1
|
Nzotcha U, Biyeme F, Yimen N, Voufo J, Kenfack J, Ngohe-Ekam PS, Meva'a JRL. Carbon capture from controlled degassing of deep meromictic lakes: Insights to techno-economic and environmental feasibility, from the "killer lakes" in Cameroon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178547. [PMID: 39842288 DOI: 10.1016/j.scitotenv.2025.178547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Carbon dioxide (CO2) accumulation and emission are well-known features of deep lakes, making them a significant unavoidable carbon source to the atmosphere. In the case of meromictic lakes, degassing devices are installed to controllably release through a pipe the CO2 trapped in the bottom waters. Otherwise, the gas is emitted diffusely at the air-water surface or accidentally through a limnic eruption when the saturation limit is reached. This controlled degassing operation gives rise to an end-of-pipe carbon capture opportunity that has yet to be explored. In the perspective of promoting negative emission technologies, as this is required to reach the near-term global carbon neutrality objective, this study outlines an end-of-pipe solid sorbent-based carbon capture technique that targets the CO2 released through controlled degassing of deep meromictic lakes. A direct air capture (DAC) system astutely dimensioned and optimised by the vacuuming of air enriched with CO2 from the controlled degassing of the lake is therefore proposed and its technical, economic, and environmental feasibility discussed based on the cases of lakes Nyos and Monoun in Cameroon. It resulted that, even on a small scale, capturing CO2 from lake degassing at 8 vol% (80,000 ppm) can achieve a life cycle cost of 15 bar-compressed CO2 between $200 and $350 tCO2-1, two to three times less than that of conventional DAC depending on the energy source used, with potentially attractive marginal abatement costs of CO2, especially if natural gas, hydro or solar PV are considered.
Collapse
Affiliation(s)
- Urbain Nzotcha
- The University of Yaoundé I, National Advanced School of Engineering of Yaoundé, P.O. Box: 8390, Yaoundé, Cameroon; Forschungszentrum Jülich GmbH, Institute of Energy Technology- Fundamental Electrochemistry (IET-1), Wilhelm-Johnen-Straße, 52428 Jülich, Germany.
| | - Florent Biyeme
- The University of Yaoundé I, National Advanced School of Engineering of Yaoundé, P.O. Box: 8390, Yaoundé, Cameroon.
| | - Nasser Yimen
- The University of Yaoundé I, National Advanced School of Engineering of Yaoundé, P.O. Box: 8390, Yaoundé, Cameroon.
| | - Joseph Voufo
- The University of Yaoundé I, National Advanced School of Engineering of Yaoundé, P.O. Box: 8390, Yaoundé, Cameroon.
| | - Joseph Kenfack
- The University of Yaoundé I, National Advanced School of Engineering of Yaoundé, P.O. Box: 8390, Yaoundé, Cameroon.
| | - Paul Salomon Ngohe-Ekam
- The University of Yaoundé I, National Advanced School of Engineering of Yaoundé, P.O. Box: 8390, Yaoundé, Cameroon.
| | - Jean Raymond Lucien Meva'a
- The University of Yaoundé I, National Advanced School of Engineering of Yaoundé, P.O. Box: 8390, Yaoundé, Cameroon.
| |
Collapse
|
2
|
Wang X, Liu H, Sun M, Gao F, Feng X, Xu M, Chen H, Yao K, Fan W, Sun D. Asymmetrical Modification of Cyclopentadienyl Cobalt in Eu-MOF for C 2H 2/CO 2 Separation. Inorg Chem 2024; 63:16605-16609. [PMID: 39193927 DOI: 10.1021/acs.inorgchem.4c03202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The development of novel adsorption materials is of significance for the efficient and low-energy purification of acetylene (C2H2). Emerging metal-organic framework (MOF) adsorbents demonstrate great application prospects in the field of gas adsorption and separation. Herein, we synthesized a Eu-MOF asymmetrically modified with cyclopentadienyl cobalt exhibiting two different types of cages, denoted as UPC-119. Adsorption isotherms and dynamic breakthrough curves confirm its potential in C2H2/CO2 separation, which is further evidenced by theoretical simulations. The high adsorption capacity and low adsorption enthalpy render UPC-119 as a promising adsorbent for C2H2/CO2 separation with ease of regeneration.
Collapse
Affiliation(s)
- Xiaokang Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hongyan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Meng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Fei Gao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xueying Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Mingming Xu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hui Chen
- Guangdong Advanced Carbon Materials Co., Ltd, Zhuhai, Guangdong 519000, China
| | - Kun Yao
- Guangdong Advanced Carbon Materials Co., Ltd, Zhuhai, Guangdong 519000, China
| | - Weidong Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
3
|
Stampi-Bombelli V, Storione A, Grossmann Q, Mazzotti M. On Comparing Packed Beds and Monoliths for CO 2 Capture from Air Through Experiments, Theory, and Modeling. Ind Eng Chem Res 2024; 63:11637-11653. [PMID: 38983186 PMCID: PMC11228921 DOI: 10.1021/acs.iecr.4c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024]
Abstract
This study compares the performance of amine-functionalized γ-alumina sorbents in the form of 3 mm γ-alumina pellets and of a γ-alumina wash-coated monolith for CO2 capture for direct air capture (DAC). Breakthrough experiments were conducted on the two contactors to analyze the adsorption kinetics and performance for different gas feeds. A constant pattern analysis revealed dominant mass transfer resistances in the gas film and in the pores, with axial dispersion also observed, particularly at higher concentrations. A 1D, physical model was used to fit the experiments and thus to estimate mass transfer and axial dispersion coefficients, which appear to be consistent with the hypotheses derived from constant pattern analysis. A dual kinetic model to describe mass transfer was found to better describe the tail behavior in the monolith, whereas a pseudo-first-order model was sufficient to describe breakthroughs on packed beds. A substantial two-order magnitude decrease in mass transfer coefficients was noted when reducing the feed concentration from 5.6% to 400 ppm CO2, thus underscoring the significant mass transfer limitations observed in DAC. Comparison between the contactors revealed notably higher mass transfer coefficients in the monolith compared to the packed beds, which are attributed to shorter diffusion lengths and lower equilibrium capacity. While the faster mass transfer coefficients observed in the monolith experiments led to reduced specific energy consumption and increased adsorption productivity compared to the packed bed at 400 ppm, no significant improvement was observed for the same process at the higher concentration of 5.6% CO2 in the feed. This finding highlights the need to tailor the contactor design to the specific gas separation requirements. This research contributes to the understanding and quantification of mass transfer kinetics at DAC concentrations in both packed bed and monolith contactors. It demonstrates the crucial role of the contactor in DAC systems and the importance of optimizing the adsorption step to enhance productivity and DAC performance.
Collapse
Affiliation(s)
| | - Alba Storione
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum-University of Bologna, via Terracini 28, Bologna 40131, Italy
| | - Quirin Grossmann
- Institute of Energy and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Marco Mazzotti
- Institute of Energy and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
4
|
Han Y, Zhang L, Yang W. Synthesis of Mesoporous Silica Using the Sol-Gel Approach: Adjusting Architecture and Composition for Novel Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:903. [PMID: 38869528 PMCID: PMC11173812 DOI: 10.3390/nano14110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
The sol-gel chemistry of silica has long been used for manipulating the size, shape, and microstructure of mesoporous silica particles. This manipulation is performed in mild conditions through controlling the hydrolysis and condensation of silicon alkoxide. Compared to amorphous silica particles, the preparation of mesoporous silica, such as MCM-41, using the sol-gel approach offers several unique advantages in the fields of catalysis, medicament, and environment, due to its ordered mesoporous structure, high specific surface area, large pore volume, and easily functionalized surface. In this review, our primary focus is on the latest research related to the manipulation of mesoporous silica architectures using the sol-gel approach. We summarize various structures, including hollow, yolk-shell, multi-shelled hollow, Janus, nanotubular, and 2D membrane structures. Additionally, we survey sol-gel strategies involving the introduction of various functional elements onto the surface of mesoporous silica to enhance its performance. Furthermore, we outline the prospects and challenges associated with mesoporous silica featuring different structures and functions in promising applications, such as high-performance catalysis, biomedicine, wastewater treatment, and CO2 capture.
Collapse
Affiliation(s)
- Yandong Han
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
| | - Lin Zhang
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
| | - Wensheng Yang
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Goncalves RB, Collados CC, Malliakas CD, Wang Z, Thommes M, Snurr RQ, Hupp JT. Chemically Reversible CO 2 Uptake by Dendrimer-Impregnated Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9299-9309. [PMID: 38647019 DOI: 10.1021/acs.langmuir.4c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Industrialization over the past two centuries has resulted in a continuous rise in global CO2 emissions. These emissions are changing ecosystems and livelihoods. Therefore, methods are needed to capture these emissions from point sources and possibly from our atmosphere. Though the amount of CO2 is rising, it is challenging to capture directly from air because its concentration in air is extremely low, 0.04%. In this study, amines installed inside metal-organic frameworks (MOFs) are investigated for the adsorption of CO2, including at low concentrations. The amines used are polyamidoamine dendrimers that contain many primary amines. Chemically reversible adsorption of CO2 via carbamate formation was observed, as was enhanced uptake of carbon dioxide, likely via dendrimer-amide-based physisorption. Limiting factors in this initial study are comparatively low dendrimer loadings and slow kinetics for carbon dioxide uptake and release, even at 80 °C.
Collapse
Affiliation(s)
- Rebecca B Goncalves
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Carlos Cuadrado Collados
- Institute of Separation Science and Technology, Department of Chemical and Bioengineering, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Christos D Malliakas
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhiwei Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthias Thommes
- Institute of Separation Science and Technology, Department of Chemical and Bioengineering, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
S Alivand M, Habiba U, Ghasemian M, Askari S, Webley PA. Amine-Functionalized Meso-Macroporous Polymers for Efficient CO 2 Capture from Ambient Air. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17411-17421. [PMID: 38557056 DOI: 10.1021/acsami.3c17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Over the past decade, direct air capture (DAC) of carbon dioxide (CO2) using solid nanoadsorbents has garnered attention as a negative emission technology with high energy efficiency. Although operational, the large-scale deployment of DAC technologies has been significantly delayed due to the low performance and high cost of solid DAC nanoadsorbents. Herein, we present a novel family of meso-macroporous melamine formaldehyde (MF) materials with a facile preparation methodology, low capital cost, and unique physicochemical characteristics for DAC. The fabricated MF materials exhibit an extra-large pore volume of 5.19 cm3/g with a 24.6 nm average pore diameter. We show that the synthesized MF materials can be used as substrates and impregnated with different amounts of tetraethylenepentamine (TEPA) to act as chemical nanoadsorbents for DAC. Owing to the ultrahigh pore volume of MF, a substantial amount of 71 wt % TEPA (i.e., MF-TEPA71%) can be loaded, resulting in 2.65 mmol/g of CO2 uptake under DAC conditions. In addition, the superior physicochemical properties of MF lead to a high CO2 loading of 2.07 mmol/g with low TEPA loading in MF-TEPA33%. The prepared MF-TEPA nanoadsorbents can be successfully employed in different shapes (i.e., droplets, pellets, and coatings) and maintain their superiority across different temperatures and CO2 concentrations. This study provides a promising approach for developing meso-macroporous substrates through a straightforward and scalable synthesis method, representing a new avenue for the next generation of DAC nanoadsorbents with superior performance for practical applications.
Collapse
Affiliation(s)
- Masood S Alivand
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Umma Habiba
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Mohsen Ghasemian
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Saeed Askari
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Paul A Webley
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Abdul Ajiz H, Widiyastuti W, Setyawan H, Nurtono T. Amine-functionalized porous silica production via ex- and in-situ method using silicate precursors as a selective adsorbent for CO 2 capture applications. Heliyon 2024; 10:e26691. [PMID: 38455574 PMCID: PMC10918157 DOI: 10.1016/j.heliyon.2024.e26691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
A comparison of the amine-modified silica particle's characteristics via ex- and in-situ routes and their application as a CO2 gas adsorbent is reported. Modifying silica particles via ex-situ involves two separate steps: forming porous silica particles with sodium lauryl sulfate (SLS) as a template and impregnation using ultrasound assistance. In contrast to ex-situ modification, in-situ modification of silica particles is carried out in one step by mixing directly between the silica source and the modifying agent. Controlling the characteristics of modified silica particles via in-situ is carried out by adding an SLS template removed simultaneously with particle formation to increase the surface area and porosity. Increasing the SLS template concentration shows a linear relationship between increasing particle surface area and amine loading. However, two different modification routes exert a direct influence on aminopropyl distribution. Silanization via in-situ which involves a simultaneous condensation reaction produces a higher amine loading reaching 1.2845 mmol/g of silica than via ex-situ which is only 0.9610 mmol/g of silica. The amount of aminopropyl that can be grafted on the silica surface shows a linear relationship to the quantity of CO2 gas adsorption capacity. Amine-modified silica particles obtained the highest adsorption capability via the in-situ route with an SLS 3 CMC template of 2.32 mmol/g silica at an operating pressure of 6 bar.
Collapse
Affiliation(s)
- Hendrix Abdul Ajiz
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - W. Widiyastuti
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Heru Setyawan
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Tantular Nurtono
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| |
Collapse
|
8
|
Kong Y, Liu Q, Liu Z, Shen X. Use of Ball Drop Casting and Surface Modification for the Development of Amine-Functionalized Silica Aerogel Globules for Dynamic and Efficient Direct Air Capture. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38476078 DOI: 10.1021/acsami.3c17993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Amine-functionalized silica aerogel globules (AFSAGs) were first synthesized via a simple ball drop casting method followed by amine grafting. The effect of grafting time on the structure and CO2 adsorption performance of the AFSAGs was investigated. The CO2 adsorption performance was comprehensively studied by breakthrough curves, adsorption capacity and rates, surface amine loading and density, amine efficiency, adsorption halftime, and cyclic stability. The results demonstrate that prolonging the grafting time does not lead to a significant increase in surface amine content owing to pore space blockage by superabundant amine groups. The CO2 adsorption performance shows obvious dependence on surface amine density, determined by both the surface amine content and specific surface area, and working temperature. AFSAGs with a grafting time of 24 h (AFSAG24) with a moderate surface amine density have optimal CO2 adsorption capacities, which are 1.78 and 2.14 mmol/g at 25 °C with dry and humid 400 ppm CO2, respectively. The amine efficiency of AFSAG24 with low CO2 concentrations, 0.38-0.63 with dry 400 ppm-1% CO2, is the highest among the reported amine-functionalized adsorbents. After estimation with different diffusion models, the CO2 adsorption process of AFSAG24 is governed by film diffusion and intraparticle diffusion. In the range of 1-4 mm, the ball size does not affect the CO2 adsorption capacity of AFSAG24 obviously. AFSAG24 offers significant advantages for practical direct air capture compared with its state-of-the-art counterparts, such as high dynamic adsorption capacity and amine efficiency, excellent stability, and outstanding adaptation to the environment.
Collapse
Affiliation(s)
- Yong Kong
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 210009, PR China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Quan Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Zhiyuan Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 210009, PR China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| |
Collapse
|
9
|
Chen OIF, Liu CH, Wang K, Borrego-Marin E, Li H, Alawadhi AH, Navarro JAR, Yaghi OM. Water-Enhanced Direct Air Capture of Carbon Dioxide in Metal-Organic Frameworks. J Am Chem Soc 2024; 146:2835-2844. [PMID: 38236722 DOI: 10.1021/jacs.3c14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
We have developed two series of amine-functionalized zirconium (Zr) metal-organic framework-808 (MOF-808), which were produced by postsynthetic modifications to have either amino acids coordinated to Zr ions (MOF-808-AAs) or polyamines covalently bound to the chloro-functionalized structure (MOF-808-PAs). These MOF variants were comprehensively characterized by liquid-state 1H nuclear magnetic resonance (NMR) measurements and potentiometric acid-base titration to determine the amounts of amines, energy-dispersive X-ray spectroscopy to assess the extent of covalent substitution by polyamines, powder X-ray diffraction analysis to verify the maintenance of the MOF crystallinity and structure after postsynthetic modifications, nitrogen sorption isotherm measurements to confirm retention of the porosity, and water sorption isotherm measurements to find the water uptake in the pores of each member of the series. Evaluation and testing of these compounds in direct air capture (DAC) of CO2 showed improved CO2 capture performance for the functionalized forms, especially under humid conditions: In dry conditions, the l-lysine- and tris(3-aminopropyl)amine-functionalized variants, termed as MOF-808-Lys and MOF-808-TAPA, exhibited the highest CO2 uptakes at 400 ppm, measuring 0.612 and 0.498 mmol g-1, and further capacity enhancement was achieved by introducing 50% relative humidity, resulting in remarkable uptakes of 1.205 and 0.872 mmol g-1 corresponding to 97 and 75% increase compared to the dry uptakes, respectively. The mechanism underlying the enhanced uptake efficiency was revealed by 13C solid-state NMR and temperature-programmed desorption measurements, indicating the formation of bicarbonate species, and therefore a stoichiometry of 1:1 CO2 to each amine site.
Collapse
Affiliation(s)
- Oscar Iu-Fan Chen
- Department of Chemistry and Kavli Energy Nano Sciences Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Cheng-Hsin Liu
- Department of Chemistry and Kavli Energy Nano Sciences Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Kaiyu Wang
- Department of Chemistry and Kavli Energy Nano Sciences Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Emilio Borrego-Marin
- Departamento de Química Inorgánica, Universidad de Granada, Granada 18071, Spain
| | - Haozhe Li
- Department of Chemistry and Kavli Energy Nano Sciences Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Ali H Alawadhi
- Department of Chemistry and Kavli Energy Nano Sciences Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Jorge A R Navarro
- Departamento de Química Inorgánica, Universidad de Granada, Granada 18071, Spain
| | - Omar M Yaghi
- Department of Chemistry and Kavli Energy Nano Sciences Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- KACST-UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
10
|
Yagmur Goren A, Erdemir D, Dincer I. Comprehensive review and assessment of carbon capturing methods and technologies: An environmental research. ENVIRONMENTAL RESEARCH 2024; 240:117503. [PMID: 37907166 DOI: 10.1016/j.envres.2023.117503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
A majority of the primary contributors of carbon dioxide (CO2) emissions into the environment have really been out of human-made activities. The levels of CO2 in the atmosphere have increased substantially since the time of the industrial revolution. This has been linked to the use of fossil fuels for energy production, as well as the widespread production of some industrial components like cement and the encroaching destruction of forests. An extreme approach is now necessary to develop the right policies and address the local and global environmental issues in the right way. In this regard, CO2 capturing, utilization, and storage are reliable options that industrial facilities can initiate to overcome this problem. Therefore, we have evaluated the two leading technologies that are used for carbon capture: direct (pre-combustion, post-combustion, and oxy-combustion) and indirect carbon (reforestation, enhanced weathering, bioenergy with carbon capture, and agricultural practices) capturing to provide their current status and progresses. Among the considered processes, the post-combustion techniques are widely utilized on a commercial scale, especially in industrial applications. Technology readiness level (TRL) results have showed that amine solvents, pressure-vacuum swing adsorption, and gas separation membranes have the highest TRL value of 9. In addition, the environmental impact assessment methods have been ranked to evaluate their sustainability levels. The highest global warming potential of 219.53 kgCO2 eq./MWh has been obtained for the post-combustion process. Overall, through this comprehensive review, we have identified some critical research gaps in the open literature in the field of CO2-capturing methods where there are strong needs for future research and technology development studies, for instance, developing stable and cost-effective liquid solvents and improving the adsorption capacity of commercialized sorbents. Furthermore, some research areas, like novel process design, environmental and economic impact assessment of capturing methods with different chemicals and modeling and simulation studies, will require further effort to demonstrate the developed technologies for pilot and commercial-scale applications.
Collapse
Affiliation(s)
- Aysegul Yagmur Goren
- Ontario Tech University, Clean Energy Research Laboratory, Oshawa, Ontario, Canada; Izmir Institute of Technology, Department of Environmental Engineering, Urla, Izmir, Turkey.
| | - Dogan Erdemir
- Ontario Tech University, Clean Energy Research Laboratory, Oshawa, Ontario, Canada; Yildiz Technical University, Department of Mechanical Engineering, Istanbul, Turkey
| | - Ibrahim Dincer
- Ontario Tech University, Clean Energy Research Laboratory, Oshawa, Ontario, Canada; Yildiz Technical University, Department of Mechanical Engineering, Istanbul, Turkey
| |
Collapse
|
11
|
Wang Y, Anyanwu JT, Hu Z, Yang RT. Significantly Enhancing CO2 Adsorption on Amine-Grafted SBA-15 by Boron Doping and Acid Treatment for Direct Air Capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Wang J, Zhou Y, Hu X. Adsorption of CO 2 by a novel zeolite doped amine modified ternary aerogels. ENVIRONMENTAL RESEARCH 2022; 214:113855. [PMID: 35841972 DOI: 10.1016/j.envres.2022.113855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Novel amine functionalized materials can capture greenhouse gas CO2. In this study, SiO2-Al2O3-ZrO2 ternary composite aerogel was prepared by sol-gel method, supercritical drying, ultrasonic non-in-situ synthesis and other processes using aluminum chloride hexahydrate as aluminum source, ethyl orthosilicate as silicon source and tetrabbutyl zirconate as zirconium source. The composite material was used as the carrier material. By impregnation method, the modified agent bis - (3-trimethoxy-silpropyl) amine and the composite were fully mixed and modified, and the novel zeolite doped amine functionalized ternary composite aerogel was obtained by doping acidification activation zeolite. The results show that the prepared novel zeolite amine-modified ternary aerogels have rich microporous structure and ordered mesoporous structure. After loading different contents of amine-based materials (CAA-X) in the ternary aerogels, the comparison between CAAZ-X and zeolite amine-modified ternary aerogels is conducted. Zeolite doped CAAZ-30 material shows the best adsorption performance, with a maximum adsorption capacity of 5.30 mmol/g. In the presence of water vapor, CAAZ-30 material also showed the best adsorption performance, with a maximum adsorption capacity of 5.33 mmol/g. This can help us design suitable adsorbent materials for CO2 capture in different practical applications.
Collapse
Affiliation(s)
- Jian Wang
- College of Energy and Power Engineering, Northeast Electric Power University, Jilin, 132031, China
| | - Yunlong Zhou
- College of Energy and Power Engineering, Northeast Electric Power University, Jilin, 132031, China.
| | - Xiaotian Hu
- College of Energy and Power Engineering, Northeast Electric Power University, Jilin, 132031, China
| |
Collapse
|
13
|
Ostovan A, Arabi M, Wang Y, Li J, Li B, Wang X, Chen L. Greenificated Molecularly Imprinted Materials for Advanced Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203154. [PMID: 35734896 DOI: 10.1002/adma.202203154] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Molecular imprinting technology (MIT) produces artificial binding sites with precise complementarity to substrates and thereby is capable of exquisite molecular recognition. Over five decades of evolution, it is predicted that the resulting host imprinted materials will overtake natural receptors for research and application purposes, but in practice, this has not yet been realized due to the unsustainability of their life cycles (i.e., precursors, creation, use, recycling, and end-of-life). To address this issue, greenificated molecularly imprinted polymers (GMIPs) are a new class of plastic antibodies that have approached sustainability by following one or more of the greenification principles, while also demonstrating more far-reaching applications compared to their natural counterparts. In this review, the most recent developments in the delicate design and advanced application of GMIPs in six fast-growing and emerging fields are surveyed, namely biomedicine/therapy, catalysis, energy harvesting/storage, nanoparticle detection, gas sensing/adsorption, and environmental remediation. In addition, their distinct features are highlighted, and the optimal means to utilize these features for attaining incredibly far-reaching applications are discussed. Importantly, the obscure technical challenges of the greenificated MIT are revealed, and conceivable solutions are offered. Lastly, several perspectives on future research directions are proposed.
Collapse
Affiliation(s)
- Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
14
|
Synthesis and CO2 Capture of Porous Hydrogel Particles Consisting of Hyperbranched Poly(amidoamine)s. Gels 2022; 8:gels8080500. [PMID: 36005101 PMCID: PMC9407192 DOI: 10.3390/gels8080500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
We successfully synthesized new macroporous hydrogel particles consisting of hyperbranched poly(amidoamine)s (HPAMAM) using the Oil-in-Water-in-Oil (O/W/O) suspension polymerization method at both the 50 mL flask scale and the 5 L reactor scale. The pore sizes and particle sizes were easily tuned by controlling the agitation speeds during the polymerization reaction. Since O/W/O suspension polymerization gives porous architecture to the microparticles, synthesized hydrogel particles having abundant amine groups inside polymers exhibited a high CO2 absorption capacity (104 mg/g) and a fast absorption rate in a packed-column test.
Collapse
|
15
|
Wang J, Shen Y, Zhang D, Tang Z, Li W. Integrated VPSA and Rectisol process for CO2 capture from UCG syngas. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Zhu X, Xie W, Wu J, Miao Y, Xiang C, Chen C, Ge B, Gan Z, Yang F, Zhang M, O'Hare D, Li J, Ge T, Wang R. Recent advances in direct air capture by adsorption. Chem Soc Rev 2022; 51:6574-6651. [PMID: 35815699 DOI: 10.1039/d1cs00970b] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.
Collapse
Affiliation(s)
- Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wenwen Xie
- Institute of Technical Thermodynamics, Karlsruhe Institute of Technology, 76131, Germany
| | - Junye Wu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yihe Miao
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China
| | - Chengjie Xiang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhuozhen Gan
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Fan Yang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Man Zhang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jia Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China.,Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China.,The Hong Kong University of Science and Technology (Guangzhou), No. 2 Huan Shi Road South, Nansha, Guangzhou, 511458, China
| | - Tianshu Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ruzhu Wang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
17
|
Oliveira DEF, Chagas JAO, de Lima AL, Mota CJA. CO 2 Capture over MCM-41 and SBA-15 Mesoporous Silicas Impregnated with Chitosan. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dayanne E. F. Oliveira
- Universidade Federal do Rio de Janeiro, Escola de Química, Av Athos da Silveira Ramos 149, CT Bl E, 21949-909 Rio de Janeiro, Brazil
| | - José A. O. Chagas
- Universidade Federal do Rio de Janeiro, Instituto de Química. Av Athos da Silveira Ramos 149, CT Bl A, 21949-909 Rio de Janeiro, Brazil
| | - Ana Lúcia de Lima
- Universidade Federal do Rio de Janeiro, Instituto de Química. Av Athos da Silveira Ramos 149, CT Bl A, 21949-909 Rio de Janeiro, Brazil
| | - Claudio J. A. Mota
- Universidade Federal do Rio de Janeiro, Escola de Química, Av Athos da Silveira Ramos 149, CT Bl E, 21949-909 Rio de Janeiro, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Química. Av Athos da Silveira Ramos 149, CT Bl A, 21949-909 Rio de Janeiro, Brazil
- INCT Energia e Ambiente, UFRJ, 21941-901 Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Anyanwu JT, Wang Y, Yang RT. Tunable amine loading of amine grafted mesoporous silica grafted at room temperature: Applications for CO2 capture. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Bai F, Liu X, Sani S, Liu Y, Guo W, Sun C. Amine functionalized mesocellular silica foam as highly efficient sorbents for CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Direct capture of low concentration CO2 using tetraethylenepentamine-grafted polyacrylonitrile hollow fibers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Biomass/Biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: A review and prospects for future directions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101890] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Amine-Functionalized Mesoporous Silica Adsorbent for CO2 Capture in Confined-Fluidized Bed: Study of the Breakthrough Adsorption Curves as a Function of Several Operating Variables. Processes (Basel) 2022. [DOI: 10.3390/pr10020422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Carbon capture, utilization, and storage (CCUS) is one of the key promising technologies that can reduce GHG emissions from those industries that generate CO2 as part of their production processes. Compared to other effective CO2 capture methods, the adsorption technique offers the possibility of reducing the costs of the process by setting solid sorbent with a high capacity of adsorption and easy regeneration and, also, controlling the performance of gas-solid contactor. In this work, an amine-functionalized mesoporous sorbent was used to capture CO2 emissions in a confined-fluidized bed. The adoption of a confined environment allows the establishment of a homogeneous expansion regime for the sorbent and allows to improve the exchange of matter and heat between gas and solid phase. The results illustrate how the different concentration of the solution adopted during the functionalization affects the adsorption capacity. That, measured as mg of CO2 per g of sorbent, was determined by breakthrough curves from continuous adsorption tests using different concentrations of CO2 in air. Mesoporous silica functionalized with a concentration of 20% of APTES proves to be the best viable option in terms of cost and ease of preparation, low temperature of regeneration, and effective use for CO2 capture.
Collapse
|
23
|
Research needs targeting direct air capture of carbon dioxide: Material & process performance characteristics under realistic environmental conditions. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0976-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
|
25
|
Liu RS, Xu S, Hao GP, Lu AH. Recent Advances of Porous Solids for Ultradilute CO2 Capture. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1394-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Anyanwu JT, Wang Y, Yang RT. Influence of water on amine loading for ordered mesoporous silica. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Abstract
This introduction to the Faraday Discussion on carbon dioxide utilization (CDU) provides a framework to lay out the need for CDU, the opportunities, boundary conditions, potential pitfalls, and critical needs to advance the required technologies in the time needed. CDU as a mainstream climate-relevant solution is gaining rapid traction as measured by the increase in the number of related publications, the investment activity, and the political action taken in various countries.
Collapse
Affiliation(s)
- Volker Sick
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture: Analysis review. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Almáši M, Király N, Zeleňák V, Vilková M, Bourrelly S. Zinc(ii) and cadmium(ii) amorphous metal-organic frameworks (aMOFs): study of activation process and high-pressure adsorption of greenhouse gases. RSC Adv 2021; 11:20137-20150. [PMID: 35479897 PMCID: PMC9033798 DOI: 10.1039/d1ra02938j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/29/2021] [Indexed: 01/05/2023] Open
Abstract
Two novel amorphous metal-organic frameworks (aMOFs) with chemical composition {[Zn2(MTA)]·4H2O·3DMF} n (UPJS-13) and {[Cd2(MTA)]·5H2O·4DMF} n (UPJS-14) built from Zn(ii) and Cd(ii) ions and extended tetrahedral tetraazo-tetracarboxylic acid (H4MTA) as a linker were prepared and characterised. Nitrogen adsorption measurements were performed on as-synthesized (AS), ethanol exchanged (EX) and freeze-dried (FD) materials at different activation temperatures of 60, 80, 100, 120, 150 and 200 °C to obtain the best textural properties. The largest surface areas of 830 m2 g-1 for UPJS-13 (FD) and 1057 m2 g-1 for UPJS-14 (FD) were calculated from the nitrogen adsorption isotherms for freeze-dried materials activated at mild activation temperature (80 °C). Subsequently, the prepared compounds were tested as adsorbents of greenhouse gases, carbon dioxide and methane, measured at high pressures. The maximal adsorption capacities were 30.01 wt% CO2 and 4.84 wt% CH4 for UPJS-13 (FD) and 24.56 wt% CO2 and 6.38 wt% CH4 for UPJS-14 (FD) at 20 bar and 30 °C.
Collapse
Affiliation(s)
- Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 54 Košice Slovak Republic
| | - Nikolas Király
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 54 Košice Slovak Republic
| | - Vladimír Zeleňák
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 54 Košice Slovak Republic
| | - Mária Vilková
- NMR Laboratory, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 01 Košice Slovak Republic
| | - Sandrine Bourrelly
- Aix-Marseille University, CNRS, MADIREL Marseille Cedex 20 F-133 97 France
| |
Collapse
|
30
|
Anyanwu JT, Wang Y, Yang RT. SBA-15 Functionalized with Amines in the Presence of Water: Applications to CO 2 Capture and Natural Gas Desulfurization. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John-Timothy Anyanwu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yiren Wang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ralph T. Yang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
31
|
Cai H, Zhang X, Lei L, Xiao C. Direct CO 2 Capture from Air via Crystallization with a Trichelating Iminoguanidine Ligand. ACS OMEGA 2020; 5:20428-20437. [PMID: 32832796 PMCID: PMC7439369 DOI: 10.1021/acsomega.0c02460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/23/2020] [Indexed: 05/12/2023]
Abstract
Effectively reducing the concentration of CO2 in ambient air is essential to mitigate global warming. Existing carbon capture and storage technology can only slow down the carbon emissions of large point sources but cannot treat the already accumulated CO2 in the environment. Herein, we demonstrated a simple direct CO2 capture method from air via reactive crystallization with a new trichelating iminoguanidine ligand (BTIG). It could strongly bind CO2 to form insoluble carbonate crystals that could be easily isolated. In the crystal, CO2 was transformed to CO3 2- and trapped in a dense hydrogen bonding network in terms of carbonate-water clusters. This capture process was reversible, and the BTIG ligand could be regenerated by heating the BTIG-CO2 crystal at a mild temperature, which was much lower than the decomposition temperature of CaCO3 (∼900 °C). Thermodynamic and kinetics analyses indicate that the crystallization process was exothermic with an enthalpy of -292 kJ/mol, and the decomposition energy consumption was 169 kJ per mol CO2. In addition, BTIG could also be employed for CO2 capture from flue gas with a capacity of 1.46 mol/mol, which was superior to that of most of the reported sorbents.
Collapse
Affiliation(s)
- He Cai
- College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xingwang Zhang
- College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lecheng Lei
- College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengliang Xiao
- College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
32
|
Preparation, Characterization, and Application of Novel Ferric Oxide-Amine Material for Removal of Nitrate and Phosphate in Water. J CHEM-NY 2020. [DOI: 10.1155/2020/8583543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ferric oxide-amine material was synthesized and applied as a novel adsorbent for nitrate and phosphate removal from aqueous solution. The properties of ferric oxide-amine were examined using TGA, FTIR, BET, SEM, EDX, SEM-mapping, and XRD analysis. The results showed that the adsorption using ferric oxide-amine material reached equilibrium after 30 and 60 min for nitrate and phosphate, respectively. The highest nitrate and phosphate adsorption capacities were 131.4 mg nitrate/g at pH 5-6 and 42.1 mg phosphate/g at pH 6. The effects of adsorbent dosage, initial concentrations of nitrate and phosphate, and adsorption temperature were also investigated. Among the three adsorbents of ferric oxide-amine, ferric oxide, and Akualite A420 ion exchange resin, ferric oxide-amine material had the highest adsorption capacity for nitrate and phosphate removal. These results suggest a great potential use of ferric oxide-amine material for water treatment in practical applications.
Collapse
|
33
|
Affiliation(s)
- José R. Fernández
- Institute of Carbon Science and Technology (INCAR-CSIC), Francisco Pintado Fe 26, 33011 Oviedo, Spain
| | - Susana Garcia
- Research Center for Carbon Solutions (RCCS), School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Eloy S. Sanz-Pérez
- Department of Chemical, Energy, and Mechanical Technology, ESCET. Rey Juan Carlos University. C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| |
Collapse
|