of Atmospheric Sciences, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xindong Ma
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China.
| | - Ziwei Yao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| |
Collapse
|
21
|
Iriarte J, Dachs J, Casas G, Martínez-Varela A, Berrojalbiz N, Vila-Costa M. Snow-Dependent Biogeochemical Cycling of Polycyclic Aromatic Hydrocarbons at Coastal Antarctica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1625-1636. [PMID: 36655903 PMCID: PMC9893724 DOI: 10.1021/acs.est.2c05583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 05/28/2023]
Abstract
The temporal trend of polycyclic aromatic hydrocarbons (PAHs) in coastal waters with highly dynamic sources and sinks is largely unknown, especially for polar regions. Here, we show the concurrent measurements of 73 individual PAHs and environmental data, including the composition of the bacterial community, during three austral summers at coastal Livingston (2015 and 2018) and Deception (2017) islands (Antarctica). The Livingston 2015 campaign was characterized by a larger snow melting input of PAHs and nutrients. The assessment of PAH diagnostic ratios, such as parent to alkyl-PAHs or LMW to HMW PAHs, showed that there was a larger biodegradation during the Livingston 2015 campaign than in the Deception 2017 and Livingston 2018 campaigns. The biogeochemical cycling, including microbial degradation, was thus yearly dependent on snow-derived inputs of matter, including PAHs, consistent with the microbial community significantly different between the different campaigns. The bivariate correlations between bacterial taxa and PAH concentrations showed that a decrease in PAH concentrations was concurrent with the higher abundance of some bacterial taxa, specifically the order Pseudomonadales in the class Gammaproteobacteria, known facultative hydrocarbonoclastic bacteria previously reported in degradation studies of oil spills. The work shows the potential for elucidation of biogeochemical processes by intensive field-derived time series, even in the harsh and highly variable Antarctic environment.
Collapse
|
22
|
Ebert RU, Kühne R, Schüürmann G. Henry's Law Constant─A General-Purpose Fragment Model to Predict Log Kaw from Molecular Structure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:160-167. [PMID: 36520977 DOI: 10.1021/acs.est.2c05623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Henry's law constant is important for assessing the environmental fate of organic compounds, including polar accumulation, indoor contamination, and the impact of airborne predominance on persistence. Moreover, it can be used in the context of alternative 3R bioassays to inform about the compound loss through volatilization as a confounding factor. For 2636 compounds, curated experimental log Kaw (air/water partition coefficient) data at 25° covering 23.6 orders of magnitude (from -18.6 to 5.0) have been collected from the literature. Subsequently, a new fragment model for predicting log Kaw from molecular structures has been developed. According to the root-mean-squared error (rms) and the maximum negative and positive errors (mne and mpe), this general-purpose model outperforms COSMOtherm, EPISuite HENRYWIN, OPERA, and LSER with calculated input parameters significantly (rms 0.50 vs 0.92 vs 1.25 vs 1.28 vs 1.38, mne -2.74 vs -6.78 vs -9.11 vs -6.24 vs -6.27, mpe 2.25 vs 6.22 vs 8.27 vs 11.5 vs 7.69 log units). Initial separation into a training and prediction set (80%:20%), mutual leave-50%-out validation, and target value scrambling (temporarily wrong compound-Kaw allocations) demonstrate the prediction capability, statistical robustness, and mechanistically sound basis of the fragment scheme. The new model is available to the public in fully computerized form through the ChemProp software, and can be combined with a separate existing model to extend the log Kaw prediction to temperatures different from 25 °C.
Collapse
Affiliation(s)
- Ralf-Uwe Ebert
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Ralph Kühne
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09596 Freiberg, Germany
| |
Collapse
|
23
|
Cai Z, Hu X, Li Z, He H, Li T, Yuan H, Zhang Y, Tan B, Wang J. Hypercrosslinking porous polymer layers on TiO 2-graphene photocatalyst: Enhanced adsorption of water pollutants for efficient degradation. WATER RESEARCH 2022; 227:119341. [PMID: 36399844 DOI: 10.1016/j.watres.2022.119341] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Solar-driven photocatalysis offers an environmentally friendly and sustainable approach for the degradation of organic pollutants in water without chemical additives, but the low specific surface area and adsorption capacity of common photocatalysts restricts the surface reactions with the contaminants. Herein, we hypercrosslinked polymer layers on TiO2-graphene surface to enlarge the specific surface area from 136 to 988 m2/g, leading to a high adsorption capacity of sulfadiazine as 54.3 mg/g, which is 15.5 times that of TiO2-graphene (3.5 mg/g). The adsorption kinetics reveals the combination of physical and chemical adsorption by porous benzene-based polymer for sulfadiazine enrichment. Besides, the polymer layers with broad light absorption enable the composite to function efficiently as visible-light-driven photocatalysts. Thus, the as-designed composite exhibits excellent performance for sulfadiazine removal by integrating the adsorptive and photocatalytic processes, especially for the diluted sulfadiazine solution. More importantly, the porous polymer layer can function as a filter for weakening the interference of TiO2 surface with the natural matters from complex water matrices. Based on the identification of dominant reactive species, the possible attacking pathway and the sulfadiazine subsequent degradation are presented. Further, the enhanced adsorption and photodegradation efficiency can also be achieved for the removal of other typical pollutants such as 4-chlorophenol and methylene blue. This study highlights an adsorption-enhanced-degradation mechanism for water pollutants that can direct the design of high-performance photocatalysts under visible light.
Collapse
Affiliation(s)
- Zhongjie Cai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiantao Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhong'an Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huijie He
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Yuan
- Key Laboratory of Pesticide & Chemical Biology (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanrong Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingyu Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
24
|
Hung H, Halsall C, Ball H, Bidleman T, Dachs J, De Silva A, Hermanson M, Kallenborn R, Muir D, Sühring R, Wang X, Wilson S. Climate change influence on the levels and trends of persistent organic pollutants (POPs) and chemicals of emerging Arctic concern (CEACs) in the Arctic physical environment - a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1577-1615. [PMID: 35244108 DOI: 10.1039/d1em00485a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Climate change brings about significant changes in the physical environment in the Arctic. Increasing temperatures, sea ice retreat, slumping permafrost, changing sea ice regimes, glacial loss and changes in precipitation patterns can all affect how contaminants distribute within the Arctic environment and subsequently impact the Arctic ecosystems. In this review, we summarized observed evidence of the influence of climate change on contaminant circulation and transport among various Arctic environment media, including air, ice, snow, permafrost, fresh water and the marine environment. We have also drawn on parallel examples observed in Antarctica and the Tibetan Plateau, to broaden the discussion on how climate change may influence contaminant fate in similar cold-climate ecosystems. Significant knowledge gaps on indirect effects of climate change on contaminants in the Arctic environment, including those of extreme weather events, increase in forests fires, and enhanced human activities leading to new local contaminant emissions, have been identified. Enhanced mobilization of contaminants to marine and freshwater ecosystems has been observed as a result of climate change, but better linkages need to be made between these observed effects with subsequent exposure and accumulation of contaminants in biota. Emerging issues include those of Arctic contamination by microplastics and higher molecular weight halogenated natural products (hHNPs) and the implications of such contamination in a changing Arctic environment is explored.
Collapse
Affiliation(s)
- Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M5P 1W4, Canada.
| | - Crispin Halsall
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hollie Ball
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Terry Bidleman
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| | - Jordi Dachs
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Catalonia 08034, Spain
| | - Amila De Silva
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Mark Hermanson
- Hermanson & Associates LLC, 2000 W 53rd Street, Minneapolis, Minnesota 55419, USA
| | - Roland Kallenborn
- Department of Arctic Technology, University Centre in Svalbard (UNIS), Longyearbyen, 9171, Norway
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences (NMBU), Ås, 1432, Norway
| | - Derek Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Roxana Sühring
- Department for Environmental Science, Stockholm University, 114 19 Stockholm, Sweden
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Xiaoping Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme Secretariat, The Fram Centre, 9296 Tromsø, Norway
| |
Collapse
|
25
|
Borgå K, McKinney MA, Routti H, Fernie KJ, Giebichenstein J, Hallanger I, Muir DCG. The influence of global climate change on accumulation and toxicity of persistent organic pollutants and chemicals of emerging concern in Arctic food webs. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1544-1576. [PMID: 35179539 DOI: 10.1039/d1em00469g] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This review summarizes current understanding of how climate change-driven physical and ecological processes influence the levels of persistent organic pollutants (POPs) and contaminants of emerging Arctic concern (CEACs) in Arctic biota and food webs. The review also highlights how climate change may interact with other stressors to impact contaminant toxicity, and the utility of modeling and newer research tools in closing knowledge gaps on climate change-contaminant interactions. Permafrost thaw is influencing the concentrations of POPs in freshwater ecosystems. Physical climate parameters, including climate oscillation indices, precipitation, water salinity, sea ice age, and sea ice quality show statistical associations with POPs concentrations in multiple Arctic biota. Northward range-shifting species can act as biovectors for POPs and CEACs into Arctic marine food webs. Shifts in trophic position can alter POPs concentrations in populations of Arctic species. Reductions in body condition are associated with increases in levels of POPs in some biota. Although collectively understudied, multiple stressors, including contaminants and climate change, may act to cumulatively impact some populations of Arctic biota. Models are useful for predicting the net result of various contrasting climate-driven processes on POP and CEAC exposures; however, for some parameters, especially food web changes, insufficient data exists with which to populate such models. In addition to the impact of global regulations on POP levels in Arctic biota, this review demonstrates that there are various direct and indirect mechanisms by which climate change can influence contaminant exposure, accumulation, and effects; therefore, it is important to attribute POP variations to the actual contributing factors to inform future regulations and policies. To do so, a broad range of habitats, species, and processes must be considered for a thorough understanding and interpretation of the consequences to the distribution, accumulation, and effects of environmental contaminants. Given the complex interactions between climate change, contaminants, and ecosystems, it is important to plan for long-term, integrated pan-Arctic monitoring of key biota and ecosystems, and to collect ancillary data, including information on climate-related parameters, local meteorology, ecology, and physiology, and when possible, behavior, when carrying out research on POPs and CEACs in biota and food webs of the Arctic.
Collapse
Affiliation(s)
- Katrine Borgå
- Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway.
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3 V9, Canada.
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - Kim J Fernie
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | | | | | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| |
Collapse
|
26
|
Du Z, Ding S, Xiao R, Fang C, Song W, Jia R, Chu W. Does Snowfall Introduce Disinfection By-product Precursors to Surface Water? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14487-14497. [PMID: 36196960 DOI: 10.1021/acs.est.2c04408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Snow with large specific surface area and strong adsorption capacity can effectively adsorb atmospheric pollutants, which could/might lead to the increase of disinfection by-product (DBP) precursors in surface water. In this study, the contents and characteristics of dissolved organic matter (DOM) in meltwater were investigated, and DBP formation and the DBP-associated cytotoxicity index during chlorination of meltwater was first explored. Overall, meltwater exhibited high nitrogen contents. Meltwater-derived DOM was mainly composed of organics with low molecular weights, low aromaticity, and high unsaturated degrees. DBP formation potentials and cytotoxicity indexes in chlorinated meltwater were positively correlated with air quality index and were significantly impacted by snowfall stages. The trihalomethane and haloacetic acid yields from meltwater were relatively low, while yields of highly cytotoxic DBPs, especially halonitromethanes (6.3-10.8 μg-HNMs/mg-DOC), were significantly higher than those of surface water (1.7 μg-HNMs/mg-DOC). Notably, unsaturated nonaromatic organic nitrates in meltwater were important precursors of halonitromethanes. The actual monitoring results showed that snowfall significant increased the haloacetaldehydes and nitrogenous DBP formation levels of surface water. Considering increased DBP formation and DBP-associated toxicity, it was demonstrated that DOM derived from snowfall in atmosphere-polluted areas could deteriorate surface water quality and pose potential risks to drinking water.
Collapse
Affiliation(s)
- Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| | - Wuchang Song
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, China
- Shandong Province Water Supply and Drainage Monitoring Centre, Jinan250101, China
| | - Ruibao Jia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, China
- Shandong Province Water Supply and Drainage Monitoring Centre, Jinan250101, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| |
Collapse
|
27
|
Garnett J, Halsall C, Winton H, Joerss H, Mulvaney R, Ebinghaus R, Frey M, Jones A, Leeson A, Wynn P. Increasing Accumulation of Perfluorocarboxylate Contaminants Revealed in an Antarctic Firn Core (1958-2017). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11246-11255. [PMID: 35881889 PMCID: PMC9386903 DOI: 10.1021/acs.est.2c02592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are synthetic chemicals with a variety of industrial and consumer applications that are now widely distributed in the global environment. Here, we report the measurement of six perfluorocarboxylates (PFCA, C4-C9) in a firn (granular compressed snow) core collected from a non-coastal, high-altitude site in Dronning Maud Land in Eastern Antarctica. Snow accumulation of the extracted core dated from 1958 to 2017, a period coinciding with the advent, use, and geographical shift in the global industrial production of poly/perfluoroalkylated substances, including PFAA. We observed increasing PFCA accumulation in snow over this time period, with chemical fluxes peaking in 2009-2013 for perfluorooctanoate (PFOA, C8) and nonanoate (PFNA, C9) with little evidence of a decline in these chemicals despite supposed recent global curtailments in their production. In contrast, the levels of perfluorobutanoate (PFBA, C4) increased markedly since 2000, with the highest fluxes in the uppermost snow layers. These findings are consistent with those previously made in the Arctic and can be attributed to chlorofluorocarbon replacements (e.g., hydrofluoroethers) as an inadvertent consequence of global regulation.
Collapse
Affiliation(s)
- Jack Garnett
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K.
| | - Crispin Halsall
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K.
| | - Holly Winton
- British
Antarctic Survey, Cambridge, High Cross, Madingley Road, Cambridge CB3 0ET, U.K.
- Antarctic
Research Centre, Victoria University of
Wellington, Wellington 6012, New Zealand
| | - Hanna Joerss
- Helmholtz-Zentrum
Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Robert Mulvaney
- British
Antarctic Survey, Cambridge, High Cross, Madingley Road, Cambridge CB3 0ET, U.K.
| | - Ralf Ebinghaus
- Helmholtz-Zentrum
Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Markus Frey
- British
Antarctic Survey, Cambridge, High Cross, Madingley Road, Cambridge CB3 0ET, U.K.
| | - Anna Jones
- British
Antarctic Survey, Cambridge, High Cross, Madingley Road, Cambridge CB3 0ET, U.K.
| | - Amber Leeson
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K.
| | - Peter Wynn
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K.
| |
Collapse
|
28
|
Martinez-Varela A, Casas G, Berrojalbiz N, Piña B, Dachs J, Vila-Costa M. Polycyclic Aromatic Hydrocarbon Degradation in the Sea-Surface Microlayer at Coastal Antarctica. Front Microbiol 2022; 13:907265. [PMID: 35910648 PMCID: PMC9329070 DOI: 10.3389/fmicb.2022.907265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
As much as 400 Tg of carbon from airborne semivolatile aromatic hydrocarbons is deposited to the oceans every year, the largest identified source of anthropogenic organic carbon to the ocean. Microbial degradation is a key sink of these pollutants in surface waters, but has received little attention in polar environments. We have challenged Antarctic microbial communities from the sea-surface microlayer (SML) and the subsurface layer (SSL) with polycyclic aromatic hydrocarbons (PAHs) at environmentally relevant concentrations. PAH degradation rates and the microbial responses at both taxonomical and functional levels were assessed. Evidence for faster removal rates was observed in the SML, with rates 2.6-fold higher than in the SSL. In the SML, the highest removal rates were observed for the more hydrophobic and particle-bound PAHs. After 24 h of PAHs exposure, particle-associated bacteria in the SML showed the highest number of significant changes in their composition. These included significant enrichments of several hydrocarbonoclastic bacteria, especially the fast-growing genera Pseudoalteromonas, which increased their relative abundances by eightfold. Simultaneous metatranscriptomic analysis showed that the free-living fraction of SML was the most active fraction, especially for members of the order Alteromonadales, which includes Pseudoalteromonas. Their key role in PAHs biodegradation in polar environments should be elucidated in further studies. This study highlights the relevant role of bacterial populations inhabiting the sea-surface microlayer, especially the particle-associated habitat, as relevant bioreactors for the removal of aromatic hydrocarbons in the oceans.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Vila-Costa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| |
Collapse
|
29
|
Lyons R, Weatherly S, Waters J, Bentley J. Thermodynamics Affecting Glacier-Released 4-Nonylphenol Deposition in Alaska, USA. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1623-1636. [PMID: 35404492 PMCID: PMC9324835 DOI: 10.1002/etc.5343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 04/07/2022] [Indexed: 05/15/2023]
Abstract
Glaciers have recently been recognized as a secondary source of organic pollutants. As glacier melt rates increase, downstream ecosystems are at increasing risk of exposure to these pollutants. Nonylphenols (NPs) are well-documented anthropogenic persistent pollutants whose environmental prevalence and ecotoxicity make them of immediate concern to the health of humans and wildlife populations. As glacier melt increases, transport of NPs to downstream environments will also increase. Snow, ice, meltwater, and till for five glaciers in the Chugach National Forest and Kenai Fjords National Park, Alaska, USA, were investigated for the presence of 4-nonylphenol (4NP). Average concentrations for snow, ice, meltwater, and glacial till were 0.77 ± .017 µg/L snow water, 0.75 ± .006 µg/L, 0.26 ± .053 µg/L, and 0.016 ± .004 µg/g, respectively. All samples showed the presence of 4NP. Deposition of 4NP downstream from glaciers will depend more on the ionic strength of the water than organic carbon to drive partitioning and deposition. Laboratory studies of partition coefficients showed that ionic strength contributed 59% of the driving force behind partitioning, while organic carbon contributed 36%. Evidence was found for interaction between organic carbon and the aqueous phase. The 4NP Setschenow constants (Ks ) were determined for particle types with varying percentages of organic carbon. Values of Ks increased with the percentage of organic carbon. These relationships will shape further studies of 4NP deposition into the environment downstream of glacier outflow. Environ Toxicol Chem 2022;41:1623-1636. © The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Rebecca Lyons
- Department of Chemistry, College of Arts and SciencesUniversity of RedlandsRedlandsCaliforniaUSA
| | - Shaun Weatherly
- Department of Chemistry, College of Arts and SciencesUniversity of RedlandsRedlandsCaliforniaUSA
| | - Jason Waters
- Department of Chemistry, College of Arts and SciencesUniversity of RedlandsRedlandsCaliforniaUSA
| | - Jim Bentley
- Department of Chemistry, College of Arts and SciencesUniversity of RedlandsRedlandsCaliforniaUSA
| |
Collapse
|
30
|
Xue H, He S, Kang C, Liu H, Peng F, Tang X. Photochemical degradation of β-hexachlorocyclohexane in snow and ice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68244-68250. [PMID: 34268694 DOI: 10.1007/s11356-021-15341-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Hexachlorocyclohexane (HCH), a typical organochloride pesticide, is one of the persistent organic pollutants. Despite the ban on technical grade HCH, it has been continuously observed at a steady level in the environment. The photochemical degradation of β-HCH in snow and ice under ultraviolet (UV) irradiation was investigated in this study. The effects of pH as well as common chemical components in snow on the degradation kinetics were investigated. In addition, the photodegradation products were determined and the reaction mechanism was hypothesized. The results showed that under UV irradiation, β-HCH can be photolyzed in snow and ice, with the photochemical degradation process conforming to the first-order kinetic equation. Changing the pH and adding Fe2+ had minimal effect on the photochemical degradation kinetics, while the presence of acetone, NO2-, NO3- and Fe3+ significantly inhibited the process. The addition of hydrogen peroxide slightly inhibited the photochemical degradation of β-HCH. Finally, the reaction rate, products and degradation mechanism of β-HCH in snow were compared with those in the ice phase. The photochemical degradation rate of β-HCH in snow was approximately 24 times faster than that in the ice phase. The photolysis product of β-HCH in snow was α-HCH, produced by the isomerization of β-HCH. However, in ice, in addition to α-HCH, pentachlorocyclohexene was produced by dechlorination. The results of this study are helpful in understanding the transformation of organochlorine pesticides in snow and ice, as well as in providing a theoretical basis for snow and ice pollution prevention and control.
Collapse
Affiliation(s)
- Honghai Xue
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, P.R. China
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130012, P.R. China
| | - Shuiyuan He
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130012, P.R. China
| | - Chunli Kang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130012, P.R. China.
| | - Hanfei Liu
- China Construction Industrial & Energy Engineering Group Co., Ltd., Nanjing, 210023, P.R. China
| | - Fei Peng
- Hydrological Bureau (Information Center), Songliao Water Resources Commission, Changchun, 130021, P.R. China
| | - Xiaojian Tang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, P.R. China
| |
Collapse
|
31
|
Casas G, Martinez-Varela A, Vila-Costa M, Jiménez B, Dachs J. Rain Amplification of Persistent Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12961-12972. [PMID: 34553911 PMCID: PMC8495897 DOI: 10.1021/acs.est.1c03295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 05/28/2023]
Abstract
Scavenging of gas- and aerosol-phase organic pollutants by rain is an efficient wet deposition mechanism of organic pollutants. However, whereas snow has been identified as a key amplification mechanism of fugacities in cold environments, rain has received less attention in terms of amplification of organic pollutants. In this work, we provide new measurements of concentrations of perfluoroalkyl substances (PFAS), organophosphate esters (OPEs), and polycyclic aromatic hydrocarbons (PAHs) in rain from Antarctica, showing high scavenging ratios. Furthermore, a meta-analysis of previously published concentrations in air and rain was performed, with 46 works covering different climatic regions and a wide range of chemical classes, including PFAS, OPEs, PAHs, polychlorinated biphenyls and organochlorine compounds, polybromodiphenyl ethers, and dioxins. The rain-aerosol (KRP) and rain-gas (KRG) partition constants averaged 105.5 and 104.1, respectively, but showed large variability. The high field-derived values of KRG are consistent with adsorption onto the raindrops as a scavenging mechanism, in addition to gas-water absorption. The amplification of fugacities by rain deposition was up to 3 orders of magnitude for all chemical classes and was comparable to that due to snow. The amplification of concentrations and fugacities by rain underscores its relevance, explaining the occurrence of organic pollutants in environments across different climatic regions.
Collapse
Affiliation(s)
- Gemma Casas
- Institute
of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Catalonia 08034, Spain
- Department
of Instrumental Analysis and Environmental Chemistry, Institute of
Organic Chemistry, Spanish National Research
Council (IQOG-CSIC), Madrid 28006, Spain
| | - Alícia Martinez-Varela
- Institute
of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Catalonia 08034, Spain
| | - Maria Vila-Costa
- Institute
of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Catalonia 08034, Spain
| | - Begoña Jiménez
- Department
of Instrumental Analysis and Environmental Chemistry, Institute of
Organic Chemistry, Spanish National Research
Council (IQOG-CSIC), Madrid 28006, Spain
| | - Jordi Dachs
- Institute
of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Catalonia 08034, Spain
| |
Collapse
|
32
|
Garnett J, Halsall C, Vader A, Joerss H, Ebinghaus R, Leeson A, Wynn PM. High Concentrations of Perfluoroalkyl Acids in Arctic Seawater Driven by Early Thawing Sea Ice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11049-11059. [PMID: 34308632 PMCID: PMC8383270 DOI: 10.1021/acs.est.1c01676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 05/12/2023]
Abstract
Poly- and perfluoroalkyl substances are synthetic chemicals that are widely present in the global environment including the Arctic. However, little is known about how these chemicals (particularly perfluoroalkyl acids, PFAA) enter the Arctic marine system and cycle between seawater and sea ice compartments. To evaluate this, we analyzed sea ice, snow, melt ponds, and near-surface seawater at two ice-covered stations located north of the Barents Sea (81 °N) with the aim of investigating PFAA dynamics in the late-season ice pack. Sea ice showed high concentrations of PFAA particularly at the surface with snow-ice (the uppermost sea ice layer strongly influenced by snow) comprising 26-62% of the total PFAA burden. Low salinities (<2.5 ppt) and low δ18OH20 values (<1‰ in snow and upper ice layers) in sea ice revealed the strong influence of meteoric water on sea ice, thus indicating a significant atmospheric source of PFAA with subsequent transfer down the sea ice column in meltwater. Importantly, the under-ice seawater (0.5 m depth) displayed some of the highest concentrations notably for the long-chain PFAA (e.g., PFOA 928 ± 617 pg L-1), which were ≈3-fold higher than those of deeper water (5 m depth) and ≈2-fold higher than those recently measured in surface waters of the North Sea infuenced by industrial inputs of PFAAs. The evidence provided here suggests that meltwater arising early in the melt season from snow and other surface ice floe components drives the higher PFAA concentrations observed in under-ice seawater, which could in turn influence the timing and extent of PFAA exposure for organisms at the base of the marine food web.
Collapse
Affiliation(s)
- Jack Garnett
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K.
| | - Crispin Halsall
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K.
| | - Anna Vader
- Department
of Arctic Biology, The University Centre
in Svalbard (UNIS), Longyearbyen N-9170, Norway
| | - Hanna Joerss
- Helmholtz-Zentrum
Hereon, Max-Planck-Straße
1, Geesthacht 21502, Germany
| | - Ralf Ebinghaus
- Helmholtz-Zentrum
Hereon, Max-Planck-Straße
1, Geesthacht 21502, Germany
| | - Amber Leeson
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K.
| | - Peter M. Wynn
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K.
| |
Collapse
|
33
|
Corsolini S, Metzdorff A, Baroni D, Roscales JL, Jiménez B, Cerro-Gálvez E, Dachs J, Galbán-Malagón C, Audy O, Kohoutek J, Přibylova P, Poblete-Morales M, Avendaño-Herrera R, Bergami E, Pozo K. Legacy and novel flame retardants from indoor dust in Antarctica: Sources and human exposure. ENVIRONMENTAL RESEARCH 2021; 196:110344. [PMID: 33068585 DOI: 10.1016/j.envres.2020.110344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
The air humidity in Antarctica is very low and this peculiar weather parameter make the use of flame retardants in research facilities highly needed for safety reasons, as fires are a major risk. Legacy and novel flame retardants (nFRs) including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), Dechlorane Plus (DP), and other nFRs were measured in indoor dust samples collected at research Stations in Antarctica: Gabriel de Castilla, Spain (GCS), Julio Escudero, Chile (JES), and onboard the RRS James Clark Ross, United Kingdom (RRS JCR). The GC-HRMS and LC-MS-MS analyses of dust samples revealed ∑7PBDEs of 41.5 ± 43.8 ng/g in rooms at GCS, 18.7 ± 11.6 ng/g at JES, and 27.2 ± 37.9 ng/g onboard the RRS JCR. PBDE pattern was different between the sites and most abundant congeners were BDE-183 (40%) at GCS, BDE-99 (50%) at JES, and BDE-153 (37%) onboard the RRS JCR. The ∑(4)HBCDs were 257 ± 407 ng/g, 14.9 ± 14.5 ng/g, and 761 ± 1043 ng/g in indoor dust collected in rooms at GCS, JES, and RRS JCR, respectively. The ∑9nFRs were 224 ± 178 ng/g at GCS, 14.1 ± 13.8 ng/g at JES, and 194 ± 392 ng/g on the RRS JCR. Syn- and anti-DP were detected in most of the samples and both isomers showed the highest concentrations at GCS: 163 ± 93.6 and 48.5 ± 61.1 ng/g, respectively. The laboratory and living room showed the highest concentration of HBCDs, DPs, BTBPE. The wide variations in FR levels in dust from the three research facilities and between differently used rooms reflect the different origin of furnishing, building materials and equipment. The potential health risk associated to a daily exposure via dust ingestion was assessed for selected FRs: BDEs 47, 99, and 153, α-, β-, and γ-HBCD, BTBPE, syn- and anti-DP. Although the estimated exposures are below the available reference doses, caution is needed given the expected increasing use of novel chemicals without a comprehensive toxicological profile.
Collapse
Affiliation(s)
- Simonetta Corsolini
- Department of Physical, Earth and Environmental Sciences, Via P. A. Mattioli 4, University of Siena, 53100, Italy.
| | - América Metzdorff
- Department of Physical, Earth and Environmental Sciences, Via P. A. Mattioli 4, University of Siena, 53100, Italy
| | - Davide Baroni
- Department of Physical, Earth and Environmental Sciences, Via P. A. Mattioli 4, University of Siena, 53100, Italy
| | - Jose L Roscales
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, (IQOG-CSIC), Juan de La Cierva 3, 28006, Madrid, Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, (IQOG-CSIC), Juan de La Cierva 3, 28006, Madrid, Spain
| | - Elena Cerro-Gálvez
- Department of Environmental Chemistry, IDAEA-CSIC-Jordi Girona 18-26, Barcelona, 08034, Catalunya, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, IDAEA-CSIC-Jordi Girona 18-26, Barcelona, 08034, Catalunya, Spain
| | - Cristóbal Galbán-Malagón
- Centre for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago, Chile; Departamento de Ciencias de La Vida, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Avda. República 252, Santiago, Chile
| | - Ondřej Audy
- Masaryk University, Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jiří Kohoutek
- Masaryk University, Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Petra Přibylova
- Masaryk University, Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Matias Poblete-Morales
- Universidad Andrés Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de La Vida, Quillota # 980, 2520000, Viña Del Mar, Chile
| | - Ruben Avendaño-Herrera
- Universidad Andrés Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de La Vida, Quillota # 980, 2520000, Viña Del Mar, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 2520000, Viña Del Mar, Chile
| | - Elisa Bergami
- Department of Physical, Earth and Environmental Sciences, Via P. A. Mattioli 4, University of Siena, 53100, Italy
| | - Karla Pozo
- Masaryk University, Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 625 00, Brno, Czech Republic; Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur #1457, Concepción, Chile
| |
Collapse
|
34
|
Miner KR, Clifford H, Taruscio T, Potocki M, Solomon G, Ritari M, Napper IE, Gajurel AP, Mayewski PA. Deposition of PFAS 'forever chemicals' on Mt. Everest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:144421. [PMID: 33353778 DOI: 10.1016/j.scitotenv.2020.144421] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Mt. Everest, one of the most coveted climbing mountains on earth, also contains the highest altitude chemical contamination on land. For the first time, meltwater and snow samples from Mt. Everest's Khumbu Glacier were analyzed for "forever chemicals" per- and polyfluoroalkyl substances (PFAS). Our research team utilized solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify pollutants sampled from Everest Base Camp, Camp 1, Camp 2, and Everest Balcony. From the 14 PFAS compounds tested for, we found perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorohexanoic acid (PFHxA) in Mt. Everest snow and meltwater. The highest concentrations found were 26.14 ng/L and 10.34 ng/L PFOS at Base Camp and Camp 2, respectively. However, PFAS species were seen within 1-2 orders of magnitude in all sampling sites with detection, potentially suggesting a widespread presence on the mountain. Our samples are the highest altitude PFAS samples ever retrieved and indicate the need for further sampling both on Mt. Everest and in the below-glacier watershed.
Collapse
Affiliation(s)
- K R Miner
- Climate Change Institute, University of Maine, ME, USA; Jet Propulsion Laboratory, California Institute of Technology, CA, USA.
| | - H Clifford
- Climate Change Institute, University of Maine, ME, USA; School of Earth and Climate Sciences, University of Maine, ME, USA
| | | | - M Potocki
- Climate Change Institute, University of Maine, ME, USA; School of Earth and Climate Sciences, University of Maine, ME, USA
| | | | | | - I E Napper
- International Marine Litter Research Unit, University of Plymouth, UK
| | - A P Gajurel
- Department of Geology, Tri-Chandra Campus, Tribhuvan University, Nepal
| | - P A Mayewski
- Climate Change Institute, University of Maine, ME, USA
| |
Collapse
|
35
|
Casas G, Martínez-Varela A, Roscales JL, Vila-Costa M, Dachs J, Jiménez B. Enrichment of perfluoroalkyl substances in the sea-surface microlayer and sea-spray aerosols in the Southern Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115512. [PMID: 32892018 DOI: 10.1016/j.envpol.2020.115512] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 05/06/2023]
Abstract
Sea-spray (or sea-salt) aerosol (SSA) formation and their subsequent atmospheric transport and deposition have been suggested to play a prominent role in the occurrence of ionizable perfluoroalkyl substances (PFAS) in the maritime Antarctica and other remote regions. However, field studies on SSA's role as vector of transport of PFAS are lacking. Following a multiphase approach, seawater (SW), the sea-surface microlayer (SML) and SSA were sampled simultaneously at South Bay (Livingston Island, Antarctica). Average PFAS concentrations were 313 pg L-1, 447 pg L-1, and 0.67 pg m-3 in SW, the SML and SSA, respectively. The enrichment factors of PFAS in the SML and SSA ranged between 1.2 and 5, and between 522 and 4690, respectively. This amplification of concentrations in the SML is consistent with the surfactant properties of PFAS, while the large enrichment of PFAS in atmospheric SSA may be facilitated by the large surface area of SSA and the sorption of PFAS to aerosol organic matter. This is the first field work assessing the simultaneous occurrence of PFAS in SW, the SML and SSA. The large measured amplification of concentrations in marine aerosols supports the role of SSA as a relevant vector for long-range atmospheric transport of PFAS.
Collapse
Affiliation(s)
- Gemma Casas
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain; Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Madrid, Spain
| | - Alícia Martínez-Varela
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Jose L Roscales
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Madrid, Spain
| | - Maria Vila-Costa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain.
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Madrid, Spain
| |
Collapse
|
36
|
Deng J, Xiao S, Wang B, Li Q, Li G, Zhang D, Li H. Self-Suspended Photothermal Microreactor for Water Desalination and Integrated Volatile Organic Compound Removal. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51537-51545. [PMID: 33161716 DOI: 10.1021/acsami.0c15694] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Steam generation and photocatalytic degradation of organic pollutants based on solar light are regarded as two important strategies for addressing the water scarcity issues. The water evaporation efficiency was greatly inhibited by the high cost, low stability, and low efficiencies of solar light absorption and photothermal conversion of photothermal materials. Moreover, volatile organic compounds (VOCs) are easily volatilized and enriched in as-distilled water during the photothermal process. Inspired by the structure of biomass materials in nature, a bifunctional solar light-driven steam generation and VOC removal microreactor was explored by coating commercial TiO2 (P25) powders on a carbonized biomass waste Flammulina. With the 3D aligned porous carbon architectures, this microreactor exhibited both a high water evaporation rate (37.0 kg m-2 h-1) and a high energy conversion efficiency (91.2%) under simulated sunlight irradiation (light intensity = 25.5 kW m-2). A high VOC removal rate (80.9% in 40 min) was also achieved during the steam generation process via choosing phenol as the probe pollutant molecules. The nature-inspired designing concept and bifunctional microreactor in this study may open up a new strategy for producing clean distilled water from seawater with an efficient removal of VOCs.
Collapse
Affiliation(s)
- Jinyuan Deng
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China (PRC)
| | - Shuning Xiao
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China (PRC)
| | - Bei Wang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China (PRC)
| | - Qian Li
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China (PRC)
| | - Guisheng Li
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China (PRC)
| | - Dieqing Zhang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China (PRC)
| | - Hexing Li
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China (PRC)
| |
Collapse
|
37
|
Xie Z, Wang Z, Magand O, Thollot A, Ebinghaus R, Mi W, Dommergue A. Occurrence of legacy and emerging organic contaminants in snow at Dome C in the Antarctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140200. [PMID: 32599399 DOI: 10.1016/j.scitotenv.2020.140200] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 05/20/2023]
Abstract
Concentrations of 9 organophosphate esters (OPEs), 16 perfluoroalkylated substances (PFASs) and 17 polycyclic aromatic hydrocarbons (PAHs) were investigated in surface snow samples collected at Dome C on the Antarctic Plateau in summer 2016. Tris(1-chloro-2-propyl) phosphate (TCPP), tris-(2-chloroethyl) phosphate (TCEP) and tri-n-butylphosphate (TnBP) were the dominant compounds of OPEs, with mean concentrations of 8157 ± 4860, 1128 ± 928 and 1232 ± 1147 pg/L. Perfluorooctanoic acid (PFOA, mean: 358 ± 71 pg/L) was the dominant compound of PFASs, and following by perfluoro-n-hexanoic acid (PFHxA, mean: 222 ± 97 pg/L), perfluoro-n-heptanoic acid (PFHpA, 183 ± 60 pg/L) and perfluoro-n-pentanoic acid (PFPeA, 175 ± 105 pg/L). 2-(Heptafluoropropoxy)propanoic acid (HFPO-DA, mean: 9.2 ± 2.6 pg/L) was determined in the Antarctic for the first time. Significantly positive correlations were observed between HFPO-DA and the short-chain PFASs, implying they have similar emission sources and long-range transport potential. High levels of 2-methylnaphthalene and 1-methylnaphthalene, as well as the ratios of PAH congeners indicated PAHs were attributable mostly to combustion origin. Occurrence and profiles of the indicators of OPEs, PFASs and PAHs, as well as air mass back-trajectory analysis provided direct evidences of human activities on Concordia station and posed obvious impacts on local environments in the Antarctic. Nevertheless, the exchange processes among different environmental matrices may drive the long-range transport and redistribution of the legacy and emerging Organic contaminants from coast to inland in the Antarctic.
Collapse
Affiliation(s)
- Zhiyong Xie
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Geesthacht 21502, Germany.
| | - Zhen Wang
- National Marine Environmental Monitoring Center, Dalian, China
| | - Olivier Magand
- Institut des Géosciences de l'Environnement, Univ Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Alban Thollot
- Institut des Géosciences de l'Environnement, Univ Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Ralf Ebinghaus
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Geesthacht 21502, Germany
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21502, Germany
| | - Aurelien Dommergue
- Institut des Géosciences de l'Environnement, Univ Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| |
Collapse
|
38
|
Martinez-Varela A, Casas G, Piña B, Dachs J, Vila-Costa M. Large Enrichment of Anthropogenic Organic Matter Degrading Bacteria in the Sea-Surface Microlayer at Coastal Livingston Island (Antarctica). Front Microbiol 2020; 11:571983. [PMID: 33013806 PMCID: PMC7516020 DOI: 10.3389/fmicb.2020.571983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023] Open
Abstract
The composition of bacteria inhabiting the sea-surface microlayer (SML) is poorly characterized globally and yet undescribed for the Southern Ocean, despite their relevance for the biogeochemistry of the surface ocean. We report the abundances and diversity of bacteria inhabiting the SML and the subsurface waters (SSL) determined from a unique sample set from a polar coastal ecosystem (Livingston Island, Antarctica). From early to late austral summer (January–March 2018), we consistently found a higher abundance of bacteria in the SML than in the SSL. The SML was enriched in some Gammaproteobacteria genus such as Pseudoalteromonas, Pseudomonas, and Colwellia, known to degrade a wide range of semivolatile, hydrophobic, and surfactant-like organic pollutants. Hydrocarbons and other synthetic chemicals including surfactants, such as perfluoroalkyl substances (PFAS), reach remote marine environments by atmospheric transport and deposition and by oceanic currents, and are known to accumulate in the SML. Relative abundances of specific SML-enriched bacterial groups were significantly correlated to concentrations of PFASs, taken as a proxy of hydrophobic anthropogenic pollutants present in the SML and its stability. Our observations provide evidence for an important pollutant-bacteria interaction in the marine SML. Given that pollutant emissions have increased during the Anthropocene, our results point to the need to assess chemical pollution as a factor modulating marine microbiomes in the contemporaneous and future oceans.
Collapse
Affiliation(s)
- Alícia Martinez-Varela
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| | - Gemma Casas
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| | - Benjamin Piña
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| | - Maria Vila-Costa
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| |
Collapse
|
39
|
Krasnobaev A, ten Dam G, Boerrigter-Eenling R, Peng F, van Leeuwen SPJ, Morley SA, Peck LS, van den Brink NW. Legacy and Emerging Persistent Organic Pollutants in Antarctic Benthic Invertebrates near Rothera Point, Western Antarctic Peninsula. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2763-2771. [PMID: 31950826 PMCID: PMC7057541 DOI: 10.1021/acs.est.9b06622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pollutant levels in polar regions are gaining progressively more attention from the scientific community. This is especially so for pollutants that persist in the environment and can reach polar latitudes via a wide range of routes, such as some persistent organic pollutants (POPs). In this study, samples of Antarctic marine benthic organisms were analyzed for legacy and emerging POPs (polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides) to comprehensively assess their current POP concentrations and infer the potential sources of the pollutants. Specimens of five benthic invertebrate species were collected at two distinct locations near Rothera research station on the Antarctic Peninsula (67°35'8 ̋ S and 68°7'59 ̋ W). Any impact of the nearby Rothera station as a local source of pollution appeared to be negligible. The most abundant chemicals detected were hexachlorobenzene (HCB) and BDE-209. The highest concentrations detected were in limpets and sea urchins, followed by sea stars, ascidians, and sea cucumbers. The relative congener patterns of PCBs and PBDEs were similar in all of the species. Some chemicals (e.g., heptachlor, oxychlordane, and mirex) were detected in the Antarctic invertebrates for the first time. Statistical analyses revealed that the distribution of the POPs was not only driven by the feeding traits of the species but also by the physicochemical properties of the specific compounds.
Collapse
Affiliation(s)
- Artem Krasnobaev
- Sub-Department
of Toxicology, Wageningen University, PO Box 8000, NL 6700 EA Wageningen, the Netherlands
| | - Guillaume ten Dam
- Wageningen
Research, Wageningen Food Safety Research
(WFSR), PO Box 230, NL 6700 AE Wageningen, the Netherlands
- DSP-systems, Food Valley
BTA12, Darwinstraat 7a, 6718 XR Ede, the Netherlands
| | - Rita Boerrigter-Eenling
- Wageningen
Research, Wageningen Food Safety Research
(WFSR), PO Box 230, NL 6700 AE Wageningen, the Netherlands
| | - Fang Peng
- Luxembourg
Institute of Health, Rue Thomas Edison 1A−B, 1445 Strassen, Luxembourg
| | - Stefan P. J. van Leeuwen
- Wageningen
Research, Wageningen Food Safety Research
(WFSR), PO Box 230, NL 6700 AE Wageningen, the Netherlands
| | - Simon A. Morley
- Natural
Environment Research Council (NERC), British
Antarctic Survey, Cambridge CB3 0ET, United Kingdom
| | - Lloyd S. Peck
- Natural
Environment Research Council (NERC), British
Antarctic Survey, Cambridge CB3 0ET, United Kingdom
| | - Nico W. van den Brink
- Sub-Department
of Toxicology, Wageningen University, PO Box 8000, NL 6700 EA Wageningen, the Netherlands
- E-mail:
| |
Collapse
|
40
|
Song P, Zhang Z, Yu L, Wang P, Wang Q, Chen Y. An ionic covalent organic polymer toward highly selective removal of anionic organic dyes in aqueous solution. NEW J CHEM 2020. [DOI: 10.1039/d0nj01132k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel ionic COP was prepared for the highly selective removal of anionic organic dyes in aqueous solution.
Collapse
Affiliation(s)
- Pengfei Song
- College of Chemistry and Chemical Engineering
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- Northwest Normal University
- Lanzhou 730070
| | - Zonglian Zhang
- College of Chemistry and Chemical Engineering
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- Northwest Normal University
- Lanzhou 730070
| | - Li Yu
- College of Chemistry and Chemical Engineering
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- Northwest Normal University
- Lanzhou 730070
| | - Pei Wang
- College of Chemistry and Chemical Engineering
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- Northwest Normal University
- Lanzhou 730070
| | - Qian Wang
- College of Chemistry and Chemical Engineering
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- Northwest Normal University
- Lanzhou 730070
| | - Yalun Chen
- College of Chemistry and Chemical Engineering
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- Northwest Normal University
- Lanzhou 730070
| |
Collapse
|