1
|
Pei J, Liu J, Fu K, Fu Y, Yin K, Luo S, Yu D, Xing M, Luo J. Non-metallic iodine single-atom catalysts with optimized electronic structures for efficient Fenton-like reactions. Nat Commun 2025; 16:800. [PMID: 39824821 PMCID: PMC11742696 DOI: 10.1038/s41467-025-56246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
In this study, we introduce a highly effective non-metallic iodine single-atom catalyst (SAC), referred to as I-NC, which is strategically confined within a nitrogen-doped carbon (NC) scaffold. This configuration features a distinctive C-I coordination that optimizes the electronic structure of the nitrogen-adjacent carbon sites. As a result, this arrangement enhances electron transfer from peroxymonosulfate (PMS) to the active sites, particularly the electron-deficient carbon. This electron transfer is followed by a deprotonation process that generates the peroxymonosulfate radical (SO5•-). Subsequently, the SO5•- radical undergoes a disproportionation reaction, leading to the production of singlet oxygen (1O2). Furthermore, the energy barrier for the rate-limiting step of SO5•- generation in I-NC is significantly lower at 1.45 eV, compared to 1.65 eV in the NC scaffold. This reduction in energy barrier effectively overcomes kinetic obstacles, thereby facilitating an enhanced generation of 1O2. Consequently, the I-NC catalyst exhibits remarkable catalytic efficiency and unmatched reactivity for PMS activation. This leads to a significantly accelerated degradation of pollutants, evidenced by a relatively high observed kinetic rate constant (kobs ~ 0.436 min-1) compared to other metallic SACs. This study offers valuable insights into the rational design of effective non-metallic SACs, showcasing their promising potential for Fenton-like reactions in water treatment applications.
Collapse
Affiliation(s)
- Junjun Pei
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jianbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, P.R. China
| | - Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
| | - Kai Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
| | - Shenglian Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou, P. R. China
| | - Mingyang Xing
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.
| |
Collapse
|
2
|
Humayun S, Hayyan M, Alias Y. A review on reactive oxygen species-induced mechanism pathways of pharmaceutical waste degradation: Acetaminophen as a drug waste model. J Environ Sci (China) 2025; 147:688-713. [PMID: 39003083 DOI: 10.1016/j.jes.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 07/15/2024]
Abstract
Innately designed to induce physiological changes, pharmaceuticals are foreknowingly hazardous to the ecosystem. Advanced oxidation processes (AOPs) are recognized as a set of contemporary and highly efficient methods being used as a contrivance for the removal of pharmaceutical residues. Since reactive oxygen species (ROS) are formed in these processes to interact and contribute directly toward the oxidation of target contaminant(s), a profound insight regarding the mechanisms of ROS leading to the degradation of pharmaceuticals is fundamentally significant. The conceptualization of some specific reaction mechanisms allows the design of an effective and safe degradation process that can empirically reduce the environmental impact of the micropollutants. This review mainly deliberates the mechanistic reaction pathways for ROS-mediated degradation of pharmaceuticals often leading to complete mineralization, with a focus on acetaminophen as a drug waste model.
Collapse
Affiliation(s)
- Saba Humayun
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Centre for Ionic Liquids, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Maan Hayyan
- Chemical Engineering Program, Faculty of Engineering and Technology, Muscat University, Muscat P.C.130, Oman.
| | - Yatimah Alias
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Centre for Ionic Liquids, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
3
|
Lu N, Li Y, Wang J, Li G, Li G, Liu F, Tang CY. Precise manipulation of iron spin states in single-atom catalytic membranes for singlet oxygen selective production. MATERIALS HORIZONS 2024. [PMID: 39704204 DOI: 10.1039/d4mh01479k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Heterogeneous single-atom catalysts are attracting substantial attention for selectively generating singlet oxygen (1O2). However, precise manipulation of atom coordination structures remains challenging. Here, the fine coordination structure of iron single-atom carbon-nitride catalysts (Fe-CNs) was manipulated by precisely tuning the heating rate with 1 °C min-1 difference. Multiple techniques in combination with density functional theory (DFT) calculations reveal that FeN6 coordination sites with high Fe spin states promote the adsorption, electron transfer, and dissociation of peroxymonosulfate (PMS), resulting in nearly 100% selection of 1O2 generation. A lamellar single atom catalytic membrane is constructed, exhibiting high permeance, high degradation, high-salinity resistance and sustained operation stability. This work provides ideas for regulating spin states of the metal site to fabricate catalysts with selective 1O2 generation for membrane separation and environment catalysis applications.
Collapse
Affiliation(s)
- Na Lu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China.
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yanle Li
- 4.Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313000, P. R. China
| | - Jianqiang Wang
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China.
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Guiliang Li
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China.
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Guowei Li
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
- CAS Key Laboratory of Magnetic Materials and Devices/Zhejiang Province Key, Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China.
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Chuyang Y Tang
- 5.Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| |
Collapse
|
4
|
Wang J, Wang B, Li Y, Yang Y, Gao C, Wu X. Efficient activation of peracetic acid by defect-engineered MoO 2-x: Oxygen vacancies and surface Mo(Ⅴ)-mediated electron transfer processes. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136442. [PMID: 39522151 DOI: 10.1016/j.jhazmat.2024.136442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The role of defect regulation of transition metal catalysts in peracetic acid (PAA) activation is equivocal. To reveal the corresponding mechanism, this work provides a high-efficiency and eco-friendly catalyst (MoO2-x) for PAA activation by introducing various degrees of oxygen vacancies on the MoO2 surface. Interestingly, 95.83 % of tetracycline (TC) is rapidly degraded by MoO2-x with rich oxygen vacancies within 20 min via PAA activation, which is superior over that of MoO2-x with poor oxygen vacancies and other typical oxidants (H2O2, SO32-, S2O82-, HSO5-, IO4-). In addition, the defect-regulated MoO2-x exhibits good de-biotoxicity towards TC. Moreover, MoO2-x shows satisfactory purification of various contaminants and actual pharma wastewater. Active species identification suggests that the electron transfer process triggered by the active complex (MoO2-x -PAA*) of PAA bonded on the MoO2-x surface plays the dominant role in TC degradation, while •OH plays a minor role. Mechanism analysis reveals that oxygen vacancies play an indispensable role in accelerating the adsorption and complexation of PAA as well as improving electrical conductivity. Active site analysis demonstrates that Mo(Ⅴ) on the MoO2-x surface acts as an electron shuttle and is the main PAA activation site. This work provides a new approach into the application of MoO2 in hospital wastewater purification via defect engineering.
Collapse
Affiliation(s)
- Jinpeng Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Boran Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yubiao Li
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yiling Yang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Caiyan Gao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoyong Wu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
5
|
Jiao M, Shi Y, Li M, Zhang H, Li S, Deng H, Xia D. The surface functional groups-driven fast and catalytic degradation of naproxen on sludge biochar enhanced by citric acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124857. [PMID: 39214447 DOI: 10.1016/j.envpol.2024.124857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In this work, a sludge biochar (CA-SBC-300) with efficient activation of peroxymonosulfate (PMS) was prepared by citric acid modification. CA-SBC-300 achieved efficient degradation of naproxen (NPX) (95.5%) within 10 min by activating PMS. This system was highly resilient to common disruptive factors such as inorganic anions, humic acid (HA) and solution pH. The results of XPS and Raman showed that the content of oxygenated functional groups (OFGs) and the degree of defects on the sludge biochar increased after citric acid modification, which may be an important reason for the enhanced catalytic performance of SBC. In the CA-SBC-300/PMS system, 1O2 and O2•- made the main contributions to the degradation of NPX. XPS analysis and DFT calculations demonstrated that C=O/C-O and pyridine N on CA-SBC-300 were the crucial active sites for PMS activation. According to the results of UPLC-MS analysis, three possible pathways for NPX degradation were inferred. This study provided a feasible strategy for sludge resource utilization combined with efficient catalytic degradation of toxic organic contaminants in wastewater.
Collapse
Affiliation(s)
- Min Jiao
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| | - Yintao Shi
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China.
| | - Meng Li
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China; Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Hao Zhang
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| | - Shasha Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China
| | - Huiyuan Deng
- Hubei Provincial Spatial Planning Research Institute, Wuhan, 430064, PR China
| | - Dongsheng Xia
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China.
| |
Collapse
|
6
|
Song W, Ji Y, Yu Z, Li H, Li X, Ren X, Li Y, Xu X, Zhao Y, Yan L. Microenvironment modulation of biocatalyst derived from natural cellulose of wheat straw for enhancing p-nitrophenol degradation via boosting peroxymonosulfate activation. Int J Biol Macromol 2024; 281:136525. [PMID: 39396592 DOI: 10.1016/j.ijbiomac.2024.136525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Defect-rich nitrogen-doped biocatalyst (B-NC) was synthesized from natural cellulose of wheat straw using straightforward mechanical method and one-step pyrolysis approach. In contrast to the nitrogen-doped biocatalyst (NC), by leveraging the synergistic effects of nitrogen dopants and surface defects, the microenvironment-modulated B-NC exhibited the enhanced mass transfer efficiency and a significant improvement in reactivity for p-nitrophenol degradation (111 %-196 %). The catalyst's exceptional performance primarily arose from graphitic N, pyridinic N and CO active sites, which mainly derived from the cellulose structure of wheat straw and nitrogen dopants. Electron paramagnetic resonance and quenching tests confirmed that the B-NC/peroxymonosulfate system generated more reactive species (SO4•-, •OH, O2•-, and 1O2) during p-nitrophenol degradation, surpassing the NC/peroxymonosulfate system. Additionally, both density functional theory calculations and electrochemical experiments provided evidence of peroxymonosulfate strongly adsorbing onto B-NC's defect sites, facilitating the formation of catalyst/peroxymonosulfate* complexes and promoting electron transfer processes. This research provides valuable insights into the regulation of defects in nitrogen-doped biocatalyst derived from natural cellulose, presenting a promising solution for remediating refractory organic pollutants.
Collapse
Affiliation(s)
- Wen Song
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Yuqi Ji
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Zihan Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Hang Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Xuguang Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Xiaohua Ren
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Yanfei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, People's Republic of China
| | - Yanxia Zhao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Liangguo Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China.
| |
Collapse
|
7
|
Zhong H, Gong Z, Yu J, Hou Y, Tao Y, Fu Q, Yang H, Xiao X, Cao X, Wang J, Ouyang G. Remarkable Active Site Utilization in Edge-Hosted-N Doped Carbocatalysts for Fenton-Like Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404958. [PMID: 39258821 PMCID: PMC11538648 DOI: 10.1002/advs.202404958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Improving the utilization of active sites in carbon catalysts is significant for various catalytic reactions, but still challenging, mainly due to the lack of strategies for controllable introduction of active dopants. Herein, a novel "Ar plasma etching-NH3 annealing" strategy is developed to regulate the position of active N sites, while maintaining the same nitrogen species and contents. Theoretical and experimental results reveal that the edge-hosted-N doped carbon nanotubes (E-N-CNT), with only 0.29 at.% N content, show great affinity to peroxymonosulfate (PMS), and exhibit excellent Fenton-like activity by generating singlet oxygen (1O2), which can reach as high as 410 times higher than the pristine CNT. The remarkable utilization of edge-hosted nitrogen atom is further verified by the edge-hosted-N enriched carbocatalyst, which shows superior capability for 4-chlorophenol degradation with a turnover frequency (TOF) value as high as 3.82 min-1, and the impressive TOF value can even surpass those of single-atom catalysts. This work proposes a controllable position regulation of active sites to improve atom utilization, which provides a new insight into the design of excellent Fenton-like catalysts with remarkable atom utilization efficiency.
Collapse
Affiliation(s)
- Huajie Zhong
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Zeyu Gong
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Jiaxing Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Yu Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Yuan Tao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Qi Fu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Huangsheng Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Xinzhe Xiao
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Xingzhong Cao
- Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049P. R. China
| | - Junhui Wang
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Gangfeng Ouyang
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
- College of Chemistry & Molecular EngineeringCenter of Advanced Analysis and Computational ScienceZhengzhou UniversityZhengzhou450001P. R. China
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous ChemicalsGuangdong Institute of Analysis (China National Analytical Center Guangzhou)Guangdong Academy of Science100 Xianlie Middle RoadGuangzhou510070P. R. China
| |
Collapse
|
8
|
Wu JH, Yu HQ. Confronting the Mysteries of Oxidative Reactive Species in Advanced Oxidation Processes: An Elephant in the Room. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18496-18507. [PMID: 39382033 DOI: 10.1021/acs.est.4c06725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Advanced oxidation processes (AOPs) are rapidly evolving but still lack well-established protocols for reliably identifying oxidative reactive species (ORSs). This Perspective presents both the radical and nonradical ORSs that have been identified or proposed, along with the extensive controversies surrounding oxidative mechanisms. Conventional identification tools, such as quenchers, probes, and spin trappers, might be inadequate for the analytical demands of systems in which multiple ORSs coexist, often yielding misleading results. Therefore, the challenges of identifying these complex, short-lived, and transient ORSs must be fully acknowledged. Refining analytical methods for ORSs is necessary, supported by rigorous experiments and innovative paradigms, particularly through kinetic analysis based on in situ spectroscopic techniques and multiple-probe strategies. To demystify these complex ORSs, future efforts should be made to develop advanced tools and strategies to enhance the mechanism understanding. In addition, integrating real-world conditions into experimental designs will establish a reliable framework in fundamental studies, providing more accurate insights and effectively guiding the design of AOPs.
Collapse
Affiliation(s)
- Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Xiao Z, Chen P, Liu G, Lv W, Chen W, Zhang Q, Blaney L. UV-activated calcium peroxide system enables simultaneous organophosphorus degradation, phosphate recovery, and carbon fixation. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135582. [PMID: 39173391 DOI: 10.1016/j.jhazmat.2024.135582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Advanced oxidation processes are a desirable technology for treatment of contaminants of emerging concern. Nevertheless, conventional advanced oxidation of organophosphorus compounds releases inorganic phosphate, posing downstream concerns related to eutrophication. For this reason, we evaluated the ultraviolet light-activated calcium peroxide (UV/CaO2) system for effective treatment of organophosphorus compounds and concurrent capture of the mineralization products, phosphate. The degradation mechanisms, reaction kinetics, and mineralizations were assessed to determine the overall efficiency and performance of the UV/CaO2 process. Knowledge gaps related to photocatalysis in the UV/CaO2 system were not only addressed, but also leveraged to identify unique advantages for removal of organophosphorus compounds and their degradation products. Experimental results confirmed that the UV/CaO2 system effectively mineralized organophosphorus compounds and recovered inorganic phosphate; additionally, collaborative carbon fixation performance of the system reveals the potential of carbon utilization. These outcomes were facilitated by the alkaline environment generated by CaO2. The recovered solids contained most of the phosphorus and carbon from the parent compounds. Ultimately, these findings provide transformative, new insights into the development and application of advanced oxidation processes that prevent downstream concerns related to mineralization products, especially inorganic phosphorus and carbon.
Collapse
Affiliation(s)
- Zhenjun Xiao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Weirui Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qianxin Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Lee Blaney
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, United States.
| |
Collapse
|
10
|
Xu P, Wei R, Wang P, Shen T, Zheng T, Zhang G. A Nanoconfined FeCo 2O 4-Embedded Ceramic Membrane Regulates Electron Transfer in Peroxymonosulfate Activation to Selectively Generate Singlet Oxygen for Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17464-17474. [PMID: 39190653 DOI: 10.1021/acs.est.4c07566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs), as a promising technology for water decontamination, are constrained by low reaction kinetics due to limited reaction selectivity and mass transfer. Herein, we designed a nanoconfined FeCo2O4-embedded ceramic membrane (FeCo2O4-CM) under flow-through pattern for PMS activation. Confining PMS and FeCo2O4 within nanochannels (3.0-4.7 nm) enhanced adsorption interactions (-7.84 eV vs -2.20 eV), thus boosting mass transfer. Nanoconfinement effect regulated electron transfer pathways from PMS to FeCo2O4-CM by modulating the active site transformation to ≡Co(III) in nanoconfined FeCo2O4-CM, enabling selectively generating 1O2. The primary role of 1O2 in the nanoconfined system was confirmed by kinetic solvent isotope experiments and indicative anthracene endoperoxide (DPAO2). The system enabled 100% removal of atrazine (ATZ) within a hydraulic retention time of 2.124 ms, demonstrating a rate constant over 5 orders of magnitude higher than the nonconfined system (3.50 × 103 s-1 vs 0.42 min-1). It also exhibited strong resilience to pH variations (3.3-9.0) and coexisting substances, demonstrating excellent stability indicated by consistent 100% ATZ removal for 14 days. This study sheds light on regulating electron transfer pathways to selectively generate 1O2 through the nanoconfinement effect, boosting the practical application of PMS-based AOPs in environmental remediation and potentially applying them to various other AOPs.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Rui Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Peng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Tianyao Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Tong Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Guangshan Zhang
- College of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, P. R. China
| |
Collapse
|
11
|
Fang Z, Zhou Z, Zeng Z, Xia YG, Liu J, Hu B, Li K, Li JH, Lu Q. Revealing the Synergistic Effect of Cation and Anion Vacancies on Enhanced Fenton-Like Reaction: The Electron Density Modulation of O 2p-Co 3d Bands. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402748. [PMID: 38898734 DOI: 10.1002/smll.202402748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Defect engineering is considered as a flexible and effective mean to improve the performance of Fenton-like reactions. Herein, a simple method is employed to synthesize Co3O4 catalysts with Co-O vacancy pairs (VP) for peroxymonosulfate (PMS) activation. Multi-scaled characterization, experimental, and simulation results jointly revealed that the cation vacancies-VCo contributed to enhanced conductivity and anion vacancies-VO provided a new active center for the 1O2 generation. Co3O4-VP can optimize the O 2p and Co 3d bands with the strong assistance of synergistic double vacancies to reduce the reaction energy barrier of the "PMS → Co(IV) = O → 1O2" pathway, ultimately triggering the stable transition of mechanism. Co3O4-VP catalysts with radical-nonradical collaborative mechanism achieve the synchronous improvement of activity and stability, and have good environmental robustness to favor water decontamination applications. This result highlights the possibility of utilizing anion and cation vacancy engineering strategies to rational design Co3O4-based materials widely used in catalytic reactions.
Collapse
Affiliation(s)
- Zhimo Fang
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Zhou Zhou
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Zepeng Zeng
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Yuan-Gu Xia
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Ji Liu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Bin Hu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Kai Li
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Ji-Hong Li
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Qiang Lu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
12
|
Li H, Zhang X, Yang S, Sun Y, Qian J. Discerning the Relevance of Singlet Oxygen in Pollutant Degradation in Peroxymonosulfate Activation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14005-14012. [PMID: 39039842 DOI: 10.1021/acs.est.4c02809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Significant efforts have recently been exerted toward construction of singlet oxygen (1O2)-dominated catalytic oxidation systems for selective removal of organic contaminants from wastewater, with peroxides serving as the chemical source. However, the relevance of 1O2 in the removal of pollutants remains ambiguous and requires elucidation. In this study, we scrupulously exclude the significant role of 1O2 in contaminant degradation in various peroxymonosulfate (PMS) activation systems. Multiple experimental results indicate that the activation of PMS catalyzed by CuO, MnO2, Fe-doped g-C3N4 (Fe-CN), or N-doped graphite does not predominantly follow the 1O2 pathway. More importantly, the reactivity of 1O2 is remarkably overestimated in the literature, given its inferior capacity in degradation of a range of heterocyclic contaminants and aromatic compounds possessing electron-withdrawing groups. In addition, the strong physical quenching effect of water, coupled with the low oxidizing ability of 1O2, would notably reduce the utilization efficiency of peroxide, which is particularly apparent in the degradation of micropollutants. We reckon that this study is expected to end the long-running dispute associated with the relevance of 1O2 in pollutant removal.
Collapse
Affiliation(s)
- Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Xinyue Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Shuai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Yibing Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Jieshu Qian
- School of Environmental Science and Engineering, Wuxi University, Jiangsu 214105, PR China
| |
Collapse
|
13
|
Zeng Y, Deng J, Zhou N, Xia W, Wang Z, Song B, Wang Z, Yang Y, Xu X, Zeng G, Zhou C. Mediated Peroxymonosulfate Activation at the Single Atom Fe-N 3O 1 Sites: Synergistic Degradation of Antibiotics by Two Non-Radical Pathways. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311552. [PMID: 38501866 DOI: 10.1002/smll.202311552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Indexed: 03/20/2024]
Abstract
The activation of persulfates to degrade refractory organic pollutants is a hot issue in advanced oxidation right now. Here, it is reported that single-atom Fe-incorporated carbon nitride (Fe-CN-650) can effectively activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) removal. Through some characterization techniques and DFT calculation, it is proved that Fe single atoms in Fe-CN-650 exist mainly in the form of Fe-N3O1 coordination, and Fe-N3O1 exhibited better affinity for PMS than the traditional Fe-N4 structure. The degradation rate constant of SMX in the Fe-CN-650/PMS system reached 0.472 min-1, and 90.80% of SMX can still be effectively degraded within 10 min after five consecutive recovery cycles. The radical quenching experiment and electrochemical analysis confirm that the pollutants are mainly degraded by two non-radical pathways through 1O2 and Fe(IV)═O induced at the Fe-N3O1 sites. In addition, the intermediate products of SMX degradation in the Fe-CN-650/PMS system show toxicity attenuation or non-toxicity. This study offers valuable insights into the design of carbon-based single-atom catalysts and provides a potential remediation technology for the optimum activation of PMS to disintegrate organic pollutants.
Collapse
Affiliation(s)
- Yuxi Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Jie Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Nan Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Wu Xia
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Zihao Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Ziwei Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
14
|
Yang Z, Yang X, Zhang W, Wang D. Asymmetrically Coordinated Mn-S 1N 3 Configuration Induces Localized Electric Field-Driven Peroxymonosulfate Activation for Remarkably Efficient Generation of 1O 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311642. [PMID: 38497490 DOI: 10.1002/smll.202311642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Singlet oxygen (1O2) species generated in peroxymonosulfate (PMS)-based advanced oxidation processes offer opportunities to overcome the low efficiency and secondary pollution limitations of existing AOPs, but efficient production of 1O2 via tuning the coordination environment of metal active sites remains challenging due to insufficient understanding of their catalytic mechanisms. Herein, an asymmetrical configuration characterized by a manganese single atom coordinated is established with one S atom and three N atoms (denoted as Mn-S1N3), which offer a strong local electric field to promote the cleavage of O─H and S─O bonds, serving as the crucial driver of its high 1O2 production. Strikingly, an enhanced the local electric field caused by the dynamic inter-transformation of the Mn coordination structure (Mn-S1N3 ↔ Mn-N3) can further downshift the 1O2 production energy barrier. Mn-S1N3 demonstrates 100% selective product 1O2 by activation of PMS at unprecedented utilization efficiency, and efficiently oxidize electron-rich pollutants. This work provides an atomic-level understanding of the catalytic selectivity and is expected to guide the design of smart 1O2-AOPs catalysts for more selective and efficient decontamination applications.
Collapse
Affiliation(s)
- Zhaoyi Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xiaofang Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weijun Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Dongsheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
15
|
Miao J, Jiang Y, Wang X, Li X, Zhu Y, Shao Z, Long M. Correlating active sites and oxidative species in single-atom catalyzed Fenton-like reactions. Chem Sci 2024; 15:11699-11718. [PMID: 39092108 PMCID: PMC11290428 DOI: 10.1039/d4sc02621g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
Single-atom catalysts (SACs) have gained widespread popularity in heterogeneous catalysis-based advanced oxidation processes (AOPs), owing to their optimal metal atom utilization efficiency and excellent recyclability by triggering reactive oxidative species (ROS) for target pollutant oxidation in water. Systematic summaries regarding the correlation between the active sites, catalytic activity, and reactive species of SACs have rarely been reported. This review provides an overview of the catalytic performance of carbon- and metal oxide-supported SACs in Fenton-like reactions, as well as the different oxidation pathways induced by the metal and non-metal active sites, including radical-based pathways (e.g., ·OH and SO4˙-) and nonradical-based pathways (e.g. 1O2, high-valent metal-oxo species, and direct electron transfer). Thereafter, we discuss the effects of metal types, coordination environments, and spin states on the overall catalytic performance and the generated ROS in Fenton-like reactions. Additionally, we provide a perspective on the future challenges and prospects for SACs in water purification.
Collapse
Affiliation(s)
- Jie Miao
- School of Environmental Science and Engineering, Nanjing Tech University Nanjing 211816 China
| | - Yunyao Jiang
- School of Environmental Science and Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xixi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Xue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yuan Zhu
- School of Chemistry and Chemical Engineering, Queen's University Belfast Belfast BT7 1NN UK
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
- Department of Chemical Engineering, Curtin University Perth 6845 Australia
| | - Mingce Long
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
16
|
Wang Y, Jiao H, Liu Z, Yang S, Chen R, Liu C, Dai J, Ding D. Biochar alters the selectivity of MnFe 2O 4-activated periodate process through serving as the electron-transfer mediator. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134530. [PMID: 38718514 DOI: 10.1016/j.jhazmat.2024.134530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Constructing green and sustainable advanced oxidation processes (AOPs) for the degradation of organic contaminants is of great importance but still remains big challenge. In this work, an effective AOP (MnFe2O4-activated periodate, MnFe2O4/PI) was established and investigated for the oxidation of organic contaminants. To avoid the severe aggregation of MnFe2O4 nanoparticles, a hybrid MnFe2O4-biochar catalyst (MnFe2O4-BC) was further synthesized by anchoring MnFe2O4 nanoparticles on chemically inert biochar substrate. Intriguingly, MnFe2O4-BC/PI exhibited different selectivity towards organic contaminants compared with MnFe2O4/PI, revealing that biochar not only served as the substrate, but also directly participated into the oxidation process. Electron-transfer mechanism was comprehensively elucidated to be responsible for the abatement of pollutants in both MnFe2O4/PI and MnFe2O4-BC/PI. The surface oxygen vacancies (OVs) of MnFe2O4 were identified as the active sites for the formation of high potential complexes MnFe2O4-PI*, which could directly and indirectly degrade the organic pollutants. For the hybrid MnFe2O4-BC catalyst, biochar played multiple roles: (i) substrate, (ii) provided massive adsorption sites, (iii) electron-transfer mediator. The differences in selectivity of MnFe2O4/PI and MnFe2O4-BC/PI were determined by the adsorption affinity between biochar substrate and organics. Overall, the findings of this study expand the knowledge on the selectivity of PI-triggered AOPs.
Collapse
Affiliation(s)
- Yongshuo Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Jiao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengjiao Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengjiong Yang
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Rongzhi Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunguang Liu
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China; Rizhao Huaye Glass Co., Ltd., No.1 of Shanhai 3rd Road, Donggang District, Rizhao, Shandong 276800, China
| | - Jing Dai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Tang Z, Zhou X, Du M, Zhang R, Xu H, Peng S, Wei X. Crystal Plane Regulation Promotes the Oriented Conversion of Radicals in Heterogeneous Persulfate Catalyzed Oxidation Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312173. [PMID: 38409521 DOI: 10.1002/smll.202312173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Indexed: 02/28/2024]
Abstract
In heterogeneous persulfate-catalyzed oxidation systems, the mechanism underlying the crystal plane effects of the catalyst on the selective conversion of reactive oxygen species (ROS) remains ambiguous. In this study, nano-Co3O4 catalysts with varying crystallinity and exposure levels of (111) crystal planes are prepared via a hydrothermal method. Compared to low crystalline catalysts, high crystallinity catalysts predominantly expose (111) planes containing higher concentrations of Co2+ and oxygen vacancies (Ov), resulting in an increase degradation efficiency of p-nitrobenzaldehyde (4-NBA) from 74.5% to 100%. Radical quenching experiments and EPR characterization reveal that the degradation of 4-NBA occurs through a radical pathway, and quantification of radicals demonstrates that increasing exposure levels of (111) planes effectively promote radical yield (CSO4•- increase from 18.2 to 172.8 µm and C•OH increase from 1 to 58.9 µm). Furthermore, XPS and DFT calculations indicate that high crystallinity catalyst possesses more Ov active sites on (111) planes. The presence of Ov not only facilitates the adsorption of PMS molecules but also enhances electron transfer from Co2+ to PMS, leading to directed formation and efficient transformation of radicals. This study presents a novel strategy for promoting efficient radical formation in persulfate-activated systems.
Collapse
Affiliation(s)
- Zhenchun Tang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Xinquan Zhou
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Mengyao Du
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Ruichang Zhang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Hang Xu
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471000, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang, 471000, China
| | - Shuge Peng
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471000, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang, 471000, China
| | - Xuefeng Wei
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471000, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang, 471000, China
| |
Collapse
|
18
|
Zhao X, Liu S, Tong Y, Sun L, Han Q, Feng L, Zhang L. Comparative study on the activation of peroxymonosulfate and peroxydisulfate by Ar plasma-etching CNTs for sulfamethoxazole degradation: Efficiency and mechanisms. CHEMOSPHERE 2024; 359:142287. [PMID: 38723685 DOI: 10.1016/j.chemosphere.2024.142287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Sulfamethoxazole (SMX), a widely utilized antibiotic, was continually detected in the environment, causing serious risks to aquatic ecology and water security. In this study, carbon nanotubes (CNTs) with abundant defects were developed by argon plasma-etching technology to enhance the activation of persulfate (PS, including peroxymonosulfate (PMS) and peroxydisulfate (PDS)) for SMX degradation while reducing environmental toxicity. Obviously, the increase of ID/IG value from 0.980 to 1.333 indicated that Ar plasma-etching successfully introduced rich defects into CNTs. Of note, Ar-90-CNT, whose Ar plasma-etching time was 90 min with optimum catalytic performance, exhibited a significant discrepancy between PMS activation and PDS activation. Interestingly, though the Ar-90-CNT/PDS system (kobs = 0.0332 min-1) was more efficient in SMX elimination than the Ar-90-CNT/PMS system (kobs = 0.0190 min-1), Ar plasma-etching treatment had no discernible enhancement in the catalytic efficiency of MWCNT for PDS activation. Then the discrepancy on activation mechanism between PMS and PDS was methodically investigated through quenching experiments, electron spin resonance (ESR), chemical probes, electrochemical measurements and theoretical calculations, and the findings unraveled that the created vacancy defects were the ruling active sites for the production of dominated singlet oxygen (1O2) in the Ar-90-CNT/PMS system to degrade SMX, while the electron transfer pathway (ETP), originated from PDS activation by the inherent edge defects, was the central pathway for SMX removal in the Ar-90-CNT/PDS system. Based on the toxicity test of Microcystis aeruginosa, the Ar-90-CNT/PDS system was more effective in alleviating environmental toxicity during SMX degradation. These findings not only provide insights into the discrepancy between PMS activation and PDS activation via carbon-based materials with controlled defects regulated by the plasma-etching strategy, but also efficiently degrade sulfonamide antibiotics and reduce the toxicity of their products.
Collapse
Affiliation(s)
- Xuecong Zhao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shiqi Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yao Tong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Lei Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qi Han
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
19
|
Meng Y, Liu YQ, Wang C, Si Y, Wang YJ, Xia WQ, Liu T, Cao X, Guo ZY, Chen JJ, Li WW. Nanoconfinement steers nonradical pathway transition in single atom fenton-like catalysis for improving oxidant utilization. Nat Commun 2024; 15:5314. [PMID: 38906879 PMCID: PMC11192908 DOI: 10.1038/s41467-024-49605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.
Collapse
Affiliation(s)
- Yan Meng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Yu-Qin Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, China
| | - Yang Si
- Kunming Institute of Physics, Kunming, China
| | - Yun-Jie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Wen-Qi Xia
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Tian Liu
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Xu Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Zhi-Yan Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China.
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China.
| |
Collapse
|
20
|
Hu X, Zhu M. Were Persulfate-Based Advanced Oxidation Processes Really Understood? Basic Concepts, Cognitive Biases, and Experimental Details. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10415-10444. [PMID: 38848315 DOI: 10.1021/acs.est.3c10898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Persulfate (PS)-based advanced oxidation processes (AOPs) for pollutant removal have attracted extensive interest, but some controversies about the identification of reactive species were usually observed. This critical review aims to comprehensively introduce basic concepts and rectify cognitive biases and appeals to pay more attention to experimental details in PS-AOPs, so as to accurately explore reaction mechanisms. The review scientifically summarizes the character, generation, and identification of different reactive species. It then highlights the complexities about the analysis of electron paramagnetic resonance, the uncertainties about the use of probes and scavengers, and the necessities about the determination of scavenger concentration. The importance of the choice of buffer solution, operating mode, terminator, and filter membrane is also emphasized. Finally, we discuss current challenges and future perspectives to alleviate the misinterpretations toward reactive species and reaction mechanisms in PS-AOPs.
Collapse
Affiliation(s)
- Xiaonan Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
| |
Collapse
|
21
|
Xue C, Luo Y, Peng Y, Zhou L, Zheng J, Zhang K, Fang Z. Activation of peroxydisulfate by zero valent iron-carbon composites prepared by carbothermal reduction: Enhanced non-radical and radical synergies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124321. [PMID: 38844043 DOI: 10.1016/j.envpol.2024.124321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Since its application in environmental remediation, nano zero-valent iron (nZVI) has gained wide attention for its environmental friendliness, strong reducing ability, and wide range of raw materials. However, its high preparation cost and difficulty in preservation remain the bottlenecks for their application. Carbothermal reduction is a promising method for the industrial preparation of nZVI. Micronized zero-valent iron/carbon materials (Fe0/CB) were produced in one step by co-pyrolysis of carbon and iron. The performance of the Fe0/CB is comparable to that of nZVI. In addition, Fe0/CB overcomed the disadvantages of agglomeration and oxidative deactivation of nZVI. Experiments on the Fenton-like reaction of its activated PDS showed that metronidazole (MNZ) was efficiently removed through the synergistic action of radicals and non-radicals, which were mainly superoxide radicals (·O2-), monoclinic oxygen (1O2), and high-valent iron (FeIVO). Moreover, the degradation process showed better generalization, making it suitable for a wide range of applications in the degradation of antibiotics.
Collapse
Affiliation(s)
- Chengjie Xue
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yanping Luo
- College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yifu Peng
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Long Zhou
- College of Chemistry & Materials Science, Longyan University, Longyan, 364000, China
| | - Jiaru Zheng
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Kai Zhang
- PowerChina Eco-Environmental Group Co., Ltd., Shenzhen 518102, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou 510006, China.
| |
Collapse
|
22
|
Xue Y, Gao R, Lin S, Zhong Q, Zhang Q, Hong J. Regulating the interface electron distribution of iron-based MOFs through ligand functionalization enables efficient peroxymonosulfate utilization and catalytic performance. J Colloid Interface Sci 2024; 663:358-368. [PMID: 38412721 DOI: 10.1016/j.jcis.2024.02.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Ligand functionalization is an effective way to endow Metal-organic frameworks (MOF) with versatility for multiple applications by introducing or displaying substituents without changing the origin framework. In this work, the original MIL-101(Fe) was modified by functional groups, including -NH2, -NO2, -CH3, and -Cl substituents. The Bader charge results and electron localization function (ELF) quantitatively indicated that the functional ligands with different properties can regulate the electron structure of transition-metal centers through interface-charge redistribution. Accompanying the higher adsorption and utilization rate of peroxymonosulfate (PMS), more than 96% of acetaminophen (APAP) was degraded with a mineralization rate of 40.17% under the NH2-BDC/PMS system. In terms of mechanism, the amino group not only accelerated the regeneration of Fe(II) via the NCFe electron-transfer path, but also stimulated the appearance of high-valent Fe species. Meanwhile, the degradation pathways of APAP were proposed by integrating the results of liquid chromatograph-mass spectrometry (LC-MS) and Frontier molecular-orbital theory. Finally, the NH2-BDC/PMS system reveals long-term stability, nonselectivity, low biotoxicity as well as secondary pollution for pollutant degradation, which is a considered candidate for further environmental applications.
Collapse
Affiliation(s)
- Yuwei Xue
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Ran Gao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Shuangjie Lin
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Qing Zhong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Qian Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Junming Hong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China.
| |
Collapse
|
23
|
Wang J, Ge X, Yin W, Wang X, Wu Y. Precise Modulation of the Coordination Environment of Single Cu Site Catalysts to Regulate the Peroxymonosulfate Activation Pathway for Water Remediation. Inorg Chem 2024; 63:9307-9314. [PMID: 38718357 DOI: 10.1021/acs.inorgchem.4c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Single atom site catalysts (SACs) with atomically dispersed active sites can be expected to be potential ideal catalysts for accurately modulating the persulfate activation pathway during the water remediation process because of their well-defined structure and the maximum metallic atom utilization. In this paper, a series of Cu SACs with different coordination environments were synthesized to elaborately regulate the peroxymonosulfate activation pathway in AOPs to clarify active species generation and transformation in water remediation. The degradation rate constants (kobs) of Cu-N2, Cu-N3, and Cu-N4 were 0.028, 0.021, and 0.015 min-1, respectively. Cu-N2 SACs exhibited a noticeable enhanced performance for bisphenol A (BPA) removal from water compared to that of the Cu-Nx SACs (x = 3, 4), accompanied by peroxymonosulfate (PMS) activation pathway variation. As shown by experimental and theoretical results, the PMS activation pathway was transformed from ROS to electron transfer with nitrogen coordination numbers decreasing from 4 to 2, which can be ascribed to the uneven charge distribution of Cu sites as well as upshifts in the d-band center, and thereby optimized electron transfer for PMS activation. Furthermore, the increasing nitrogen vacancies of single Cu site catalysts can also result in more unoccupied 3d orbitals of Cu atoms in SACs, thereby improving the intermediates' (PMS and BPA) adsorption-desorption process and BPA removal performance. These findings provided a beneficial approach for the coordination number regulation of SACs in water remediation.
Collapse
Affiliation(s)
- Jie Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P. R. China
| | - Xiao Ge
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P. R. China
| | - Weiqin Yin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P. R. China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P. R. China
| | - Yuen Wu
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Hu J, Tian J, Yang Y, Li S, Lu J. Enhanced antibiotic degradation via photo-assisted peroxymonosulfate over graphitic carbon nitride nanosheets/CuBi 2O 4: Highly efficiency of oxygen activation and interfacial charge transfer. J Colloid Interface Sci 2024; 661:68-82. [PMID: 38295704 DOI: 10.1016/j.jcis.2024.01.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/27/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Improving the activation capacity of peroxymonosulfate (PMS) to increase radical and non-radical production is critical for antibiotic degradation. However, how to boost reactive oxygen species (ROS) and speed interfacial charge transfer remains an essential challenge. We report a coupling system of 10 %CNNS/CuBi2O4 photocatalyst and sulfate radical-based advanced oxidation processes (SO4--AOPs) to enhance the activation of PMS and improve antibiotic degradation. Owing to highly efficient oxygen activation and interfacial charge transfer, the degradation efficiency of the photo-assisted PMS system was as high as 51.6 times and 2.8 times that of photocatalyst and SO4--AOPs alone, respectively. Importantly, the highly efficient oxygen activation resulted in the production of O2-, which in turn could utilize the excess electrons generated through efficient interfacial charge transfer to convert into non-radical 1O2. The total organic carbon (TOC) elimination effectiveness of the photo-assisted PMS system reached 82 % via the synergy of radicals and non-radicals (O2-, OH, 1O2, SO4-, h+). This system also had excellent potential for reducing the generation and toxicity of disinfection by-products (DBPs), as evidenced through significant reductions in concentrations of trichloromethane (TCM), dichloroacetic acid (DCAA), and trichloronitromethane (TCNM) by 76 %, 64 %, and 35 %, respectively, providing an effective and eco-friendly strategy for antibiotic treatment.
Collapse
Affiliation(s)
- Jiaqi Hu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Junli Tian
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Yue Yang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Shanshan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Jinfeng Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300050, China; Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education, Tianjin 300050, China.
| |
Collapse
|
25
|
Zeng H, Yang B, Zhang J, Zhu H, Deng J, Shi Z, Zhou S, Zhang H, Cai A, Deng L. MnFe layered double hydroxides confined MnO x for peroxymonosulfate activation: A novel manner for the selective production of singlet oxygen. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123865. [PMID: 38548162 DOI: 10.1016/j.envpol.2024.123865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/21/2024]
Abstract
Singlet oxygen (1O2) is a reactive species for the selective degradation of stubborn organic pollutants. Given its resistance to harsh water environment, the effective and exclusive generation of 1O2 is acknowledged as a key strategy to mitigate water production costs and ensure water supply safety. Herein, we synthesized MnOx intercalated MnFe layered double hydroxides (MF-MnOx) to selectively produce 1O2 through the activation of PMS. The distinctive confined structure endowed MF-MnOx with a special pathway for the PMS activation. The direct oxidation of BPA on the intercalated MnOx induced the charge imbalance in the MnFe-LDH layer, resulting in the selective generation of 1O2. Moreover, acceptable activity deterioration of MF-MnOx was observed in a 10 h continuous degradation test in actual water, substantiating the application potential of MF-MnOx. This work presents a novel catalyst for the selective production of 1O2, and evaluates its prospects in the remediation of micro-polluted water.
Collapse
Affiliation(s)
- Hanxuan Zeng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China; Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Hangzhou, 310023, China
| | - Bufan Yang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Jinchen Zhang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Hao Zhu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China; Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Hangzhou, 310023, China.
| | - Zhou Shi
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Haojie Zhang
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research-UFZ, Leipzig, 04318, Germany
| | - Anhong Cai
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Lin Deng
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
26
|
Song Y, Chen R, Li S, Yu S, Ni X, Fang M, Xie H. Enhancement of Peroxydisulfate Activation for Complete Degradation of Refractory Tetracycline by 3D Self-Supported MoS 2/MXene Nanocomplex. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:786. [PMID: 38727380 PMCID: PMC11085324 DOI: 10.3390/nano14090786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Antibiotic abuse, particularly the excessive use of tetracycline (TC), a drug with significant environmental risk, has gravely harmed natural water bodies and even posed danger to human health. In this study, a three-dimensional self-supported MoS2/MXene nanohybrid with an expanded layer spacing was synthesized via a facile one-step hydrothermal method and used to activate peroxydisulfate (PDS) for the complete degradation of TC. The results showed that a stronger •OH signal was detected in the aqueous solution containing MoS2/MXene, demonstrating a superior PDS activation effect compared to MoS2 or Ti3C2TX MXene alone. Under the conditions of a catalyst dosage of 0.4 g/L, a PDS concentration of 0.4 mM, and pH = 5.0, the MoS2/MXene/PDS system was able to fully eliminate TC within one hour, which was probably due to the presence of several reactive oxygen species (ROS) (•OH, SO4•-, and O2•-) in the system. The high TC degradation efficiency could be maintained under the influence of various interfering ions and after five cycles, indicating that MoS2/MXene has good anti-interference and reusability performance. Furthermore, the possible degradation pathways were proposed by combining liquid chromatography-mass spectrometry (LC-MS) data and other findings, and the mechanism of the MoS2/MXene/PDS system on the degradation process of TC was elucidated by deducing the possible mechanism of ROS generation in the reaction process. All of these findings suggest that the MoS2/MXene composite catalyst has strong antibiotic removal capabilities with a wide range of application prospects.
Collapse
Affiliation(s)
| | - Runhua Chen
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (Y.S.)
| | | | | | | | | | | |
Collapse
|
27
|
Jiang X, Meng S, Nan Z. Singlet Oxygen Formation Mechanism for the H 2O 2-Based Fenton-like Reaction Catalyzed by the Carbon Nitride Homojunction. Inorg Chem 2024; 63:6701-6713. [PMID: 38563144 DOI: 10.1021/acs.inorgchem.3c04626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The singlet oxygen (1O2) oxidation process activated by metal-free catalysts has recently attracted considerable attention for organic pollutant degradation; however, the 1O2 formation remains controversial. Simultaneously, the catalytic activity of the metal-free catalyst limits the practical application. In this study, carbon nitride (HCCN) containing an intramolecular homojunction, a kind of metal-free catalyst, exhibits excellent activity compared to g-C3N4 (CN) and crystalline carbon nitride (HCN) for tetracycline hydrochloride degradation through the H2O2-based Fenton-like reaction. The rate constant for HCCN increased about 16.1 and 8.9 times than that of CN and HCN, respectively. The activity of HCCN was enhanced, and the dominant reactive oxygen species (ROS) changed from hydroxyl radicals (•OH) to 1O2 with an increase in pH from 4.5 to 11.5. A novel formation pathway of 1O2 was revealed. This result is different from the normal reference, in which •OH is always the primary ROS in the H2O2-based Fenton-like reaction. This study may provide a possible strategy for the investigation on the nonradical oxidation process in the Fenton-like reaction.
Collapse
Affiliation(s)
- Xuan Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Suhang Meng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhaodong Nan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
28
|
Wen L, Li X, Na Y, Chen H, Liu M, Yang S, Ding D, Wang G, Liu Y, Chen Y, Chen R. Surface reconstructed Fe@C 1000 for enhanced Fenton-like catalysis: Sustainable ciprofloxacin degradation and toxicity reduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123534. [PMID: 38342432 DOI: 10.1016/j.envpol.2024.123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
The Fe-based catalysts typically undergo severe problems such as deactivation and Fe sludge emission during the peroxymonosulfate (PMS) activation, which commonly leads to poor operation and secondary pollution. Herein, an S-doped Fe-based catalyst with a core-shell structure (Fe@CT, T = 1000°C) was synthesized, which can solve the above issues via the dynamic surface evolution during the reaction process. Specifically, the Fe0 on the surface of Fe@C1000 could be consumed rapidly, leaving numerous pores; the Fe3C from the core would subsequently migrate to the surface of Fe@C1000, replenishing the consumed active Fe species. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses demonstrated that the reaction surface reconstructed during the PMS activation, which involved the FeIII in-situ reduction by S species as well as the depletion/replenishment of effective Fe species. The reconstructed Fe@C1000 achieved near-zero Fe sludge emission (from 0.59 to 0.08-0.23 mg L-1) during 5 cycles and enabled the dynamic evolution of dominant reactive oxygen species (ROS) from SO4·- to FeIVO, sustainably improving the oxidation capacity (80.0-92.5% in following four cycles) to ciprofloxacin (CIP) and reducing the toxicity of its intermediates. Additionally, the reconstructed Fe@C1000/PMS system exhibited robust resistance to complex water matrix. This study provides a theoretical guideline for exploring surface reconstruction on catalytic activity and broadens the application of Fe-based catalysts in the contaminants elimination.
Collapse
Affiliation(s)
- Lanxuan Wen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Li
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Na
- Qinghai Provincial Ecological Environment Planning and Environmental Protection Technology Center, No. 116, Nanshan East Road, Xining, 810007, China
| | - Huanyu Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Liu
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjiong Yang
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shanxi, 710055, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gen Wang
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shanxi, 710055, China
| | - Yu Liu
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongzhi Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
29
|
Liu L, Lu Z, Cai W, Owens G, Chen Z. Green rGO/FeNPs nanocomposites activated peroxydisulfate for the removal of mixed 17β-estradiol and estriol. ENVIRONMENTAL RESEARCH 2024; 245:118057. [PMID: 38154565 DOI: 10.1016/j.envres.2023.118057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Reduced graphene oxide/iron nanoparticles (rGO/FeNPs) synthesized by the chemical method have been used in Fenton oxidation of organic contaminants, yet little is known about biosynthesized rGO/FeNPs using green tea extract (GT) as how to activate persulfate in sulfate radical-based advanced oxidation processes. In this study, rGO/FeNPs were used to activate peroxydisulfate (PDS) for 17β-estradiol (βE2) and estriol (E3) removal. The rGO/FeNPs-PDS system removed 83.6% of βE2 and 62.5% of E3 within 240 min, which was confirmed by a combination of adsorption and degradation via both radical and non-radical pathways. Four main reactive species in βE2 and E3 degradation were observed, i.e., hydroxyl radical (·OH), sulfate radical (SO4·-), singlet oxygen (1O2) and electron transfer, with the respective contributions of ·OH (32.9 and 34.7%), SO4·- (16.1 and 19.7%), 1O2 (12.2 and 14.1%) and electron transfer (8.0 and 7.2%). Analysis of X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), Electron Paramagnetic Resonance (EPR) and electrochemical measurements all indicated that beside the well-known role of Fe, CO from rGO through the generation of ·OH, SO4·-, 1O2 and electron transfer, as well as GT through electron transfer also participated in the activation of PDS. Finally, the degradation pathways of βE2/E3 were proposed. Overall, this study provides a new insight into the biosynthesis of rGO/FeNPs to activate PDS for the oxidation of mixed emerging contaminants.
Collapse
Affiliation(s)
- Longjie Liu
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Zeyang Lu
- Fujian Provincial Key Laboratory of Environmental Engineering, Fujian Academy of Environmental Sciences, Fuzhou, 350011, China.
| | - Wanling Cai
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
30
|
Liu C, He X, Li J, Ma J, Yue J, Wang Z, Chen M. Selective electrophilic attack towards organic micropollutants with superior Fenton-like activity by biochar-supported cobalt single-atom catalyst. J Colloid Interface Sci 2024; 657:155-168. [PMID: 38035418 DOI: 10.1016/j.jcis.2023.11.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
The global shortage of freshwater and inadequate supply of clean water have necessitated the implementation of robust technologies for wastewater purification, and Fenton-like chemistry is a highly-promising approach. However, realizing the rapid Fenton-like chemistry for high-efficiency degradation of organic micropollutants (OMs) remains challenging. Herein, one novel system was constructed by a Co single-atom catalyst activating peroxymonosulfate (PMS), and the optimal system (SA-Co-NBC-0.2/PMS) achieved unprecedented catalytic performance towards a model OM [Iohexol (IOH)], i.e., almost 100% decay ratio in only 10 min (the observed rate constant: 0.444 min-1) with high electrophilic species 1O2 (singlet oxygen) generation. Theoretical calculations unveiled that Co-N4 sites preferred to adsorb the terminal-O of PMS (more negative adsorption energy than other O sites: -32.67 kcal/mol), promoting the oxidation of PMS to generate 1O2. Iodine (I)23 (0.1097), I24 (0.1154) and I25 (0.0898) on IOH with higher f- electrophilic values were thus identified as the main attack sites. Furthermore, 16S ribosomal RNA high-throughput sequencing and quantitative structure-activity relationship analysis illustrated the environmentally-benign property of the SA-Co-NBC-0.2 and the tapering ecological risk during IOH degradation process. Significantly, this work comprehensively checked the competence of the SA-Co-NBC-0.2/PMS system for organics abatement in practical wastewater.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xinxia He
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jinglu Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jun Ma
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Junpeng Yue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ziwei Wang
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
31
|
Tang M, Wan J, Wang Y, Ye G, Yan Z, Ma Y, Sun J. Overlooked role of void-nanoconfined effect in emerging pollutant degradation: Modulating the electronic structure of active sites to accelerate catalytic oxidation. WATER RESEARCH 2024; 249:120950. [PMID: 38056201 DOI: 10.1016/j.watres.2023.120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/04/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The efficient removal of emerging pollutant from water is the ultimate frontiers of advanced oxidation processes (AOPs), yet it is challenging to obtain higher catalytic activity and oxidation rate. Herein, a sustainable solution was proposed by optimizing the curvature of confined structure to modulate the electronic state of the active sites in nanochannels for improving the catalytic activity. In addition, the confined effect can enhance the oxidation rate by shorting the mass transfer of active species and pollutants. A void-nanoconfined nanoreactor was prepared by loading Fe2O3 into the nanochannels (<5 nm) of the hollow carbon sphere. An enhancement of 3 orders of magnitude was obtained in the degradation rate constant of void-nanoconfined catalytic system toward sulfamethoxazole (SMX) (6.25 min-1) compared with the non-confined system. The kinetics enhancement was attributed to the larger electron potential difference between the outer and inner nanochannel caused by the curvature increase of carbon sphere, accelerating the electron transfer, so that the energy barrier of SMX degradation reaction was reduced by 31 kcal/mol with the assistance of confinement energy. Importantly, the NC-IN/PDS system exhibited outstanding removal efficiency for the actual river water using a continuous flow reactor. This work provides a new insight into designing an efficient and stable catalytic nanoreactor, enriching the domain of advanced wastewater treatment strategies.
Collapse
Affiliation(s)
- Min Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Gang Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhicheng Yan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yongwen Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jian Sun
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
32
|
Cheng D, Yang D, Pan Y, Tan Y, Ma R, Chen B, He F. Insights into persulfate activation by dicyandiamide-derived carbon for 2,4-dichlorophenol degradation: Roles of nitrogen doping and defective carbon atoms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168679. [PMID: 37992828 DOI: 10.1016/j.scitotenv.2023.168679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
In this study, a dicyandiamide residue-derived carbon material (DWC-800) was fabricated through a two-step process involving ball-milling nitrogen (N) doping and high-temperature annealing, and then utilized for peroxodisulfate (PDS) activation in the removal of 2,4-dichlorophenol (2,4-DCP). The obtained DWC-800, with very low N content (0.52 at.%), exhibited highly efficient PDS activation, resulting in complete removal of 2,4-DCP in 60 min. This performance was superior to that of the material with high N content (15.4 at.%), which was prepared using only one-step ball-milling N doping. The N-doped process increased the defective degree of carbocatalyst, and these reactive carbon defects rather than N species greatly improved the adsorption and catalytic activity. The results of quenching experiments and electron paramagnetic resonance demonstrated that PDS activation by DWC-800 for 2,4-DCP degradation followed a nonradical pathway, leading to the production of both singlet oxygen (1O2) and carbon-PDS* complex. Notably, electron transfer mediated by the carbon-PDS* complex played a significant role in the degradation of 2,4-DCP. Overall, this study gets new insights into the role of N doping in mediating the structural properties of the carbocatalyst and its catalytic performance, and provides a theoretical basis for the utilization of dicyandiamide waste residue for wastewater remediation.
Collapse
Affiliation(s)
- Dong Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dezhi Yang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuansen Tan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Runhao Ma
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bo Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
33
|
Ma T, Ren H, Liu M, Zhou R. Nanoconfined catalytic membrane assembled by nitrogen-doped carbon encapsulating Fe-based nanoparticles for rapid removal of 2,4-dichlorophenol in wastewater by peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133523. [PMID: 38278075 DOI: 10.1016/j.jhazmat.2024.133523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Surface-dependent non-radical oxidation of carbon materials-based persulfate systems show a better application prospect in the removal of pollutants in complex wastewater. However, their potential is severely limited by the restricted liquid-to-solid mass transfer efficiency of conventional suspension systems. In this paper, a nitrogen-doped carbon encapsulating iron-based nanoparticles (Fe@NC) was prepared, and loaded onto a polyvinylidene fluoride (PVDF) membrane to construct a novel catalytic membrane Fe@NC/PVDF. The Fe@NC/PVDF/PMS system could achieve 99.74% of 2,4-dicholophenol (2,4-DCP) removal within a retention time of 0.867 s, the kinetic constant is 840 times higher than that of Fe@NC/PMS system, and 2-5 orders of magnitude higher than that of various reported advanced oxidation processes systems. The system exhibits strong anti-interference to various water matrices, long-time operational stability at high flux (306 L·m-2·h-1), universality to pollutants that do not contain strong electron-withdrawing groups and mitigation of membrane fouling. Mechanism studies indicate that the electron transfer pathway dominates the 2,4-DCP removal, and singlet oxygen (1O2) plays an auxiliary role. The higher mass transfer efficiency of the filtration mode releases the full potential of the non-radical pathway. This paper provides theoretical and technical support for the development and efficient utilization of carbon-based materials with excellent persulfate catalytic properties.
Collapse
Affiliation(s)
- Taigang Ma
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Hejun Ren
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Meijun Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Rui Zhou
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
34
|
Liu Y, Liu S, Chen M, Bai Y, Liu Y, Mei J, Lai B. Enhanced TC degradation by persulfate activation with carbon-coated CuFe 2O 4: The radical and non-radical co-dominant mechanism, DFT calculations and toxicity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132417. [PMID: 37774605 DOI: 10.1016/j.jhazmat.2023.132417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023]
Abstract
Facing the constraints of critical agglomeration and poor reusability of CuFe2O4 in catalytic applications, the feasibility of synthesizing a composite catalyst using carbon coating technology for efficient TC removal with enhanced PDS activity was investigated. The composite catalyst (CuFe2O4@C) can stimulate both radical (SO4•- and HO•) and non-radical (1O2) pathways to dominate the catalytic reaction for removing 95.7% of the TC in 60 min. Meanwhile, the defective structure of the external carbon layer protected the internal CuFe2O4 from excessive oxidation, allowing the CuFe2O4@C to maintain over 90% TC removal after 5 cycles with less interference from inorganic anions, demonstrating significant catalytic performance and satisfactory reusability. Finally, the DFT calculations and TEST evaluation were performed to discuss the structural properties of TC and its toxicity assessment during the whole degradation process, while three possible degradation pathways were proposed. Significantly, the carbon-coated composite catalysts of potential universal applicability for multi-pathway PDS activation offered an attractive new strategy for the effective degradation of antibiotic wastewater.
Collapse
Affiliation(s)
- Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China.
| | - Shumeng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Mingyan Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Yang Bai
- State Key Lab Oil & Gas Reservoir Geol & Exploita, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Yan Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Jiahao Mei
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Bo Lai
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
35
|
Qu G, Jia P, Tang S, Pervez MN, Pang Y, Li B, Cao C, Zhao Y. Enhanced peroxymonosulfate activation via heteroatomic doping defects of pyridinic and pyrrolic N in 2D N‑doped carbon nanosheets for BPA degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132626. [PMID: 37769450 DOI: 10.1016/j.jhazmat.2023.132626] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 09/30/2023]
Abstract
Understanding the role of intrinsic defects and nonmetallic heteroatom doping defects in activating peroxymonosulfate (PMS) and subsequently degrading endocrine-disrupting compounds is crucial for designing more efficient carbon catalysts. Therefore, we synthesized N-rich carbon nanosheets (NCs) through pyrolysis of a glutamic acid and melamine mixture and utilized them to activate PMS for bisphenol A (BPA) degradation. Different weight ratios of the above mixtures were allowed for manipulating NCs' defect level and N configuration. The reaction rate constant (k) was significantly positively correlated with the pyridinic and pyrrolic N content, and negatively and weakly positively correlated with graphite N and intrinsic defects, respectively. These findings suggest pyridinic and pyrrolic N, rather than graphitic N and intrinsic defects, enhance PMS activation to generate reactive oxygen species (specifically O•-2 and 1O2) and oxidize BPA. The NC-activated PMS system with the highest N content (17.9 atom%) demonstrated a remarkably high k (0.127 min-1) using minimal concentrations of PMS (0.4 mM) and NC (0.15 g/L), highlighting the system's efficiency. Excess halide anions led to significantly increased k with only a limited formation of trichloromethane (disinfection byproducts) in presence of 100 mM Cl-. This study offers novel perspectives on identifying catalytic sites within N-doped carbonaceous materials.
Collapse
Affiliation(s)
- Guojuan Qu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Peng Jia
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Sea-Area Management Technology (SOA), National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Md Nahid Pervez
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Yixiong Pang
- Guangdong AWS Environment Technologies Ltd, GuangDong Province, 511400, China
| | - Bin Li
- Guangdong AWS Environment Technologies Ltd, GuangDong Province, 511400, China
| | - Chengjin Cao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
36
|
Wang Y, Lin Y, He S, Wu S, Yang C. Singlet oxygen: Properties, generation, detection, and environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132538. [PMID: 37734310 DOI: 10.1016/j.jhazmat.2023.132538] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Singlet oxygen (1O2) is molecular oxygen in the excited state with high energy and electrophilic properties. It is widely found in nature, and its important role is gradually extending from chemical syntheses and medical techniques to environmental remediation. However, there exist ambiguities and controversies regarding detection methods, generation pathways, and reaction mechanisms which have hindered the understanding and applications of 1O2. For example, the inaccurate detection of 1O2 has led to an overestimation of its role in pollutant degradation. The difficulty in detecting multiple intermediate species obscures the mechanism of 1O2 production. The applications of 1O2 in environmental remediation have also not been comprehensively commented on. To fill these knowledge gaps, this paper systematically discussed the properties and generation of 1O2, reviewed the state-of-the-art detection methods for 1O2 and long-standing controversies in the catalytic systems. Future opportunities and challenges were also discussed regarding the applications of 1O2 in the degradation of pollutants dissolved in water and volatilized in the atmosphere, the disinfection of drinking water, the gas/solid sterilization, and the self-cleaning of filter membranes. This review is expected to provide a better understanding of 1O2-based advanced oxidation processes and practical applications in the environmental protection of 1O2.
Collapse
Affiliation(s)
- Yue Wang
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
37
|
Qiu X, Zhao Y, Jia Z, Li C, Jin R, Mutabazi E. Fe and Zn co-doped carbon nanoparticles as peroxymonosulfate activator for efficient 2,4-dichorophenol degradation. ENVIRONMENTAL RESEARCH 2024; 240:117313. [PMID: 37866532 DOI: 10.1016/j.envres.2023.117313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/17/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
Iron-mediated activation of peroxymonosulfate (PMS) has been of great interest for the effective removal of contaminants, but it still suffered from ineffective metal redox cycle rate, which resulted in unsatisfactory catalytic efficiency. Constructing bimetallic carbonaceous materials was effective way to improve the catalytic performance of iron-based heterogeneous system. In this study, magnetic bimetallic porous carbon composite (FZCx) was synthesized via Fe/Zn bi-MOFs pyrolysis for 2,4-dichlorophenol (2,4-DCP) degradation by peroxymonosulfate. Influences of different systems exhibited that 100% of 2,4-DCP was rapidly degraded at the conditions of catalyst dosage = 0.1 g L-1, PMS = 0.5 mM and initial pH = 9.0 within 30 min. The as-prepared FZC600 displayed excellent reusability and stability. Quenching experiments and EPR analysis manifested that SO4·- and 1O2 were primarily responsible for the rapid degradation of 2,4-DCP. Moreover, XPS, EPR and EIS was used to elaborate the bimetallic synergy effect, proving that the introduction of zinc can effectively promote periodic cycle of Fe2+/Fe3+ and improve catalysts durability and reusability. These findings highlighted the preparation of bimetallic based carbonaceous material with excellent PMS activation ability to remove refractory organics from wastewater and provided a depth insight into the promotion of bimetal synergy between zinc and iron on PMS activation process.
Collapse
Affiliation(s)
- Xiaojie Qiu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Zichen Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Chenxi Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ruotong Jin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Emmanuel Mutabazi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
38
|
Byambaa B, Seid MG, Song KG, Kim EJ, Lee D, Lee C. Insight into disparate nonradical mechanisms of peroxymonosulfate and peroxydisulfate activation by N-doped oxygen-rich biochar: Unraveling the role of active sites. CHEMOSPHERE 2024; 346:140563. [PMID: 38303400 DOI: 10.1016/j.chemosphere.2023.140563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
In this study, we first comprehensively studied peroxymonosulfate (PMS) and peroxydisulfate (PDS) activation mechanisms using N, O codoped sludge biochar (NOSB) to degrade organics from water. Among the catalysts, NOSB with a higher content of graphitic N, optimal edge nitrogen (pyridinic N and pyrrolic N), CO groups, sp2-hybridized C, and rich defects were demonstrated to be a superior catalyst. Therefore, by activating PDS and PMS, NOSB exhibited the highest rate of BPA degradation, which was 22-fold and 13-fold that of pristine sludge biochar, respectively. However, owing to different oxidation potentials and molecular structures, PMS and PDS show different degradation performances due to various catalytic mechanisms occurring, even with the same biochar. Due to the asymmetrical structure of PMS, electrons passed from PMS to NOSB and further generated singlet oxygen (1O2), which governs the degradation of bisphenol A with an auxiliary contribution of single electron transfer. Meanwhile, PDS is reduced at the Lewis basic sites of NOSB, forming inner-surface-bound {PDS-NOSB}, which was oxidizing around neighboring carbon and decomposed targets through transferring single and double electrons. NOSB is promising for practical applications because of its adaptation to a wide pH range, anions, high total organic carbon removal, tunable active sites, and re-usability for degrading organics via PMS/PDS activation. This study unveils knowledge about N, O codoped sludge biochar catalysts for activating PMS/PDS and advocates a great approach for organics' degradation in the environment.
Collapse
Affiliation(s)
- Battuya Byambaa
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Mingizem Gashaw Seid
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kyung Guen Song
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| | - Eun-Ju Kim
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| | - Donghyun Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
39
|
Song Y, Meng C, Lyu Y, Liu Y, Li Y, Jiang Z, Jiang K, Hu C. Self-cleaning foulant attachment on near-infrared responsive photocatalytic membrane for continuous dynamic removing antibiotics in sewage effluent environment. WATER RESEARCH 2024; 248:120867. [PMID: 37980863 DOI: 10.1016/j.watres.2023.120867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/08/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
Bifunctional photocatalytic nanofiltration (PNF) membrane has become a reliable frontier technique for removing refractory organic micropollutants. However, the active mitigated fouling mechanism from the microscopic perspective during its long-term operation of purifying real micro-polluted water is rarely studied. Herein, with an integrated use of QSense Explorer and confocal laser scanning microscope techniques, self-cleaning foulant attachment on an activated and customized near-infrared responsive polymeric PNF (termed as nPNF) membrane with good service performance for continuous dynamic removing antibiotics in sewage effluent environment was firstly elucidated. Time-dependent changes in dissipation oscillation frequency, sensed mass and the visualized foulant spatial distribution all indicated that there were only sporadic foulant attachment, an extremely low fouling layer thickness and irreversible fouling rate on/of the activated nPNF membrane top surface, thereby endowing it with excellent self-cleaning characteristic. This is probably because the reactive oxygen species (mainly •O2- and •OH) concurrently destroys the integrity of fouling layer and its internal adhesion structure, transforming part of the irreversible fouling on nPNF membrane surface into reversible one that is easy to wash off. These new horizons provided useful insight on the fate of selected antibiotics in the to-be-removed stage and self-cleaning foulant attachment of PNF membrane.
Collapse
Affiliation(s)
- Yuefei Song
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China.
| | - Chunchun Meng
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yinghua Lyu
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yu Liu
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yuange Li
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Zuqiong Jiang
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
40
|
Tu JW, Li Y, Chen L, Miao W. Iron-loading N and S heteroatom doped porous carbon derived from chitosan and CdS-Tetrahymena thermophila for peroxymonosulfate activation. Int J Biol Macromol 2023; 253:127347. [PMID: 37820898 DOI: 10.1016/j.ijbiomac.2023.127347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Transforming waste into resources is an important strategy to enhance the economic efficiency and reduce the waste entering the environment. In this work, iron-loading N and S co-doped porous carbon materials, as peroxymonosulfate (PMS) activator for pollutants degradation, were prepared by pyrolysis of the mixture of iron loading chitosan and CdS-Tetrahymena thermophila under N2 flow. Chitosan is mainly derived from the shell waste of shrimp and crab, and CdS-Tetrahymena thermophila is produced in the removing process of Cd2+ pollution bioremediation using Tetrahymena thermophila. The synergistic effects of iron related species and heteroatoms (S/N) co-doped porous carbon in the obtained carbon materials improved the performance for activating PMS. The prepared Fe-S-CS-1-900 exhibited high performance for the degradation of Rhodamine B (RhB) by activating PMS. Radical quenching tests and electron paramagnetic resonance measurements suggested that superoxide radical (O2-) and singlet oxygen (1O2) were the primary reactive oxygen species in RhB degradation. These results propose new insights of using biomass waste to derive Fe-loading N and S heteroatom co-doping carbon as PMS activator applied in the removal of organic pollutants.
Collapse
Affiliation(s)
- Jia-Wei Tu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yangyang Li
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, PR China
| | - Lanzhou Chen
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, PR China.
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
41
|
Liu S, Zhang Z, Lu R, Mao Y, Ge H, Liu C, Tian C, Yin S, Feng L, Liu Y, Chen C, Zhang L. O 2 plasma-modified carbon nanotube for sulfamethoxazole degradation via peroxymonosulfate activation: Synergism of radical and non-radical pathways boosting water decontamination and detoxification. CHEMOSPHERE 2023; 344:140214. [PMID: 37739128 DOI: 10.1016/j.chemosphere.2023.140214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Sulfamethoxazole (SMX), a widely used antibiotic, has triggered increasing attention due to its extensive detection in wastewater effluent, causing serious ecological threats. Herein, a carbon-based heterogeneous catalyst was developed by the O2 plasma-etching process, regulating oxygen-containing functional groups (OFGs) and defects of carbon nanotubes (O-CNT) to activate peroxymonosulfate (PMS) for highly efficient SMX abatement. Through adjusting the etching time, the desired active sites (i.e., C=O and defects) could be rationally created. Experiments collectively suggested that the degradation of SMX was owing to the contribution of synergism by radical (•OH (17.3%) and SO4•- (39.3%)) and non-radical pathways (1O2, 43.4%), which originated from PMS catalyzed by C=O and defects. In addition, the possible degradation products and transformation pathways of SMX in the system were inferred by combining the Fukui function calculations and the LC-MS/MS analysis. And the possible degradation pathway was effective in reducing the environmental toxicity of SMX, as evidenced by the T.E.S.T. software and the micronucleus experiment on Vicia faba root tip. Also, the catalytic system exhibited excellent performance for different antibiotics removal, such as amoxicillin (AMX), carbamazepine (CBZ) and isopropylphenazone (PRP). This study is expected to provide an alternative strategy for antibiotics removal in water decontamination and detoxification.
Collapse
Affiliation(s)
- Shiqi Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Zichen Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Rui Lu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yuankun Mao
- Technical Center of Solid Waste and Chemicals Management, Ministry of Ecology and Environment, Beijin, 100029, China
| | - Huiru Ge
- Technical Center of Solid Waste and Chemicals Management, Ministry of Ecology and Environment, Beijin, 100029, China
| | - Can Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Chenxi Tian
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Siyuan Yin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Chao Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
42
|
Ding C, Ye C, Zhu W, Zeng G, Yao X, Ouyang Y, Rong J, Tao Y, Liu X, Deng Y. Engineered hydrochar from waste reed straw for peroxymonosulfate activation to degrade quinclorac and improve solanaceae plants growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119090. [PMID: 37793289 DOI: 10.1016/j.jenvman.2023.119090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/13/2023] [Accepted: 09/10/2023] [Indexed: 10/06/2023]
Abstract
Hydrochar from agricultural wastes is regarded as a prospective and low-cost material to activate peroxymonosulfate (PMS) for degrading pollutants. Herein, a novel in-situ N-doped hydrochar composite (RHCM4) was synthesized using montmorillonite and waste reed straw rich in nitrogen as pyrolysis catalyst and carbon source, respectively. The fabricated RHCM4 possessed excellent PMS activation performance for decomposing quinclorac (QC), a refractory herbicide, with a high removal efficiency of 100.0% and mineralization efficiency of 75.1%. The quenching experiments and electron spin resonance (ESR) detection disclosed free radicals (•OH, •SO4-, and •O2-) and non-radicals (1O2) took part in the QC degradation process. Additionally, the catalytic mechanisms were analyzed in depth with the aid of various characterizations. Moreover, the QC degradation intermediates and pathways were clarified by density functional theory calculations and HPLC-MS. Importantly, phytotoxicity experiments showed that RHCM4/PMS could efficaciously mitigate the injury of QC to Solanaceae crops (pepper, tomato, and tobacco). These findings give a new idea for enhancing the catalytic activity of hydrochar from agricultural wastes and broaden its application in the field of agricultural environment.
Collapse
Affiliation(s)
- Chunxia Ding
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Can Ye
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Zhu
- Shaoyang Tobacco Company of Hunan Province, Shaoyang, 422001, China
| | - Guangyong Zeng
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Xuemei Yao
- Shaoyang Tobacco Company of Hunan Province, Shaoyang, 422001, China
| | - Yu Ouyang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jie Rong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Yaping Tao
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang, 471934, China
| | - Xiangying Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Yaocheng Deng
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410082, China.
| |
Collapse
|
43
|
Rayaroth MP, Aravind UK, Boczkaj G, Aravindakumar CT. Singlet oxygen in the removal of organic pollutants: An updated review on the degradation pathways based on mass spectrometry and DFT calculations. CHEMOSPHERE 2023; 345:140203. [PMID: 37734498 DOI: 10.1016/j.chemosphere.2023.140203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
The degradation of pollutants by a non-radical pathway involving singlet oxygen (1O2) is highly relevant in advanced oxidation processes. Photosensitizers, modified photocatalysts, and activated persulfates can generate highly selective 1O2 in the medium. The selective reaction of 1O2 with organic pollutants results in the evolution of different intermediate products. While these products can be identified using mass spectrometry (MS) techniques, predicting a proper degradation mechanism in a 1O2-based process is still challenging. Earlier studies utilized MS techniques in the identification of intermediate products and the mechanism was proposed with the support of theoretical calculations. Although some reviews have been reported on the generation of 1O2 and its environmental applications, a proper review of the degradation mechanism by 1O2 is not yet available. Hence, we reviewed the possible degradation pathways of organic contaminants in 1O2-mediated oxidation with the support of density functional theory (DFT). The Fukui function (FF, f-, f+, and f0), HOMO-LUMO energies, and Gibbs free energies obtained using DFT were used to identify the active site in the molecule and the degradation mechanism, respectively. Electrophilic addition, outer sphere type single electron transfer (SET), and addition to the hetero atoms are the key mechanisms involved in the degradation of organic contaminants by 1O2. Since environmental matrices contain several contaminants, it is difficult to experiment with all contaminants to identify their intermediate products. Therefore, the DFT studies are useful for predicting the intermediate compounds during the oxidative removal of the contaminants, especially for complex composition wastewater.
Collapse
Affiliation(s)
- Manoj P Rayaroth
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, ME, 04544, USA.
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi 682022, Kerala, India
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233, Gdansk, G. Narutowicza 11/12 Str, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India; Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India.
| |
Collapse
|
44
|
Fu Q, Zhong H, Hou Y, Yu J, Yang H, Li N, Tong Y, Wei S, Wang J, Ouyang G. Ultrafast and energy-saving microwave-assisted conversion of inert carbon nanomaterials to highly efficient Fenton-like metal-free catalysts for pollutants degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166121. [PMID: 37562621 DOI: 10.1016/j.scitotenv.2023.166121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Carbon-driven persulfate (PDS)-based Fenton-like reactions have been widely viewed as prospective strategies to cope with the water pollution. However, high cost, harsh condition and complex modification processes are usually required to boost the catalytic activities of carbocatalysts. Herein, we proposed an ultrafast, energy-efficient, and convenient approach to convert various low-performance carbon materials into highly efficient catalysts by microwave treatment in just 1 min without any other tedious treatment. This process only requires 57 kJ/g energy input, 5 orders of magnitude lower than the traditional calcination process. The catalytic performance of microwave-treated materials could increase by more than 380 times, which is even better than those of the single-atom catalysts. Moreover, DFT calculations and QSARs analyses reveal that the negatively charged carboxyl group is not conducive to the adsorption of PDS (S2O82-) due to electrostatic repulsion, and also increases the work function of the carbocatalysts, which hinders the electron transfer process.
Collapse
Affiliation(s)
- Qi Fu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Huajie Zhong
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, Guangdong, China
| | - Yu Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Jiaxing Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Huangsheng Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Nan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Yuanjun Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Songbo Wei
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Junhui Wang
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, Guangdong, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China; College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Zhengzhou 450001, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Science, 100 Xianlie Middle Road, Guangzhou 510070, China
| |
Collapse
|
45
|
Zhou J, Wang S. Investigation of manganese-iron oxide nanocomposite immobilized on powdered activated carbon as an efficient activator of peroxymonosulfate for antibiotics degradation: Conjunction of adsorption, radical and nonradical processes. ENVIRONMENTAL RESEARCH 2023; 238:117150. [PMID: 37716385 DOI: 10.1016/j.envres.2023.117150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/27/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) have gained considerable attention for their efficient oxidation of persistent pollutants. A two-step chemical co-precipitation method was used to prepare a bimetallic nanocomposite (MnOx@Fe3O4) consisting of manganese oxides and ferroferric oxides, supported by powdered activated carbon (PAC). The synthesis of MnOx@Fe3O4-PAC (MFP) was aimed to enhance the degradation efficiency of oxytetracycline (OTC) via the simultaneous adsorption and oxidation processes on the solid-liquid interface. The OTC degradation process in the MFP/PMS system could be well described by pseudo-first-order kinetics. A wide pH range (3-6) was acceptable for MFP to degrade OTC via PMS activation with the highest removal efficiency reaching up to 85.6% (OTC0 = 150 mg/L), while a 60.8% removal efficiency of total organic carbon (TOC) was also attained simultaneously. SO4•- and 1O2, which were bound to the surface, played a crucial role as reactive oxygen species in the degradation of OTC. The combination of PAC, Fe3O4, and MnOx of MFP could enhance the degradation efficiency of OTC and fetch up their defects of separate application. The deduced OTC degradation pathway relied on the findings from UPLC-MS analysis and density functional theory (DFT) calculations. Noteworthy, MFP maintained efficient catalysis performance in the five cycles of stability experiment with neglectable loss of manganese and iron. These results provide valuable understanding of the conjunction of adsorption, radical, and nonradical processes driven by MFP for OTC degradation.
Collapse
Affiliation(s)
- Jiahui Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Shu Wang
- Department of Pharmaceutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8501, Japan
| |
Collapse
|
46
|
Xue X, Xue N, Ouyang D, Yang L, Wang Y, Zhu H, Aihemaiti A, Yin J. Biochar-Based Single-Atom Catalyst with Fe-N 3O-C Configuration for Efficient Degradation of Organic Dyes by Peroxymonosulfate Activation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38035388 DOI: 10.1021/acsami.3c12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Iron single-atom catalysts (Fe SACs) hold great promise for peroxymonosulfate (PMS) activation and degradation of organic pollutants in wastewater. However, insights into crucial catalytic sites and activation mechanisms of biochar-based Fe SACs for PMS remain a challenge. Herein, cotton stalk-derived biochar-based Fe SACs (Fe SACs-BC) with an asymmetric Fe-N/O-C configuration were prepared, and their PMS activation and acid orange 7 (AO7) degradation mechanisms were investigated. The results showed that the removal efficiency of the Fe SACs-BC catalyst with Fe-N3O-C configuration for AO7 and other five investigated organic dyes reached 95-99% within 15 min. The EPR spectrums, quenching experiments, electrochemical analysis, masking experiments, XPS, and theoretical calculations indicated that degradations of organic dyes were dominated by singlet oxygen, which was generated by direct PMS conversion at the electron-deficient carbon and iron sites in the Fe-N3O-C configuration. The Fe SACs-BC/PMS exhibited high removal efficiency and strong tolerance in different water matrices with a wide pH range, various coexisting anions and interfering substances, showing great potential and applicability for efficient treatment of actual textile wastewaters.
Collapse
Affiliation(s)
- Xueyan Xue
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, and Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Xue
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, and Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Ouyang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, and Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| | - Liuqian Yang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, and Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Wang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, and Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhu
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, and Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| | - Aikelaimu Aihemaiti
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, and Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jiao Yin
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, and Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
47
|
Li J, Yang T, Zeng G, An L, Jiang J, Ao Z, Ma J. Ozone- and Hydroxyl Radical-Induced Degradation of Micropollutants in a Novel UVA-LED-Activated Periodate Advanced Oxidation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18607-18616. [PMID: 36745772 DOI: 10.1021/acs.est.2c06414] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, novel light emitting diode (LED)-activated periodate (PI) advanced oxidation process (AOP) at an irradiation wavelength in the ultraviolet A range (UVA, UVA-LED/PI AOP) was developed and investigated using naproxen (NPX) as a model micropollutant. The UVA-LED/PI AOP remarkably enhanced the degradation of NPX and seven other selected micropollutants with the observed pseudo-first-order rate constants ranging from 0.069 ± 0.001 to 4.50 ± 0.145 min-1 at pH 7.0, demonstrating a broad-spectrum micropollutant degradation ability. Lines of evidence from experimental analysis and kinetic modeling confirmed that hydroxyl radical (•OH) and ozone (O3) were the dominant species generated in UVA-LED/PI AOP, and they contributed evenly to NPX degradation. Increasing the pH and irradiation wavelength negatively affected NPX degradation, and this could be well explained by the decreased quantum yield (ΦPI) of PI. The degradation kinetics of NPX by the UVA-LED/PI AOP in the presence of water matrices (i.e., chloride, bicarbonate, and humic acid) and in real waters were examined, and the underlying mechanisms were illustrated. A total of nine transformation products were identified from NPX oxidation by the UVA-LED/PI AOP, mainly via hydroxylation, dealkylation, and oxidation pathways. The UVA-LED/PI AOP proposed might be a promising technology for the treatment of micropollutants in aqueous solutions. The pivotal role of ΦPI during light photolysis of PI may guide the future design of light-assisted PI AOPs.
Collapse
Affiliation(s)
- Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai519087, People's Republic of China
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen529020, People's Republic of China
| | - Ge Zeng
- School of Biotechnology and Health Science, Wuyi University, Jiangmen529020, People's Republic of China
| | - Linqian An
- School of Biotechnology and Health Science, Wuyi University, Jiangmen529020, People's Republic of China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, People's Republic of China
| | - Zhimin Ao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai519087, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin150090, People's Republic of China
| |
Collapse
|
48
|
Wang D, Ma J, Zhang J, Strathmann TJ. Carbocatalysts for Enhancing Permanganate Oxidation of Sulfisoxazole. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18473-18482. [PMID: 36727553 DOI: 10.1021/acs.est.2c08141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Permanganate (Mn(VII)) is extensively applied in water purification due to its stability and ease of handling, but it is a mild oxidant for trace organic contaminants (TrOCs). Hence, there is significant interest in strategies for enhancing reaction kinetics, especially in combination with efficient and economical carbocatalysts. This study compared the performance of four carbocatalysts (graphite, graphene oxide (GO), reduced-GO (rGO), and nitrogen-doped rGO (N-rGO)) in accelerating sulfisoxazole (SSX) oxidation by Mn(VII) and found that GO exhibited the greatest catalytic performance. Besides, the Mn(VII)/GO system shows desirable capacities to remove a broad spectrum of TrOCs. We proposed that the degradation of SSX in Mn(VII)-GO suspensions follows two routes: (i) direct oxidation of SSX by Mn species [both Mn(VII) and in situ formed MnO2(s)] and (ii) a carbocatalyst route, where GO acts as an electron mediator, accepting electrons from SSX and transferring them to Mn(VII). We developed a mathematical model to show the contribution of each parallel pathway and found one-electron transfer is primarily responsible for accelerating SSX removal in the Mn(VII)/GO system. Findings in this study showed that GO provides a simple and effective strategy for enhancing the reactivity of Mn(VII) and provided mechanistic insights into the GO-catalyzed redox reaction between SSX and Mn(VII).
Collapse
Affiliation(s)
- Dingxiang Wang
- School of Environment, Harbin Institute of Technology, Harbin150090, P.R. China
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin150090, P.R. China
| | - Jing Zhang
- School of Environment, Harbin Institute of Technology, Harbin150090, P.R. China
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado80401, United States
| |
Collapse
|
49
|
Zhou Q, Luo L, Xia L, Cha C, Jiang F, Wang H, Dai J, Shu L. Persulfate enhanced removal of bisphenol A by copper oxide/reduced graphene oxide foam: Influencing factors, mechanism and degradation pathway. CHEMOSPHERE 2023; 340:139786. [PMID: 37574092 DOI: 10.1016/j.chemosphere.2023.139786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
The CuO/reduced graphene oxide foam (CuO/RGF) with excellent recyclability was prepared via hydrothermal method followed by freeze drying treatment for bisphenol A (BPA) removal via activating peroxydisulfate (PDS). SEM, XRD, XPS, FT-IR, BET, and TG techniques were used to investigate the structure and property of CuO/RGF. The effect of degradation conditions (pH, PDS amount, Cl-, HCO3-, HA and FA) on BPA removal by CuO/RGF were investigated. The result presented that CuO nanosheet was inserted into the RGF carrier with three-dimensional structure. The degradation rate constant of BPA over CuO/RGF (0.00917 min-1) was 1.24 and 6.46 times higher than those of BPA over CuO (0.00714 min-1) and RGF (0.00142 min-1). More importantly, the pore structure of RGF can successfully limit the release of Cu (II) compared to pure CuO. According to quenching test as well as electron spin resonance (EPR) spectra, BPA degradation was triggered by 1O2, •OH and SO4•-, which was the combination of nonradical (1O2) and radical activation of PDS (•OH and SO4•-). The possible degradation route of BPA was proposed based on intermediates obtained by combining solid phase extraction pretreatment technique with high performance liquid-mass spectrometry. After assessing the viability of MCF-7 cells, we can see that the estrogenic activities of treated solution reduced without producing stronger endocrine disruptors.
Collapse
Affiliation(s)
- Qinwen Zhou
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, China
| | - Lijun Luo
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, China.
| | - Lihong Xia
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, China
| | - Canhu Cha
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, China
| | - Fengzhi Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, China
| | - Hongbin Wang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, China
| | - Jianhui Dai
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, China
| | - Li Shu
- School of Engineering, Edith Cowan University, 70 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| |
Collapse
|
50
|
Weng Z, Lin Y, Guo S, Zhang X, Guo Q, Luo Y, Ou X, Ma J, Zhou Y, Jiang J, Han B. Site Engineering of Covalent Organic Frameworks for Regulating Peroxymonosulfate Activation to Generate Singlet Oxygen with 100 % Selectivity. Angew Chem Int Ed Engl 2023; 62:e202310934. [PMID: 37668453 DOI: 10.1002/anie.202310934] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Singlet oxygen (1 O2 ) is an excellent reactive oxygen species (ROSs) for the selective conversion of organic matter, especially in advanced oxidation processes (AOPs). However, due to the huge dilemma in synthesizing single-site type catalysts, the control and regulation of 1 O2 generation in AOPs is still challenging and the underlying mechanism remains largely obscure. Here, taking advantage of the well-defined and flexibly tunable sites of covalent organic frameworks (COFs), we report the first achievement in precisely regulating ROSs generation in peroxymonosulfate (PMS)-based AOPs by site engineering of COFs. Remarkably, COFs with bipyridine units (BPY-COFs) facilitate PMS activation via a nonradical pathway with 100 % 1 O2 , whereas biphenyl-based COFs (BPD-COFs) with almost identical structures activate PMS to produce radicals (⋅OH and SO4 .- ). The BPY-COFs/PMS system delivers boosted performance for selective degradation of target pollutants from water, which is ca. 9.4 times that of its BPD-COFs counterpart, surpassing most reported PMS-based AOPs systems. Mechanism analysis indicated that highly electronegative pyridine-N atoms on BPY-COFs provide extra sites to adsorb the terminal H atoms of PMS, resulting in simultaneous adsorption of O and H atoms of PMS on one pyridine ring, which facilitates the cleavage of its S-O bond to generate 1 O2 .
Collapse
Affiliation(s)
- Zonglin Weng
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yuanfang Lin
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Siyuan Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xinfei Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Qin Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yu Luo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xinwen Ou
- School of Physics, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yang Zhou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Bin Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|