1
|
Yang H, Zhao Y, Chai L, Ma F, Yu J, Xiao KQ, Gu Q. Bio-accumulation and health risk assessments of per- and polyfluoroalkyl substances in wheat grains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124351. [PMID: 38878812 DOI: 10.1016/j.envpol.2024.124351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been widely detected in various food, which has attracted worldwide concern. However, the factors influencing the transfer and bio-accumulation of PFASs from soils to wheat in normal farmland, is still ambiguous. We investigated the PFASs accumulation in agricultural soils and grains from 10 cites, China, and evaluated the health risks of PFASs via wheat consumption. Our results show that ∑PFASs in soils range from 0.34 μg/kg to 1.59 μg/kg with PFOA and PFOS dominating, whilst ∑PFASs in wheats range from 2.74 to 6.01 μg/kg with PFOA, PFBA and PFHxS dominating. The lower pH conditions and high total organic carbon (TOC) could result in the higher accumulation of PFASs in soils and subsequently in wheat grains, whilst the bioaccumulation factors of PFASs increase with increasing pH conditions but not with TOC. The estimated daily intake (EDI) values of PFBA, PFOA, and PFHxS are relatively high, but data supports that ingesting wheat grains does not result in any potential risk to the human beings. Our studies provided more information about PFASs accumulation in wheat grains, and help us understand the current potential risks of PFASs in food.
Collapse
Affiliation(s)
- Huan Yang
- Chinese Research Academy of Environmental Sciences, Beijing, 100020, China; Liaoning Technical University, Fuxin, 123100, Liaoning, China
| | - Yao Zhao
- Chinese Research Academy of Environmental Sciences, Beijing, 100020, China.
| | - LiNa Chai
- Chinese Research Academy of Environmental Sciences, Beijing, 100020, China
| | - FuJun Ma
- Chinese Research Academy of Environmental Sciences, Beijing, 100020, China
| | - JianLong Yu
- Waters Technologies (Beijing), Beijing, China
| | - Ke-Qing Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - QingBao Gu
- Chinese Research Academy of Environmental Sciences, Beijing, 100020, China.
| |
Collapse
|
2
|
Chen Y, Zhang X, Ma J, Gong J, A W, Huang X, Li P, Xie Z, Li G, Liao Q. All-in-one strategy to construct bifunctional covalent triazine-based frameworks for simultaneous extraction of per- and polyfluoroalkyl substances and polychlorinated naphthalenes in foods. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133084. [PMID: 38039811 DOI: 10.1016/j.jhazmat.2023.133084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) and polychlorinated naphthalenes (PCNs) are of growing concern due to their toxic effects on the environment and human health. There is an urgent need for strategies to monitor and analyze the coexistence of PFASs and PCNs, especially in food samples at trace levels, to ensure food safety. Herein, a novel β-cyclodextrin (β-CD) derived fluoro-functionalized covalent triazine-based frameworks named CD-F-CTF was firstly synthesized. This innovative framework effectively combines the porous nature of the covalent organic framework and the host-guest recognition property of β-CD enabling the simultaneous extraction of PFASs and PCNs. Under the optimal conditions, a simple and rapid method was developed to analyze PFASs and PCNs by solid-phase extraction (SPE) based simultaneous extraction and stepwise elution (SESE) strategy for the first time. When coupled with liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS), this method achieved impressive detection limits for PFASs (0.020 -0.023 ng/g) and PCNs (0.016 -0.075 ng/g). Furthermore, the excellent performance was validated in food samples with recoveries of 76.7-107 % (for PFASs) and 78.0-108 % (for PCNs). This work not only provides a simple and rapid technique for simultaneous monitoring of PFASs and PCNs in food and environmental samples, but also introduces a new idea for the designing novel adsorbents with multiple recognition sites.
Collapse
Affiliation(s)
- Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Juanqiong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Wenwei A
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong Province 510623, China
| | - Xinyu Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province 518106, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong Province 510006, China.
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
3
|
Han BC, Liu JS, Bizimana A, Zhang BX, Kateryna S, Zhao Z, Yu LP, Shen ZZ, Meng XZ. Identifying priority PBT-like compounds from emerging PFAS by nontargeted analysis and machine learning models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122663. [PMID: 37783416 DOI: 10.1016/j.envpol.2023.122663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
As traditional per and polyfluoroalkyl substances (PFAS) are phased out, emerging PFAS are being developed and widely used. However, little is known about their properties, including persistence, bioaccumulation, and toxicity (PBT). Screening for emerging PFAS relies on available chemical inventory databases. Here, we compiled a database of emerging PFAS obtained from nontargeted analysis and assessed their PBT properties using machine learning models, including qualitative graph attention networks, Insubria PBT Index and quantitative EAS-E Suite, VEGA, and ProTox-II platforms. Totally 282 homologues (21.8% of emerging PFAS) were identified as PBT based on the combined qualitative and quantitative prediction, in which 140 homologues were detected in industrial and nonbiological/biological samples, belong to four categories, i.e. modifications of perfluoroalkyl carboxylic acids, perfluoroalkane sulfonamido substances, fluorotelomers and modifications of perfluoroalkyl sulfonic acids. Approximately 10.1% of prioritized emerging PFAS were matched to chemical vendors and 19.6% to patents. Aqueous film-forming foams and fluorochemical factories are the predominant sources for prioritized emerging PFAS. The database and screening results can update the assessment related to legislative bodies such as the US Toxic Substances Control Act and the Stockholm Convention. The combined qualitative and quantitative machine learning models can provide a methodological tool for prioritizing other emerging organic contaminants.
Collapse
Affiliation(s)
- Bao-Cang Han
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jin-Song Liu
- College of Advanced Materials Engineering, Jiaxing Nanhu University. 572 South Yuexiu Road, Jiaxing, 314001, Zhejiang Province, China
| | - Aaron Bizimana
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; UNEP-Tongji Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bo-Xuan Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Sukhodolska Kateryna
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; UNEP-Tongji Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhen Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Li-Ping Yu
- Suzhou Jingtian Lover Environmental Technology Co. Ltd., Suzhou, 215228, Jiangsu Province, China
| | - Zhong-Zeng Shen
- Suzhou Jingtian Lover Environmental Technology Co. Ltd., Suzhou, 215228, Jiangsu Province, China
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
4
|
Ingold V, Kämpfe A, Ruhl AS. Screening for 26 per- and polyfluoroalkyl substances (PFAS) in German drinking waters with support of residents. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:235-242. [PMID: 38435358 PMCID: PMC10902509 DOI: 10.1016/j.eehl.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 03/05/2024]
Abstract
The occurrence of per- and polyfluoroalkyl substances (PFAS) in water cycles poses a challenge to drinking water quality and safety. In order to counteract the large knowledge gap regarding PFAS in German drinking water, 89 drinking water samples from all over Germany were collected with the help of residents and were analyzed for 26 PFAS by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The 20 PFAS recently regulated by sum concentration (PFAS∑20), as well as six other PFAS, were quantified by targeted analysis. In all drinking water samples, PFAS∑20 was below the limit of 0.1 μg/L, but the sum concentrations ranged widely from below the limit of quantification up to 80.2 ng/L. The sum concentrations (PFAS∑4) of perfluorohexanesulfonate (PFHxS), perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and perfluorononanoate of 20 ng/L were exceeded in two samples. The most frequently detected individual substances were PFOS (in 52% of the samples), perfluorobutanesulfonate (52%), perfluorohexanoate (PFHxA) (44%), perfluoropentanoate (43%) and PFHxS (35%). The highest single concentrations were 23.5 ng/L for PFHxS, 15.3 ng/L for PFOS, and 10.1 ng/L for PFHxA. No regionally elevated concentrations were identified, but some highly urbanized areas showed elevated levels. Concentrations of substitution PFAS, including 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate and 2,2,3-trifluor-3-[1,1,2,2,3,3-hexafluor-3-(trifluormethoxy)propoxy]-propanoate (anion of ADONA), were very low compared to regulated PFAS. The most frequently detected PFAS were examined for co-occurrences, but no definite correlations could be found.
Collapse
Affiliation(s)
- Vanessa Ingold
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany
| | - Alexander Kämpfe
- German Environment Agency, Section II 3.2, Heinrich-Heine-Straße 12, 08645, Bad Elster, Germany
| | - Aki Sebastian Ruhl
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany
- Technische Universität Berlin, Chair of Water Treatment, KF4, Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
5
|
Zhang F, Liu L, Hu J, Fu H, Li H, Chen J, Yang C, Guo Q, Liang X, Wang L, Guo Y, Dai J, Sheng N, Wang J. Accumulation and glucocorticoid signaling suppression by four emerging perfluoroethercarboxylic acids based on animal exposure and cell testing. ENVIRONMENT INTERNATIONAL 2023; 178:108092. [PMID: 37463541 DOI: 10.1016/j.envint.2023.108092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
Various perfluoroethercarboxylic acids (PFECA) have emerged as next-generation replacements of legacy per- and polyfluoroalkyl substances (PFAS). However, there is a paucity of information regarding their bioaccumulation ability and hazard characterization. Here, we explored the accumulation and hepatotoxicity of four PFECA compounds (HFPO-DA, HFPO-TA, PFO4DA, and PFO5DoDA) in comparison to perfluorooctanoic acid (PFOA) after chronic low-dose exposure in mice. Except for HFPO-DA, the levels of all tested PFAS in the liver exceeded that in serum. High molecular weight PFECA compounds (PFO5DoDA and HFPO-TA) showed stronger accumulation capacity and longer half-lives (t1/2) than low molecular weight PFECA compounds (HFPO-DA and PFO4DA) and even legacy PFOA. Although hepatomegaly is a common apical end point of PFAS exposure, the differentially expressed gene (DEG) profiles in the liver suggested significant differences between PFOA and the four PFECA compounds. Gene enrichment analysis supported a considerable inhibitory effect of PFECA, but not PFOA, on the glucocorticoid receptor (GR) signaling pathway. Both HFPO-TA and PFO5DoDA demonstrated a more pronounced ability to perturb RNA expression profiles in vivo and to suppress GR signaling in vitro compared to HFPO-DA and PFO4DA. Calculated reference doses (RfDs) emphasized the potential hazard of PFECA to human health. Overall, our findings indicate that PFECA alternatives do not ease the concerns raised from legacy PFAS pollution.
Collapse
Affiliation(s)
- Fenghong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Lei Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jianglin Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huayu Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongyuan Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiamiao Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyu Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qingrong Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaotian Liang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Lin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jianshe Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
6
|
Strynar M, McCord J, Newton S, Washington J, Barzen-Hanson K, Trier X, Liu Y, Dimzon IK, Bugsel B, Zwiener C, Munoz G. Practical application guide for the discovery of novel PFAS in environmental samples using high resolution mass spectrometry. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:575-588. [PMID: 37516787 PMCID: PMC10561087 DOI: 10.1038/s41370-023-00578-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND The intersection of the topics of high-resolution mass spectrometry (HRMS) and per- and polyfluoroalkyl substances (PFAS) bring together two disparate and complex subjects. Recently non-targeted analysis (NTA) for the discovery of novel PFAS in environmental and biological media has been shown to be valuable in multiple applications. Classical targeted analysis for PFAS using LC-MS/MS, though growing in compound coverage, is still unable to inform a holistic understanding of the PFAS burden in most samples. NTA fills at least a portion of this data gap. OBJECTIVES Entrance into the study of novel PFAS discovery requires identification techniques such as HRMS (e.g., QTOF and Orbitrap) instrumentation. This requires practical knowledge of best approaches depending on the purpose of the analyses. The utility of HRMS applications for PFAS discovery is unquestioned and will likely play a significant role in many future environmental and human exposure studies. METHODS/RESULTS PFAS have some characteristics that make them standout from most other chemicals present in samples. Through a series of tell-tale PFAS characteristics (e.g., characteristic mass defect range, homologous series and characteristic fragmentation patterns), and case studies different approaches and remaining challenges are demonstrated. IMPACT STATEMENT The identification of novel PFAS via non-targeted analysis using high resolution mass spectrometry is an important and difficult endeavor. This synopsis document will hopefully make current and future efforts on this topic easier to perform for novice and experienced alike. The typical time devoted to NTA PFAS investigations (weeks to months or more) may benefit from these practical steps employed.
Collapse
Affiliation(s)
- Mark Strynar
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA.
| | - James McCord
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA
| | - Seth Newton
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA
| | - John Washington
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA
| | | | - Xenia Trier
- Section of Environmental Chemistry and Physics, Department of Plant and Environmental Sciences (PLEN), University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Ian Ken Dimzon
- Ateneo de Manila University, Loyola Heights, Quezon City, Philippines
| | - Boris Bugsel
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
| | - Gabriel Munoz
- Université de Montréal, Montreal, QC, H3C 3J7, Canada
| |
Collapse
|
7
|
Wang X, Liu Y, Zhang X, Tu W, Wang Q, Liu S, Zhang M, Wu Y, Mai B. Bioaccumulation, tissue distribution, and maternal transfer of novel PFOS alternatives (6:2 Cl-PFESA and OBS) in wild freshwater fish from Poyang Lake, China. CHEMOSPHERE 2023:139253. [PMID: 37331668 DOI: 10.1016/j.chemosphere.2023.139253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
As emerging alternatives to perfluorooctane sulfonate (PFOS), 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (6:2 Cl-PFESA) and sodium p-perfluorous nonenox-benzenesulfonate (OBS) were frequently detected in the four freshwater fish species collected from Poyang Lake. Median concentrations of 6:2 Cl-PFESA and OBS in fish tissues were 0.046-6.0 and 0.46-5.1 ng/g wet weight, respectively. The highest concentrations of 6:2 Cl-PFESA was found in fish livers, whereas OBS was found in the pancreas, brain, gonads, and skin. The tissue distribution pattern of 6:2 Cl-PFESA is similar to that of PFOS. The tissue/liver ratios of OBS were higher than those of PFOS, suggesting that OBS has a greater tendency to transfer from the liver to other tissues. The logarithmic bioaccumulation factors (log BAFs) of 6:2 Cl-PFESA in three carnivorous fish species were greater than 3.7, whereas those of OBS were less than 3.7, indicating that 6:2 Cl-PFESA had a strong bioaccumulation potential. Notably, sex- and tissue-specific bioaccumulation of OBS has also been observed in catfish. Most tissues (except the gonads) exhibited higher OBS concentrations in males than in females. However, no differences were found for 6:2 Cl-PFESA and PFOS. Maternal transfer efficiency of OBS was higher than that of 6:2 Cl-PFESA and PFOS in catfish (p < 0.05), indicating that OBS presents a higher risk of exposure to males and offspring through maternal offloading.
Collapse
Affiliation(s)
- Xiandong Wang
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China; Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.
| | - Xinghui Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qiyu Wang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Shuai Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Miao Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Yongming Wu
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China; Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
8
|
Han H, Ding S, Geng Y, Qiao Z, Li X, Wang R, Zhang X, Ji W. Preparation of a pyridyl covalent organic framework via Heck cross-coupling for solid-phase microextraction of perfluoropolyether carboxylic acids in food. Food Chem 2023; 403:134310. [DOI: 10.1016/j.foodchem.2022.134310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/24/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
|
9
|
Liu L, Lu M, Cheng X, Yu G, Huang J. Suspect screening and nontargeted analysis of per- and polyfluoroalkyl substances in representative fluorocarbon surfactants, aqueous film-forming foams, and impacted water in China. ENVIRONMENT INTERNATIONAL 2022; 167:107398. [PMID: 35841727 DOI: 10.1016/j.envint.2022.107398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Massive usage of aqueous film-forming foams (AFFF) containing fluorocarbon surfactants (FS) is one of the major sources of per- and polyfluoroalkyl substances (PFAS) contamination, which poses negative environmental and health effects. However, there is a critical knowledge gap regarding PFAS chemical compositions in high consumption FS products which were used in AFFFs on the Chinese market and in water impacted by such products. This study firstly applied a comprehensive suspect screening and nontargeted analysis (NTA) workflow to investigate the main ionic and neutral PFAS in FS products from the largest Chinese vendor and compared with two international brands to unveil the PFAS used in AFFF. Overall, 24 classes of PFAS, including 69 compounds, were tentatively identified in FS products, and high concentrations of neutral PFAS were found in polymer-based products, indicating potential environmental risk. In addition, we applied a simplified data mining process to capture 36 PFAS from the impacted water, and the relationship among FS, AFFF concentrates and impacted water was explored. This study parsed the PFAS characteristics in AFFF-related industrial products and impacted water in China, which is instrumental for managing and controlling prioritized PFAS in this field.
Collapse
Affiliation(s)
- Liquan Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Meiling Lu
- Agilent Technologies (China) Co. Ltd, Beijing 100102, China
| | - Xue Cheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Li W, Li H, Zhang D, Tong Y, Li F, Cheng F, Huang Z, You J. Legacy and Emerging Per- and Polyfluoroalkyl Substances Behave Distinctly in Spatial Distribution and Multimedia Partitioning: A Case Study in the Pearl River, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3492-3502. [PMID: 35199510 DOI: 10.1021/acs.est.1c07362] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have attracted worldwide attention due to their ubiquitous occurrence, bioaccumulation, and toxicological effects, yet the fate of PFASs in a lotic ecosystem is largely unknown. To elucidate spatial distribution and multimedia partitioning of legacy and emerging PFASs in a lotic river flowing into an estuary, PFASs were synchronously analyzed in water, suspended particulate matter (SPM), sediment, and biota samples collected along Guangzhou reach of the Pearl River, South China. Geographically, the concentrations of PFASs in the water phase showed a decreasing trend from the upper and middle sections (urban area) to the down section (suburban area close to estuary) of the river. While perfluorooctanoic acid predominated in water and SPM, more diverse compositions were observed in sediment and biota with the increase in contributions of long-chain PFASs. Field-derived sediment-water partitioning coefficients (Kd) and bioaccumulation factors (BAFs) of PFASs increased with the increase in perfluorinated carbons. Besides hydrophobicity, water pH and salinity significantly affected the multimedia partitioning of PFASs in a lotic ecosystem. In addition, 87 homologues (63 classes) were identified as emerging PFASs in four media using suspect analysis. Interestingly, Kd and BAF of the emerging PFASs were often higher than legacy PFASs containing the same perfluorinated carbons, raising a special concern on the environmental risk of emerging PFASs.
Collapse
Affiliation(s)
- Weizong Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Huizhen Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Dainan Zhang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Yujun Tong
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Faxu Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Fei Cheng
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Zhoubing Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Jing You
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| |
Collapse
|
11
|
Chen H, Munoz G, Duy SV, Zhang L, Yao Y, Zhao Z, Yi L, Liu M, Sun H, Liu J, Sauvé S. Occurrence and Distribution of Per- and Polyfluoroalkyl Substances in Tianjin, China: The Contribution of Emerging and Unknown Analogues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14254-14264. [PMID: 33155469 DOI: 10.1021/acs.est.0c00934] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tianjin, located in Bohai Bay, China, constitutes a relevant study area to investigate emerging per- and polyfluoroalkyl substances (PFASs) due to its high population density, clustering of chemical and aircraft industries, as well as international airports, harbors, and oil rigs. In this study, 53 anionic, zwitterionic, and cationic PFASs were monitored in river surface water, groundwater, seawater, and sediments in this area (overall n = 226). 6:2 chlorinated polyfluorinated ether sulfonic acid (Cl-PFESA), perfluorooctanoic acid, and perfluorooctane sulfonic acid were generally the predominant PFASs. 6:2 fluorotelomer sulfonamidoalkyl betaine (6:2 FTAB) was also widespread (occurrence >86%), with the highest concentration (1300 ng/L) detected at contamination hot spots impacted by wastewater effluents. The aqueous film-forming foam (AFFF)-related PFASs with sulfonamide betaine, amine oxide, amine, or quaternary ammonium moieties are also reported for the first time in river water and seawater samples. Fifteen classes of infrequently reported PFASs, including n:2 FTABs and n:2 fluorotelomer sulfonamide amines, hydrogen-substituted PFESA homologues, and p-perfluorous nonenoxybenzenesulfonate (OBS), were also identified in the water and sediment samples using suspect screening. Field-derived sediment-water distribution coefficients (Kd) of these emerging PFASs are provided for the first time, confirming that cationic and zwitterionic PFASs tend to be strongly associated with sediments.
Collapse
Affiliation(s)
- Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Lu Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lixin Yi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Min Liu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
12
|
Chen L, Dai Y, Zhou C, Huang X, Wang S, Yu H, Liu Y, Morel JL, Lin Q, Qiu R. Robust Matrix Effect-Free Method for Simultaneous Determination of Legacy and Emerging Per- and Polyfluoroalkyl Substances in Crop and Soil Matrices. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8026-8039. [PMID: 32614578 DOI: 10.1021/acs.jafc.0c02630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Increasing use of emerging per- and polyfluoroalkyl substances (PFASs) has caused extensive concerns around the world. Effective detection methods to trace their pollution characteristics and environmental behaviors in complex soil-crop systems are urgently needed. In this study, a reliable and matrix effect (ME)-free method was developed for simultaneous determination of 14 legacy and emerging PFASs, including perfluorooctanoic acid, perfluorooctane sulfonate, 6 hydrogenous PFASs, 3 chlorinated PFASs, and 3 hexafluoropropylene oxide homologues, in 6 crop (the edible parts) and 5 soil matrices using ultrasonic extraction combined with solid-phase extraction and ultraperformance liquid chromatography-mass spectrometry (MS)/MS. The varieties of extractants and cleanup cartridges, the dosage of ammonia hydroxide, and the ME were studied to obtain an optimal pretreatment procedure. The developed method had high sensitivity and accuracy with satisfactory method detection limits (2.40-83.03 pg/g dry weight) and recoveries (72-117%) of all target analytes in matrices at five concentrations, that is, 0.1, 1, 10, 100, and 1000 ng/g. In addition, the ME of this method (0.82-1.15) was negligible for all PFASs, even considering 11 different matrices. The successful application of the ME-free method to simultaneously determine the legacy and emerging PFASs in crop and soil samples has demonstrated its excellent practicability for monitoring emerging PFASs in soil-crop systems.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuya Dai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Can Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiongfei Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
- Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
- Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Hang Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yun Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jean Louis Morel
- Laboratoire Sol et Environnement, Université de Lorraine-INRAE, Vandoeuvre-lès-Nancy 54500, France
| | - Qingqi Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Cousins IT, DeWitt JC, Glüge J, Goldenman G, Herzke D, Lohmann R, Miller M, Ng CA, Scheringer M, Vierke L, Wang Z. Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1444-1460. [PMID: 32495786 PMCID: PMC7585739 DOI: 10.1039/d0em00147c] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Grouping strategies are needed for per- and polyfluoroalkyl substances (PFAS), in part, because it would be time and resource intensive to test and evaluate the more than 4700 PFAS on the global market on a chemical-by-chemical basis. In this paper we review various grouping strategies that could be used to inform actions on these chemicals and outline the motivations, advantages and disadvantages for each. Grouping strategies are subdivided into (1) those based on the intrinsic properties of the PFAS (e.g. persistence, bioaccumulation potential, toxicity, mobility, molecular size) and (2) those that inform risk assessment through estimation of cumulative exposure and/or effects. The most precautionary grouping approach of those reviewed within this article suggests phasing out PFAS based on their high persistence alone (the so-called "P-sufficient" approach). The least precautionary grouping approach reviewed advocates only grouping PFAS for risk assessment that have the same toxicological effects, modes and mechanisms of action, and elimination kinetics, which would need to be well documented across different PFAS. It is recognised that, given jurisdictional differences in chemical assessment philosophies and methodologies, no one strategy will be generally acceptable. The guiding question we apply to the reviewed grouping strategies is: grouping for what purpose? The motivation behind the grouping (e.g. determining use in products vs. setting guideline levels for contaminated environments) may lead to different grouping decisions. This assessment provides the necessary context for grouping strategies such that they can be adopted as they are, or built on further, to protect human and environmental health from potential PFAS-related effects.
Collapse
Affiliation(s)
- Ian T Cousins
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jin B, Mallula S, Golovko SA, Golovko MY, Xiao F. In Vivo Generation of PFOA, PFOS, and Other Compounds from Cationic and Zwitterionic Per- and Polyfluoroalkyl Substances in a Terrestrial Invertebrate ( Lumbricus terrestris). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7378-7387. [PMID: 32479721 DOI: 10.1021/acs.est.0c01644] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) are two environmentally persistent per- and polyfluoroalkyl substances (PFAS) that have been detected globally in human tissues and fluids. As part of a project investigating the indirect sources of PFOA/PFOS in the environment and engineered systems, this study is concerned with the mechanisms leading to their in vivo generation in terrestrial invertebrates. We demonstrate here the formation of PFOA and PFOS in earthworms (Lumbricus terrestris) from a group of four zwitterionic/cationic polyfluoroalkyl amides and sulfonamides. In bioaccumulation tests, the zwitterionic PFAS compounds were metabolized within 10 days to PFOA/PFOS at yields of 3.4-20.8 mol % by day 21 and several infrequently reported PFAS species for which chemical structures were determined using high-resolution mass spectrometry. Cationic PFAS, on the other hand, were found to be much less metabolizable in terms of the number (n = 2) and yields (0.9-5.1 mol %) of metabolites. Peak-shaped bioaccumulation profiles were frequently observed for the studied PFAS. Residual zwitterionic/cationic PFAS in earthworms were detected at the end of the elimination phase, indicating that not all zwitterionic/cationic PFAS molecules in vivo are available for enzymatic degradation. Finally, the relative importance of different exposure routes (i.e., waterborne and dietary exposure) was investigated.
Collapse
Affiliation(s)
- Bosen Jin
- Department of Civil Engineering, University of North Dakota, 243 Centennial Drive Stop 8115, Grand Forks, North Dakota 58202, United States
| | - Swetha Mallula
- Department of Civil Engineering, University of North Dakota, 243 Centennial Drive Stop 8115, Grand Forks, North Dakota 58202, United States
| | - Svetlana A Golovko
- Department of Biomedical Sciences, University of North Dakota, 1301 Columbia Road North Stop 9037, Grand Forks, North Dakota 58202, United States
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, University of North Dakota, 1301 Columbia Road North Stop 9037, Grand Forks, North Dakota 58202, United States
| | - Feng Xiao
- Department of Civil Engineering, University of North Dakota, 243 Centennial Drive Stop 8115, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
15
|
Kang Q, Gao F, Zhang X, Wang L, Liu J, Fu M, Zhang S, Wan Y, Shen H, Hu J. Nontargeted identification of per- and polyfluoroalkyl substances in human follicular fluid and their blood-follicle transfer. ENVIRONMENT INTERNATIONAL 2020; 139:105686. [PMID: 32278886 DOI: 10.1016/j.envint.2020.105686] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The female reproductive toxicity of per- and polyfluoroalkyl substances (PFAS) has raised concerns, but knowledge about their human preconception exposure is limited. In this study, 15 emerging PFAS were identified in follicular fluid samples from healthy women by using high-resolution mass spectrometry, and Cl-substituted perfluoroalkyl ether sulfonates (Cl-PFESAs) including 4:2, 5:2, 6:2, and 8:2 Cl-PFESAs, 4:4 C8 perfluoroalkyl ether sulfonate (PFESA), C8 perfluoroalkyl ether carboxylate (PFECA), and C8 polyether PFECA (Po-PFECA) were detected in over 50% of 28 follicular fluid samples. Ten legacy PFAS were also detected, and the geometric mean concentration of PFOS was the highest (4.82 ng/mL), followed by PFOA (4.60 ng/mL), 6:2 Cl-PFESA (1.09 ng/mL), PFHxS (0.515 ng/mL), PFNA (0.498 ng/mL), and C8 PFECA (0.367 ng/mL). The blood-follicle transfer efficiencies for PFCAs decreased with increasing chain length (0.96 for PFHpA, 0.56 for PFTriDA), and the transfer efficiencies of C8 PFECA (0.78) was significantly higher than that of PFOA (0.76). The transfer efficiencies of 4:2 Cl-PFESA (0.73), 6:2 Cl-PFESA (0.75) and 8:2 Cl-PFESA (0.91) were significantly higher than that (0.70) of PFOS (p = 0.028, 0.026 and 0.002, respectively). This study constitutes the first report of the human oocyte exposure to emerging PFAS and their blood-follicle transfer abilities.
Collapse
Affiliation(s)
- Qiyue Kang
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fumei Gao
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Xiaohua Zhang
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lei Wang
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jiaying Liu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Min Fu
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Shiyi Zhang
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Huan Shen
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|