1
|
Simiyari N, Honarvar M, Naderi M. The extraction of inorganic phase-change materials from sugar industry wastes with the purpose of solid waste management. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024:1-15. [PMID: 39485264 DOI: 10.1080/10962247.2024.2422849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/16/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024]
Abstract
This study focused on the feasibility of identifying and recycling inorganic phase-change materials (PCMs) from sugar industry wastes in two cities of Qazvin and Hamadan in Iran. In this study, dry sugar beet pomace, sugar beet pomace, sugar beet molasses, leaves and plant residues of sugar beet and sugarcane bagasse were investigated. The inorganic materials were identified by X-ray Diffraction (XRD), thermal characteristics were determined by differential scanning calorimetry (DSC), and morphological characteristics were determined by scanning electron microscopy (SEM). Additionally, physical and thermal properties of molasses and bagasse samples were analyzed to determine their suitability as inorganic PCMs. The results of this study demonstrated that molasses and bagasse have the potential to be used as mineral PCMs in thermal energy storage applications. The results of this study demonstrated that in the wet sugar beet pomace the highest and lowest concentrations of inorganic PCMs were silicon dioxide (SiO2) and sodium chloride (NaCl), respectively. Moreover, the highest calcium fluoride (CaF₂) composition was reported in dry sugar beet pomace. In the samples of leaves and residues of sugar beet and sugarcane bagasse, the highest concentration of was NaCl. The detection and recycling of mineral PCMs from sugar industry wastes offer a sustainable solution for waste management and provide a renewable source of thermal energy storage materials.Implications: This study demonstrated the potential for the extraction of inorganic phase-change materials from sugar industry wastes as a means of solid waste management. By repurposing these materials, we can reduce the environmental impact of sugar production and contribute to sustainable practices in the industry.
Collapse
Affiliation(s)
- Nafiseh Simiyari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Honarvar
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maziar Naderi
- Department of Environmental Health Engineering, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Li J, Li S, Huang S, Xu J, Yan Q, Jin S, Liu Y. Facilitating polymorphic crystallization of HMX through ultrasound and trace additive assistance. ULTRASONICS SONOCHEMISTRY 2024; 107:106946. [PMID: 38852536 PMCID: PMC11187238 DOI: 10.1016/j.ultsonch.2024.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Low sensitivity octahydro-1,3,4,7-tetranitro-1,3,5,7-tetrazocine (HMX) has garnered significant attention from researchers due to its reduced shock sensitivity. However, the crystallization process poses challenges due to the high solidity and viscosity of the metastable α phase. Despite efforts to address this with additional energy sources like ultrasonic irradiation, prolonged exposure duration often results in small particle sizes, hindering the production of HMX with a consistent particle size distribution, thus limiting its applicability. To overcome these challenges, a method combining ultrasonic irradiation and trace H+ additive was proposed and investigated for their impact on the polymorphic transformation of HMX. The H+ additive was found to modify barriers, thus there was a lack of competitive driving force for the nucleation or growth of the metastable α form, thereby shortening the transformation pathway and duration. Moreover, the H+ additive significantly accelerated the nucleation rate of the β form (67.7 orders of magnitude faster with 0.10 wt ‰ H+) and the growth rate of β form HMX (5.8 orders of magnitude faster with 0.10 wt ‰ H+). While H+ additive alone was insufficient to induce spontaneous nucleation of the β form, combining it with short-duration ultrasonic irradiation further promoted β nucleation and shortened the polymorphic transformation duration (almost 20 orders of magnitude shorter). This rational approach led to effective control of the transformation process. The resulting low sensitivity HMX crystals exhibited varying mean sizes ranging from 20 to 340 μm, with purity exceeding 99.6 %, an apparent density greater than 1.8994 g/cm3, and few internal defects, fully meeting the requirements of low-sensitivity HMX, thus significantly expanding its potential applications. Our study sheds light on the mechanisms governing HMX polymorphic transformation in the presence of additives and ultrasonic irradiation, offering guidance for the rational control of this complex transformation.
Collapse
Affiliation(s)
- Jie Li
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mian Yang 621900, China; School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100083, China
| | - Shichun Li
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mian Yang 621900, China
| | - Shiliang Huang
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mian Yang 621900, China
| | - Jinjiang Xu
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mian Yang 621900, China
| | - Qilong Yan
- Science and Technology on Combustion, Internal Flow and Thermo-structure Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shaohua Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100083, China.
| | - Yu Liu
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mian Yang 621900, China.
| |
Collapse
|
3
|
Tan J, Sweatman MB. Secondary nucleation in symmetric binary SALR mixtures. Phys Chem Chem Phys 2024; 26:17057-17064. [PMID: 38836847 DOI: 10.1039/d3cp05765h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Monte Carlo simulation is used to study secondary nucleation, fissioning, or 'reproduction', of giant clusters in a symmetric binary model fluid with competing short-range (SA) and long-range (LR) interactions. Previous work [M. B. Sweatman, Mol. Phys., 116(15-16), 1945-1952] suggests that a pure SALR fluid can exhibit secondary nucleation if the solute concentration is slowly increased. We show this is also true for a binary symmetric SALR mixture where the cross-interactions can be tuned to generate clusters with three different kinds of structure; (i) independent clusters of each component, (ii) contact clusters of different components, and (iii) mixed clusters. In each case, the overall concentration of each component is identical. This binary model is an initial step towards using SALR fluids to model the intra-cellular space of biological cells that contain a wide range of membraneless organelles and the chemical 'soup' at the origin of life.
Collapse
Affiliation(s)
- Jiazheng Tan
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Martin B Sweatman
- Institute of Materials and Processes, School of Engineering, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, EH9 3FB, UK.
| |
Collapse
|
4
|
Indu GK, Habibullah S, Kumar Shaw T, Mohanty B. Effect of mango butter on the physicochemical properties of beeswax-Moringa seed oil-based oleogels for topical application. Drug Dev Ind Pharm 2024; 50:432-445. [PMID: 38526993 DOI: 10.1080/03639045.2024.2334314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVE The purpose of this research was to determine any connections between the characteristics of oleogels made of beeswax and the impact of mango butter. METHODS Oleogel was prepared through inverted tube methods, and optimized through oil binding capacity. Other evaluations like bright field and polarized microscopy, Fourier-transform infrared (FTIR) spectroscopy, crystallization kinetics, mechanical study, and X-ray diffractometry (XRD). The drug release kinetic studies and in vitro antibacterial studies were performed. RESULTS FTIR study reveals that the gelation process does not significantly alter the chemical composition of the individual components. Prepared gel exhibiting fluid-like behavior or composed of brittle networks is particularly vulnerable to disruptions in their network design. The incorporation of mango butter increases the drug permeation. In-vitro microbial efficacy study was found to be excellent. CONCLUSION The studies revealed that mango butter can be used to modify the physico-chemical properties of the oleogels.
Collapse
Affiliation(s)
- Gourav Kumar Indu
- Department of Pharmaceutical Technology, JIS University, Agarpara, Kolkata, India
| | - Sk Habibullah
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (deemed to be) University, Odisha, India
| | - Tapan Kumar Shaw
- Department of Pharmaceutical Technology, JIS University, Agarpara, Kolkata, India
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack, India
| |
Collapse
|
5
|
Aka RJN, Hossain MM, Nasir A, Zhan Y, Zhang X, Zhu J, Wang ZW, Wu S. Enhanced nutrient recovery from anaerobically digested poultry wastewater through struvite precipitation by organic acid pre-treatment and seeding in a bubble column electrolytic reactor. WATER RESEARCH 2024; 252:121239. [PMID: 38335753 DOI: 10.1016/j.watres.2024.121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Limited mineralization of organic phosphorus to phosphate during the anaerobic digestion process poses a significant challenge in the development of cost-effective nutrient recovery strategies from anaerobically digested poultry wastewater (ADPW). This study investigated the influence of organic acids on phosphorus solubilization from ADPW, followed by its recycling in the form of struvite using a bubble column electrolytic reactor (BCER) without adding chemicals. The impact of seeding on the efficiency of PO43- and NH3-N recovery as well as the size distribution of recovered precipitates from the acid pre-treated ADPW was also evaluated. Pre-treatment of the ADPW with oxalic acid achieved complete solubilization of phosphorus, reaching ∼100% extraction efficiency at pH 2.5. The maximum removal efficiency of phosphate and ammonia-nitrogen from the ADPW were 88.9% and 90.1%, respectively, while the addition of 5 and 10 g/L struvite seed to the BCER increased PO43- removal efficiency by 9.6% and 11.5%, respectively. The value of the kinetic rate constant, k, increased from 0.0176 min-1 (unseeded) to 0.0198 min-1, 0.0307 min-1, and 0.0375 min-1 with the seed loading rate of 2, 5, and 10 g/L, respectively. Concurrently, the average particle size rose from 75.3 μm (unseeded) to 82.1 μm, 125.7 μm, and 148.9 μm, respectively. Results from XRD, FTIR, EDS, and dissolved chemical analysis revealed that the solid product obtained from the recovery process was a multi-nutrient fertilizer consisting of 94.7% struvite with negligible levels of heavy metals.
Collapse
Affiliation(s)
| | - Md Mokter Hossain
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844
| | - Alia Nasir
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844
| | - Yuanhang Zhan
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Xueyao Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061
| | - Jun Zhu
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Zhi-Wu Wang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061
| | - Sarah Wu
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844.
| |
Collapse
|
6
|
Schmelzer JWP, Tropin TV, Schick C. Effects of Structural Relaxation of Glass-Forming Melts on the Overall Crystallization Kinetics in Cooling and Heating. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1485. [PMID: 37998176 PMCID: PMC10670338 DOI: 10.3390/e25111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
In the theoretical treatment of crystallization, it is commonly assumed that the relaxation processes of a liquid proceed quickly as compared to crystal nucleation and growth processes. Actually, it is supposed that a liquid is always located in the metastable state corresponding to the current values of pressure and temperature. However, near and below the glass transition temperature, Tg, this condition is commonly not fulfilled. In such cases, in the treatment of crystallization, deviations in the state of the liquid from the respective metastable equilibrium state have to be accounted for when determining the kinetic coefficients governing the crystallization kinetics, the thermodynamic driving force of crystallization, and the surface tension of the aggregates of the newly evolving crystal phase including the surface tension of critical clusters considerably affecting the crystal nucleation rate. These factors may greatly influence the course of the overall crystallization process. A theoretical analysis of the resulting effects is given in the present paper by numerical solutions of the J(ohnson)-M(ehl)-A(vrami)-K(olmogorov) equation employed as the tool to model the overall crystallization kinetics and by analytical estimates of the crystallization peak temperatures in terms of the dependence on cooling and heating rates. The results are shown to be in good agreement with the experimental data. Possible extensions of the theory are anticipated and will be explored in future analysis.
Collapse
Affiliation(s)
- Jürn W. P. Schmelzer
- Institut für Physik, Universität Rostock, Albert-Einstein-Strasse 23-25, 18059 Rostock, Germany;
- Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| | - Timur V. Tropin
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain;
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, ul. Joliot-Curie 6, 141980 Dubna, Russia
| | - Christoph Schick
- Institut für Physik, Universität Rostock, Albert-Einstein-Strasse 23-25, 18059 Rostock, Germany;
- Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| |
Collapse
|
7
|
Landy KM, Gibson KJ, Chan RR, Pietryga J, Weigand S, Mirkin CA. Programming Nucleation and Growth in Colloidal Crystals Using DNA. ACS NANO 2023; 17:6480-6487. [PMID: 36995781 DOI: 10.1021/acsnano.2c11674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Colloidal crystal engineering with DNA has advanced beyond controlling the lattice symmetry and parameters of ordered crystals to now tuning crystal habit and size. However, the predominately used slow-cooling procedure that enables faceted crystal habits also limits control over crystal size and uniformity because nucleation and growth cannot be separated. Here, we explore how DNA sequence design can be used to deliberately separate nucleation and growth in a given crystallization process. Specifically, two batches of complementary particles are created with one batch exhibiting perfectly complementary base pairs while the other has a strategically introduced mismatch. This design enables the weaker binding "growth" particles to participate in heterogeneous growth on the nucleates formed from the stronger binding "seed" particles, effectively eliminating secondary nucleation pathways. By eliminating secondary nucleation events, this approach improves crystal uniformity, as measured by polydispersity (from PDI = 0.201 to 0.091). By using this approach with two different particle cores (gold and silver), we show how core-shell colloidal crystals can be synthesized in a one-pot fashion. This work shows how tuning DNA interaction strength can profoundly impact crystal size, uniformity, and structure, parameters central to using such materials as device components.
Collapse
Affiliation(s)
- Kaitlin M Landy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kyle J Gibson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rachel R Chan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jacob Pietryga
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Steven Weigand
- DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT), Synchrotron Research Center, Northwestern University, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Achermann R, Košir A, Bodák B, Bosetti L, Mazzotti M. Process Performance and Operational Challenges in Continuous Crystallization: A Study of the Polymorphs of L-Glutamic Acid. CRYSTAL GROWTH & DESIGN 2023; 23:2485-2503. [PMID: 37038406 PMCID: PMC10080659 DOI: 10.1021/acs.cgd.2c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The crystallization of the two polymorphs of l-glutamic acid (LGA) is carried out in a continuous crystallization process, and its performance according to different criteria is evaluated. The study aims at identifying suitable operating conditions for producing either αLGA or βLGA with a high polymorphic purity. To this end, we investigate the process both from a theoretical perspective and through experiments using either a single stirred-tank crystallizer or a cascade of two stirred-tank crystallizers in series. In terms of theory, we extend the MSMPR-based steady-state stability analysis of Farmer et al. (Farmer, T. C. et al. AIChE J.2016, 62, 3505-3514) by accounting for the possibility of a nonrepresentative withdrawal of the solid phase from the crystallizer. Additionally, the process is simulated using population balance equations, thereby investigating the effect of operating conditions on polymorphic purity, yield, and productivity. Guided by the model-based conclusions, we identified suitable operating conditions and experimentally tested them. The experimental campaign has demonstrated that βLGA could be successfully and continuously produced in both process configurations according to the theory with performance as expected, whereas that was not possible for αLGA. The difference between the two stems from different operational challenges, whose consequence is that steady-state operation is attained in the case of βLGA but not in that of αLGA. In the former case, the needle-like βLGA crystals, which exhibit no agglomeration, tend to be only slightly oversampled; in the latter case, the prismatic αLGA crystals undergo major agglomeration and hence are very difficult to suspend and effectively withdraw from the crystallizer.
Collapse
Affiliation(s)
| | | | | | | | - Marco Mazzotti
- E-mail: . Phone: +41 44 632
24 56. Fax: +41 44 632 11
41
| |
Collapse
|
9
|
Model-based design for water-soluble crystals with anti-caking function by the feedback between caking prediction and crystallization control. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Schiele SA, Meinhardt R, Friedrich T, Briesen H. On how non-facetted crystals affect crystallization processes. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Thakur AK, Kumar R, Vipin Kumar V, Kumar A, Kumar Gaurav G, Naresh Gupta K. A critical review on thermodynamic and hydrodynamic modeling and simulation of liquid antisolvent crystallization of pharmaceutical compounds. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Shi Q, Chen H, Wang Y, Wang R, Xu J, Zhang C. Amorphous Solid Dispersions: Role of the Polymer and Its Importance in Physical Stability and In Vitro Performance. Pharmaceutics 2022; 14:pharmaceutics14081747. [PMID: 36015373 PMCID: PMC9413000 DOI: 10.3390/pharmaceutics14081747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
Amorphous solid dispersions stabilized by one or more polymer(s) have been widely used for delivering amorphous drugs with poor water solubilities, and they have gained great market success. Polymer selection is important for preparing robust amorphous solid dispersions, and considerations should be given as to how the critical attributes of a polymer can enhance the physical stability, and the in vitro and in vivo performances of a drug. This article provides a comprehensive overview for recent developments in the understanding the role of polymers in amorphous solid dispersions from the aspects of nucleation, crystal growth, overall crystallization, miscibility, phase separation, dissolution, and supersaturation. The critical properties of polymers affecting the physical stability and the in vitro performance of amorphous solid dispersions are also highlighted. Moreover, a perspective regarding the current research gaps and novel research directions for better understanding the role of the polymer is provided. This review will provide guidance for the rational design of polymer-based amorphous pharmaceutical solids with desired physicochemical properties from the perspective of physical stability and in vitro performance.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
- Correspondence: (Q.S.); (C.Z.)
| | - Haibiao Chen
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Ruoxun Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Jia Xu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Chen Zhang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
- Correspondence: (Q.S.); (C.Z.)
| |
Collapse
|
13
|
Deng Q, Wang H, Zhou X, Xie Z, Tian Y, Zhu X, Chen R, Ding Y, Liao Q. Microstructure Enhances the Local Electric Field and Promotes Water Freezing. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiyuan Deng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of energy and power engineering, Chongqing University, Chongqing 400030, China
| | - Hong Wang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of energy and power engineering, Chongqing University, Chongqing 400030, China
| | - Xin Zhou
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of energy and power engineering, Chongqing University, Chongqing 400030, China
| | - Zhenting Xie
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of energy and power engineering, Chongqing University, Chongqing 400030, China
| | - Ye Tian
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of energy and power engineering, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of energy and power engineering, Chongqing University, Chongqing 400030, China
| | - Rong Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of energy and power engineering, Chongqing University, Chongqing 400030, China
| | - Yudong Ding
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of energy and power engineering, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of energy and power engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
14
|
Shi Q, Moinuddin SM, Wang Y, Ahsan F, Li F. Physical stability and dissolution behaviors of amorphous pharmaceutical solids: Role of surface and interface effects. Int J Pharm 2022; 625:122098. [PMID: 35961416 DOI: 10.1016/j.ijpharm.2022.122098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Amorphous pharmaceutical solids (APS) are single- or multi-component systems in which drugs exist in high-energy states with long-range disordered molecular packing. APSs have become one of the most effective and widely used pharmaceutical delivery approaches for poorly water-soluble drugs in the last several decades. Considerable efforts have been made to investigate the physical stability and dissolution behaviors of APSs, however, the underlying mechanisms remain imperfectly understood. Recent studies reveal that surface and interface properties of APSs could strongly affect the physical stability and dissolution behaviors. This paper provides a comprehensive overview of recent studies focusing on the physical stability and dissolution behaviors of APSs from both surface and interface perspectives. We highlight the role of surface or interface properties in nucleation, crystal growth, phase separation, dissolution, and supersaturation. Meanwhile, the challenges and scope of research on surface and interface properties in the future are also briefly discussed. This review contributes to a better understanding of the surface- and interface-facilitated processes, which will provide more efficient and rational guidance for the design of APSs.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| | - Sakib M Moinuddin
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA 95757, USA; East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Bldg. 650 2nd Floor, Rm. 2B121A, Mather, CA 95655, USA
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Fakhrul Ahsan
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA 95757, USA; East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Bldg. 650 2nd Floor, Rm. 2B121A, Mather, CA 95655, USA.
| | - Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| |
Collapse
|
15
|
Kwon S, Lakerveld R. Impact of Cooling Profile on Batch Emulsion Solution Crystallization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Soojin Kwon
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Richard Lakerveld
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
16
|
Cui P, Yang W, Jia L, Zhou L, Zhang M, Bao Y, Xie C, Hou B, Yin Q. Spherulitic Growth Strategy for Agitation-Induced Formation of Spherical Amoxicillin Sodium Products. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pingping Cui
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Wenchao Yang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Lihong Jia
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Ling Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Meijing Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Tianjin Key Laboratory of Modern Drug Delivery and High Efficiency, Tianjin 300072, People’s Republic of China
| | - Ying Bao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Tianjin Key Laboratory of Modern Drug Delivery and High Efficiency, Tianjin 300072, People’s Republic of China
| | - Chuang Xie
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Tianjin Key Laboratory of Modern Drug Delivery and High Efficiency, Tianjin 300072, People’s Republic of China
| | - Baohong Hou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Tianjin Key Laboratory of Modern Drug Delivery and High Efficiency, Tianjin 300072, People’s Republic of China
| | - Qiuxiang Yin
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Tianjin Key Laboratory of Modern Drug Delivery and High Efficiency, Tianjin 300072, People’s Republic of China
| |
Collapse
|
17
|
Bodák B, Breveglieri F, Mazzotti M. On the model-based design and comparison of crystallization-based deracemization techniques. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Ahn B, Bosetti L, Mazzotti M. Secondary Nucleation by Interparticle Energies. III. Nucleation Rate Model. CRYSTAL GROWTH & DESIGN 2022; 22:3625-3636. [PMID: 35673395 PMCID: PMC9164201 DOI: 10.1021/acs.cgd.1c01314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/18/2022] [Indexed: 06/01/2023]
Abstract
A nucleation rate model for describing the kinetics of secondary nucleation caused by interparticle energies (SNIPEs) is derived theoretically, verified numerically, and validated experimentally. The theoretical derivation reveals that the SNIPE mechanism can be viewed as enhanced primary nucleation, i.e., primary nucleation with a lower thermodynamic energy barrier (for nucleation) and a smaller critical nucleus size, both caused by the interparticle interactions and the associated energy between the surface of a seed crystal and a molecular cluster in solution, as shown in part I of this series. In the case of a sufficiently agitated suspension, the model depends on four parameters: two reflecting primary nucleation kinetics and the other two accounting for the intensity and effective spatial range of the interparticle interactions. As a numerical verification of the model, we show that the nucleation kinetics described by the SNIPE rate model is in quantitative agreement with those given by the kinetic rate equation model developed in part II of this series. A sensitivity analysis of the SNIPE rate model is conducted to present the effect of key model parameters on the nucleation kinetics. Moreover, the SNIPE rate model is validated by fitting the model to the time-resolved data of secondary nucleation experiments as well as to two other, well-known secondary nucleation rate models. Importantly, all of the estimated parameter values for the SNIPE model were consistent with the theoretical estimates, while some of the estimated parameter values for one of the well-known secondary nucleation models deviated from the corresponding theoretical values significantly.
Collapse
|
19
|
Wang C, Chen H, Shi H, Ma K, Ma Q, Gong J. Role of a Nanocomposite Pour Point Depressant on Wax Deposition in Different Flow Patterns from the Perspective of Crystallization Kinetics. ACS OMEGA 2022; 7:11200-11207. [PMID: 35415336 PMCID: PMC8992259 DOI: 10.1021/acsomega.2c00068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Wax deposition is one of the core issues affecting flow assurance studies of crude oil pipelines, particularly with deep and ultradeep water conditions. Nanocomposite pour point depressants (NPPDs) provide a novel and effective strategy for inhibiting wax deposition and have recently attracted increasing research attention. Although recent advances have been made in understanding the performance and mechanism of NPPDs, the effect of flow pattern remains an open question. In this paper, deposition thicknesses of waxy oils with different flow patterns and NPPD dosages were obtained using a flow loop experimental device. It was found that the NPPD used in the current work can effectively inhibit the formation of wax deposition layers in different flow patterns. The Avrami model-focused beam reflectance measurement and polarizing microscope experiment method were used to characterize crystallization kinetics parameters and mesoscopic structure parameters of wax crystals. The consistency of results from Avrami equation fitting parameters, wax crystal morphology, and particle number supported the validity of crystallization kinetics analysis. The mechanisms of NPPD in different flow regimes were discussed. The inhibition of laminar and turbulent deposition layers by NPPD was attributed to the improvement of wax crystal morphology and the reduction of wax crystal number, respectively. This has important consequences for our understanding of the utilization and mechanism of nanocomposite pour point depressants.
Collapse
Affiliation(s)
- Chuanshuo Wang
- National
Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum
Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution
Technology, China University of Petroleum, Beijing 102249, P.R. China
| | - Hongju Chen
- China
National Offshore Oil Cooperation Research Center, Beijing 100027, P.R. China
| | - Haitao Shi
- National
Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum
Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution
Technology, China University of Petroleum, Beijing 102249, P.R. China
| | - Ke Ma
- National
Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum
Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution
Technology, China University of Petroleum, Beijing 102249, P.R. China
| | - Qianli Ma
- Jiangsu
Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University, Changzhou 213164, P.R. China
| | - Jing Gong
- National
Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum
Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution
Technology, China University of Petroleum, Beijing 102249, P.R. China
| |
Collapse
|
20
|
Bodák B, Mazzotti M. Solid-State Deracemization via Temperature Cycles in Continuous Operation: Model-Based Process Design. CRYSTAL GROWTH & DESIGN 2022; 22:1846-1856. [PMID: 35264910 PMCID: PMC8895372 DOI: 10.1021/acs.cgd.1c01398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Solid-state deracemization via temperature cycles converts a racemic crystal mixture into an enantiopure product by periodic cycling of the temperature in the presence of a racemization catalyst. A continuous counterpart of this conventional batch-operated process is proposed that can be performed in mixed suspension mixed product removal crystallizers (MSMPRCs). More specifically, three different configurations are described to perform periodic forcing via temperature cycles, which differ from each other in the type of the feed and in the withdrawal system. We have developed a model by extending our recent population balance equation model of batch solid-state deracemization via temperature cycles, and we exploit this tool to analyze the start-up and periodic steady-state behavior. Moreover, we compare the performance of the different configurations based on the selected key performance indicators, namely, average periodic steady-state enantiomeric excess and productivity. The process with solution feed yields pure enantiomers, while the solid and suspension-fed process alternatives result in highly enantiomerically enriched crystals. We further design an MSMPRC cascade to overcome this purity limitation. This work discusses guidelines on how to transform the batch process of temperature cycles into a continuous operation, which enables stable, unattended operation and chiral crystal production with consistent product quality.
Collapse
Affiliation(s)
| | - Marco Mazzotti
- E-mail: . Phone: +41 44 632 24 56. Fax: +41 44 632 11
41
| |
Collapse
|
21
|
Castro F, Cunha I, Ferreira A, Teixeira JA, Rocha F. Towards an enhanced control of protein crystallization: Seeded batch lysozyme crystallization in a meso oscillatory flow reactor. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Nucleation Behaviors of Adipic Acid in Different Polarity Solvent Based on Metastable Zone Width. CRYSTALS 2022. [DOI: 10.3390/cryst12020202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this contribution, we experimentally determined the metastable zone width (MSZW) of adipic acid (AA) in different polar solvents to reveal the nucleation behavior. We performed analyses for different cooling rates, saturation temperatures and polar solvents. The findings showed that the MSZW increased as the cooling rate increased, or saturation temperature or polarity decreased. Here, we suggest that the hydrogen bond donor capacity decreases as the polarity of the solvent decreases, which weakens the solute and solvent interaction and makes the desolvation process more difficult during nucleation. Furthermore, we found that the MSZW is mainly determined by the cooling rate, when the cooling rate is large enough. On account of the classical nucleation theory, it was found that the sizes of the critical nucleus and Gibbs nucleation energy do not increase monotonously with increasing driving force. Moreover, this study confirms that solid–liquid interface tension is associated with crystallization driving force.
Collapse
|
23
|
Ahn B, Bosetti L, Mazzotti M. Secondary Nucleation by Interparticle Energies. II. Kinetics. CRYSTAL GROWTH & DESIGN 2022; 22:74-86. [PMID: 35024002 PMCID: PMC8739839 DOI: 10.1021/acs.cgd.1c00928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/19/2021] [Indexed: 06/02/2023]
Abstract
This work presents a mathematical model that describes growth, homogeneous nucleation, and secondary nucleation that is caused by interparticle interactions between seed crystals and molecular clusters in suspension. The model is developed by incorporating the role of interparticle energies into a kinetic rate equation model, which yields the time evolution of nucleus and seed crystal populations, as in a population balance equation model, and additionally that of subcritical molecular clusters, thus revealing an important role of each population in crystallization. Seeded batch crystallization at a constant temperature has been simulated to demonstrate that the interparticle interactions increase the concentration of the critical clusters by several orders of magnitude, thus causing secondary nucleation. This explains how secondary nucleation can occur at a low supersaturation that is insufficient to trigger primary nucleation. Moreover, a sensitivity analysis has shown that the intensity of the interparticle energies has a major effect on secondary nucleation, while its effective distance has a minor effect. Finally, the simulation results are qualitatively compared with experimental observations in the literature, thus showing that the model can identify operating conditions at which primary or secondary nucleation is more prone to occur, which can be used as a useful tool for process design.
Collapse
Affiliation(s)
- Byeongho Ahn
- Institute of Energy and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Luca Bosetti
- Institute of Energy and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Marco Mazzotti
- Institute of Energy and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
24
|
Yun K, Jalaludin I, Jung S, Jang KS, Kim J. Detection of multiply charged protein ions using matrix-assisted laser desorption/ionization mass spectrometry and a force-dried droplet method with a 2-nitrophloroglucinol matrix. Analyst 2022; 147:505-515. [DOI: 10.1039/d1an02114a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MALDI-MS of myoglobin using 2-NPG with HCl additive.
Collapse
Affiliation(s)
- Kangseok Yun
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Iqbal Jalaludin
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Shinhee Jung
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
25
|
|
26
|
Zhao Y, Cui J, Liu L, Hou G, Kamaraju VK, Glennon B. Crystal Growth Kinetics of Benzoic Acid in Aqueous Ethanol Solution. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Zhao
- School of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, P. R. China
- Synthesis and Solid State Pharmaceutical Centre (SSPC), School of Chemical and Bioprocess Engineering, University College Dublin, Dublin D4, Ireland
| | - Jingjing Cui
- School of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, P. R. China
| | - Lu Liu
- School of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, P. R. China
| | | | | | - Brian Glennon
- Synthesis and Solid State Pharmaceutical Centre (SSPC), School of Chemical and Bioprocess Engineering, University College Dublin, Dublin D4, Ireland
- APC Ltd, Dublin D4, Ireland
| |
Collapse
|