1
|
Guo X, Ji X, Liu Z, Feng Z, Zhang Z, Du S, Li X, Ma J, Sun Z. Complex impact of metals on the fate of disinfection by-products in drinking water pipelines: A systematic review. WATER RESEARCH 2024; 261:121991. [PMID: 38941679 DOI: 10.1016/j.watres.2024.121991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Metals in the drinking water distribution system (DWDS) play an important role on the fate of disinfection by-products (DBPs). They can increase the formation of DBPs through several mechanisms, such as enhancing the proportion of reactive halogen species (RHS), catalysing the reaction between natural organic matter (NOM) and RHS through complexation, or by increasing the conversion of NOM into DBP precursors. This review comprehensively summarizes these complex processes, focusing on the most important metals (copper, iron, manganese) in DWDS and their impact on various DBPs. It organizes the dispersed 'metals-DBPs' experimental results into an easily accessible content structure and presents their underlying common or unique mechanisms. Furthermore, the practically valuable application directions of these research findings were analysed, including the toxicity changes of DBPs in DWDS under the influence of metals and the potential enhancement of generalization in DBP model research by the introduction of metals. Overall, this review revealed that the metal environment within DWDS is a crucial factor influencing DBP levels in tap water.
Collapse
Affiliation(s)
- Xinming Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Xiaoyue Ji
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Zihan Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Zhuoran Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - ZiFeng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuang Du
- Institute of NBC Defense. PLA Army, P.O.Box1048, Beijing 102205 China
| | - Xueyan Li
- Suzhou University Science & Technology, School of Environmental Science & Engineering, Suzhou 215009, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China.
| |
Collapse
|
2
|
Lin J, Yang L, Zhuang WE, Wang Y, Chen X, Niu J. Tracking the changes of dissolved organic matter throughout the city water supply system with optical indices. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120911. [PMID: 38631164 DOI: 10.1016/j.jenvman.2024.120911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Dissolved organic matter (DOM) is important in determining the drinking water treatment and the supplied water quality. However, a comprehensive DOM study for the whole water supply system is lacking and the potential effects of secondary water supply are largely unknown. This was studied using dissolved organic carbon (DOC), absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). Four fluorescent components were identified, including humic-like C1-C2, tryptophan-like C3, and tyrosine-like C4. In the drinking water treatment plants, the advanced treatment using ozone and biological activated carbon (O3-BAC) was more effective in removing DOC than the conventional process, with the removals of C1 and C3 improved by 17.7%-25.1% and 19.2%-27.0%. The absorption coefficient and C1-C4 correlated significantly with DOC in water treatments, suggesting that absorption and fluorescence could effectively track the changes in bulk DOM. DOM generally remained stable in each drinking water distribution system, suggesting the importance of the treated water quality in determining that of the corresponding network. The optical indices changed notably between distribution networks of different treatment plants, which enabled the identification of changing water sources. A comparison of DOM in the direct and secondary water supplies suggested limited impacts of secondary water supply, although the changes in organic carbon and absorption indices were detected in some locations. These results have implications for better understanding the changes of DOM in the whole water supply system to help ensure the supplied water quality.
Collapse
Affiliation(s)
- Jinjin Lin
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China
| | - Liyang Yang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China.
| | - Wan-E Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yue Wang
- Fuzhou Water Group Company, Ltd, Fuzhou, Fujian, PR China
| | - Xiaochen Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China
| | - Jia Niu
- Fujian Engineering Research Center of Water Pollution Control and System Intelligence Technology, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, PR China.
| |
Collapse
|
3
|
Stalwick JA, Ratelle M, Gurney KEB, Drysdale M, Lazarescu C, Comte J, Laird B, Skinner K. Sources of exposure to lead in Arctic and subarctic regions: a scoping review. Int J Circumpolar Health 2023; 82:2208810. [PMID: 37196187 DOI: 10.1080/22423982.2023.2208810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Understanding lead exposure pathways is a priority because of its ubiquitous presence in the environment as well as the potential health risks. We aimed to identify potential lead sources and pathways of lead exposure, including long-range transport, and the magnitude of exposure in Arctic and subarctic communities. A scoping review strategy and screening approach was used to search literature from January 2000 to December 2020. A total of 228 academic and grey literature references were synthesised. The majority of these studies (54%) were from Canada. Indigenous people in Arctic and subarctic communities in Canada had higher levels of lead than the rest of Canada. The majority of studies in all Arctic countries reported at least some individuals above the level of concern. Lead levels were influenced by a number of factors including using lead ammunition to harvest traditional food and living in close proximity to mines. Lead levels in water, soil, and sediment were generally low. Literature showed the possibility of long-range transport via migratory birds. Household lead sources included lead-based paint, dust, or tap water. This literature review will help to inform management strategies for communities, researchers, and governments, with the aim of decreasing lead exposure in northern regions.
Collapse
Affiliation(s)
- Jordyn A Stalwick
- Environment and Climate Change Canada, Science and Technology Branch, Prairie and Northern Wildlife Research Centre, Saskatoon, Canada
| | - Mylène Ratelle
- School of Public Health Sciences, University of Waterloo, Waterloo, Canada
| | - Kirsty E B Gurney
- Environment and Climate Change Canada, Science and Technology Branch, Prairie and Northern Wildlife Research Centre, Saskatoon, Canada
| | - Mallory Drysdale
- School of Public Health Sciences, University of Waterloo, Waterloo, Canada
| | - Calin Lazarescu
- School of Public Health Sciences, University of Waterloo, Waterloo, Canada
| | - Jérôme Comte
- Institut National de Recherche Scientifique (INRS), Eau Terre Environnement Centre, Québec, Canada
| | - Brian Laird
- School of Public Health Sciences, University of Waterloo, Waterloo, Canada
| | - Kelly Skinner
- School of Public Health Sciences, University of Waterloo, Waterloo, Canada
| |
Collapse
|
4
|
Cassivi A, Covey A, Rodriguez MJ, Guilherme S. Domestic water security in the Arctic: A scoping review. Int J Hyg Environ Health 2023; 247:114060. [PMID: 36413873 DOI: 10.1016/j.ijheh.2022.114060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION More than 50 million people living in the Arctic nations remain without access to safely managed drinking water services. Remote northern communities, where large numbers of Indigenous peoples live, are disproportionally affected. Recent research has documented water and health-related problems among Indigenous communities, including poor water quality and insufficient quantities of water. OBJECTIVE The objective of this scoping review is to examine the extent of available water security evidence as well as identify research gaps and intervention priorities to improve access to domestic water in the Arctic and Subarctic regions of the eight Arctic nations (Canada, the Kingdom of Denmark (Greenland), Finland, Iceland, Norway, Sweden, Russia, and the United States (Alaska)). METHODS An extensive literature review was conducted to retrieve relevant documentation. Arctic & Antarctic Regions, Compendex, Geobase, Georef, MEDLINE and Web of Science databases were searched to identify records for inclusion. The initial searches yielded a total of 1356 records. Two independent reviewers systematically screened identified records using selection criteria. Descriptive analyses were used to summarize evidence of included studies. RESULTS A total of 55 studies, mostly conducted in Canada and the United States, were included and classified by four predetermined major dimensions: 1) Water accessibility and availability; 2) Water quality assessment; 3) Water supply and health; 4) Preferences and risk perceptions. CONCLUSIONS This scoping review used a global approach to provide researchers and stakeholders with a summary of the evidence available regarding water security and domestic access in the Arctic. Culturally appropriate health-based interventions are necessary to ensure inclusive water services and achieve the Sustainable Development Goals (SDG) targets for universal access to water.
Collapse
Affiliation(s)
- Alexandra Cassivi
- Chaire de recherche en eau potable, École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, 2325 rue des Bibliothèques, Universitè Laval, Quèbec (QC), Canada.
| | - Anna Covey
- Department of Civil Engineering, Faculty of Engineering, Colonel By Hall, 161 Louis Pasteur, University of Ottawa, Ottawa (ON), Canada
| | - Manuel J Rodriguez
- Chaire de recherche en eau potable, École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, 2325 rue des Bibliothèques, Universitè Laval, Quèbec (QC), Canada
| | - Stéphanie Guilherme
- Department of Civil Engineering, Faculty of Engineering, Colonel By Hall, 161 Louis Pasteur, University of Ottawa, Ottawa (ON), Canada
| |
Collapse
|
5
|
Su Z, Liu T, Men Y, Li S, Graham N, Yu W. Understanding point-of-use tap water quality: From instrument measurement to intelligent analysis using sample filtration. WATER RESEARCH 2022; 225:119205. [PMID: 36215843 DOI: 10.1016/j.watres.2022.119205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
In most cases, point-of-use tap water quality is not routinely monitored due to widely-dispersed sampling sites and the costly tests. Although previous studies have revealed the variation of drinking water quality during distribution in municipal networks, the influence of aging pipes in buildings on quality is still unknown and this makes it difficult for water utilities to conduct regular maintenance. Herein, we have undertaken a survey of tap water samples across 8 districts in Beijing (China) to evaluate the potential effects of pipe age on point-of-use water quality, including turbidity, organic matter characteristics, and bacterial community. By grouping the collected samples according to the pipe age and source water respectively, the results suggested that bacterial diversity is significantly influenced by the pipe age. However, bacterial community structure is clearly influenced by the source water. Similarly, aging pipes in buildings are also responsible for the deterioration of the final water quality, and their effects have been closely linked to selected water quality parameters by evaluating the relevant factors. Moreover, the interrelationships between physico-chemical parameters and bacteria abundance were identified. For example, pH, Ca2+, Mg2+, Na+ and K+ showed a positive relationship with Bacillus abundance. In addition, an intelligent analysis method for understanding pipe age, organic matter concentration, and hardness (i.e., Ca2+ and Mg2+ concentration), based on image analysis of filtered membranes has been developed. The accuracy of prediction was encouraging, but can be improved with the collection of more data from tap water samples. We expect that this method can be exploited by the public to monitor their tap water and provide a feasible and cost-effective approach for water suppliers to locate aging/deteriorating pipes which need to be replaced or maintained.
Collapse
Affiliation(s)
- Zhaoyang Su
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ting Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States
| | - Shuo Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
6
|
Aghaei A, Dadashi Firouzjaei M, Karami P, Aktij SA, Elliott M, Mansourpanah Y, Rahimpour A, Soares J, Sadrzadeh M. The Implications of 3D‐Printed Membranes for Water and Wastewater Treatment and Resource Recovery. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amir Aghaei
- Department of Mechanical Engineering, 10‐241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL) University of Alberta Edmonton AB Canada
| | | | - Pooria Karami
- Department of Mechanical Engineering, 10‐241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL) University of Alberta Edmonton AB Canada
- Department of Chemical & Materials Engineering, 12‐263 Donadeo Innovation Centre for Engineering, Group of Applied Macromolecular Engineering University of Alberta Edmonton AB Canada
| | - Sadegh Aghapour Aktij
- Department of Mechanical Engineering, 10‐241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL) University of Alberta Edmonton AB Canada
- Department of Chemical & Materials Engineering, 12‐263 Donadeo Innovation Centre for Engineering, Group of Applied Macromolecular Engineering University of Alberta Edmonton AB Canada
| | - Mark Elliott
- Department of Civil, Construction and Environmental Engineering University of Alabama Tuscaloosa USA
| | | | - Ahmad Rahimpour
- Department of Mechanical Engineering, 10‐241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL) University of Alberta Edmonton AB Canada
| | - Joao Soares
- Department of Chemical & Materials Engineering, 12‐263 Donadeo Innovation Centre for Engineering, Group of Applied Macromolecular Engineering University of Alberta Edmonton AB Canada
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10‐241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL) University of Alberta Edmonton AB Canada
| |
Collapse
|
7
|
Salehi M. Global water shortage and potable water safety; Today's concern and tomorrow's crisis. ENVIRONMENT INTERNATIONAL 2022; 158:106936. [PMID: 34655888 DOI: 10.1016/j.envint.2021.106936] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 05/28/2023]
Abstract
Climate change, severe droughts, population growth, demand increase, and poor management during the recent decades have further stressed the scarce freshwater resources worldwide and resulted in severe water shortages in many regions. The water utilities address the water shortage by providing alternative source of water, augment the supplied water, supply intermittently, and even bulk water delivery under severe water shortage conditions. On the other hand, many households store water in building storage tanks to cope with insufficient delivery of potable water due to frequent interruptions. All these practices could pose crucial risks to the chemical and microbiological quality of the water. However, consistent monitoring and implementation of mitigation strategies could lower the potential risks associated with these practices. It is critical to identify the potential hazards resulting from the alternative water supplies and distribution practices to develop temporary and long-term monitoring and mitigation plans and reduce the microbial and chemical contamination of potable water delivered to the consumers. This paper provides a holistic review of the significant hazards associated with the practices employed by the water utilities and water consumers to alleviate the potable water shortage and discusses the required monitoring and mitigation practices.
Collapse
Affiliation(s)
- Maryam Salehi
- Department of Civil Engineering, The University of Memphis, 3815 Central Avenue, 108C Engineering Science Bldg, Memphis, TN 38152, United States.
| |
Collapse
|
8
|
Li B, Trueman BF, Munoz S, Locsin JM, Gagnon GA. Impact of sodium silicate on lead release and colloid size distributions in drinking water. WATER RESEARCH 2021; 190:116709. [PMID: 33341036 DOI: 10.1016/j.watres.2020.116709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Sodium silicates have been used in drinking water treatment for decades as sequestrants and corrosion inhibitors. For the latter purpose they are poorly understood, which presents a potential public health risk. We investigated a common sodium silicate formulation as a treatment for lead release and compared it to orthophosphate, a well-established lead corrosion control treatment. We also compared the size distributions of colloids generated in silicate and orthophosphate-treated systems using field flow fractionation with multielement detection. At a moderate dose of 24 mg SiO2/L, sodium silicate yielded a median lead release of 398 µg/L, while orthophosphate yielded 67 µg Pb/L. At an elevated dose of 48 mg SiO2/L, sodium silicate dispersed corrosion scale in cast iron pipe sections and lead service lines, resulting in a substantial release of colloidal iron and lead. In the silicate-treated system, a silicon-rich coating occurred at the lead-water interface, but lead carbonate remained the major corrosion product and appeared to control lead levels. These data suggest that, as a corrosion control treatment for lead, sodium silicate is inferior to orthophosphate in circumneutral pH water with low alkalinity. And, as with polyphosphate, excess silicate can be highly detrimental to controlling lead release.
Collapse
Affiliation(s)
- Bofu Li
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington St., Halifax, Nova Scotia, Canada B3H 4R2
| | - Benjamin F Trueman
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington St., Halifax, Nova Scotia, Canada B3H 4R2
| | - Sebastian Munoz
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington St., Halifax, Nova Scotia, Canada B3H 4R2
| | - Javier M Locsin
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington St., Halifax, Nova Scotia, Canada B3H 4R2
| | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington St., Halifax, Nova Scotia, Canada B3H 4R2.
| |
Collapse
|