1
|
Toikka YN, Rozhkov AV, Burguera S, Frontera A, Kukushkin VY, Bokach NA. Nucleophilicity of the Nitrile N Atom Whose Lone Pair Is Blocked by Metal Coordination. The π-Hole Interaction between an Arene Carbon and the Metal-Bound Nitrile Nitrogen. Inorg Chem 2024; 63:24210-24221. [PMID: 39663995 DOI: 10.1021/acs.inorgchem.4c03995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Cocrystallization of CuI with NCNMe2 in the presence of substituted perfluoroarenes─iodoperfluorobenzene (IFB), 4,4'-diiodoperfluorobiphenyl (4,4'-FIBP), and 4-bromoperfluorobenzonitrile (4-BrFBN)─led to the formation of three types of adducts 1·2(IFB), 1·4,4'FIBP, and 1·4-BrFBN (1 is Cu4I4(NCNMe2)4), all studied by X-ray crystallography. In these cocrystals, the coordinated nitrile N atom (whose electron pair is engaged in metal coordination) still acts as an electron donor, forming π-hole interactions, specifically, π-holearene···Nnitrile, with the perfluoroarenes. These interactions were examined in the context of their occurrence alongside other interactions involving C atoms of the electron-deficient aromatic rings and nucleophilic atoms of the copper cluster. Comprehensive theoretical calculations, including MEP, QTAIM/NCI plot analysis, EDA, ELF projections, and ETS-NOCV calculations, revealed that the nitrile ligand N atom maintains significant negative potential and that π-hole interactions are energetically more favorable than σ-hole interactions in the studied systems. This nucleophilicity is based on a noticeable contribution of the heterocumulene form, Cu-N-═C═N+Me2, in the resonance hybrid of Cu-bound NCNMe2: a phenomenon influenced by both the coordination and the conjugation between the NR2 and CN groups The discovery of π-holearene···Nnitrile contacts adds a new dimension to our understanding of coordinated push-pull nitriles, in particular dialkylcyanamides, revealing that the coordinated nitrile N atom can still function as a nucleophile in noncovalent binding.
Collapse
Affiliation(s)
- Yulia N Toikka
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Anton V Rozhkov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Sergi Burguera
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
2
|
An S, Hao A, Xing P. Hypervalent Iodine (III)-Based Complexation for Chiroptical Supramolecular Glass, Deep Eutectic Solvent and Luminescent Switch. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402314. [PMID: 39014909 DOI: 10.1002/adma.202402314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/01/2024] [Indexed: 07/18/2024]
Abstract
Hypervalent iodine(III) have widely been utilized for organic synthetic reagents. They are also recognized as positive charge-assisted, exceptionally robust biaxial halogen bond donors, while their potential in supramolecular materials is barely explored. This work reports a cyclic diaryliodonium ion as biaxial halogen bonding donor that displays remarkable binding affinity toward phenanthroline or acridine acceptors with chiral pendants. Biaxial halogen bonding enables chiroptical evolution in solution, allowing for rational control over supramolecular chirality. Leveraging their strong binding affinity, the halogen bonding complexes manifested amorphous properties and deep eutectic behavior in the solid state. Capitalizing on these attributes, this work achieves the successful preparation of supramolecular glasses and deep eutectic solvents. Additionally, halogen bonding appended light irradiation-triggered luminescence through a hydrogen atom transfer process, showing applications in anti-counterfeit and display.
Collapse
Affiliation(s)
- Shuguo An
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
3
|
Camilli L, Hogan C, Romito D, Persichetti L, Caporale A, Palummo M, Di Giovannantonio M, Bonifazi D. On-Surface Molecular Recognition Driven by Chalcogen Bonding. JACS AU 2024; 4:2115-2121. [PMID: 38938818 PMCID: PMC11200221 DOI: 10.1021/jacsau.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
Chalcogen bonding interactions (ChBIs) have been widely employed to create ordered noncovalent assemblies in solids and liquids. Yet, their ability to engineer molecular self-assembly on surfaces has not been demonstrated. Here, we report the first demonstration of on-surface molecular recognition solely governed by ChBIs. Scanning tunneling microscopy and ab initio calculations reveal that a pyrenyl derivative can undergo noncovalent chiral dimerization on the Au(111) surface through double Ch···N interactions involving Te- or Se-containing chalcogenazolo pyridine motifs. In contrast, reference chalcogenazole counterparts lacking the pyridyl moiety fail to form regular self-assemblies on Au, resulting in disordered assemblies.
Collapse
Affiliation(s)
- Luca Camilli
- Department
of Physics, University of Rome “Tor
Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italy
| | - Conor Hogan
- Department
of Physics, University of Rome “Tor
Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italy
- CNR-Istituto
di Struttura della Materia (CNR-ISM), 00133 Roma, Italy
| | - Deborah Romito
- Department
of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Luca Persichetti
- Department
of Physics, University of Rome “Tor
Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italy
| | - Antonio Caporale
- Department
of Physics, University of Rome “Tor
Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italy
| | - Maurizia Palummo
- INFN,
Department of Physics, University of Rome
“Tor Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italy
| | | | - Davide Bonifazi
- Department
of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
4
|
Baykov SV, Semenov AV, Presnukhina SI, Tarasenko MV, Shetnev AA, Frontera A, Boyarskiy VP, Kukushkin VY. Hybrid 2D Supramolecular Organic Frameworks (SOFs) Assembled by the Cooperative Action of Hydrogen and Halogen Bonding and π⋯π Stacking Interactions. Int J Mol Sci 2024; 25:2062. [PMID: 38396739 PMCID: PMC10889172 DOI: 10.3390/ijms25042062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The cis- and trans-isomers of 6-(3-(3,4-dichlorophenyl)-1,2,4-oxadiazol-5-yl)cyclohex-3-ene-1-carboxylic acid (cis-A and trans-A) were obtained by the reaction of 3,4-dichloro-N'-hydroxybenzimidamide and cis-1,2,3,6-tetrahydrophthalic anhydride. Cocrystals of cis-A with appropriate solvents (cis-A‧½(1,2-DCE), cis-A‧½(1,2-DBE), and cis-A‧½C6H14) were grown from 1,2-dichloroethane (1,2-DCE), 1,2-dibromoethane (1,2-DBE), and a n-hexane/CHCl3 mixture and then characterized by X-ray crystallography. In their structures, cis-A is self-assembled to give a hybrid 2D supramolecular organic framework (SOF) formed by the cooperative action of O-H⋯O hydrogen bonding, Cl⋯O halogen bonding, and π⋯π stacking. The self-assembled cis-A divides the space between the 2D SOF layers into infinite hollow tunnels incorporating solvent molecules. The energy contribution of each noncovalent interaction to the occurrence of the 2D SOF was verified by several theoretical approaches, including MEP and combined QTAIM and NCIplot analyses. The consideration of the theoretical data proved that hydrogen bonding (approx. -15.2 kcal/mol) is the most important interaction, followed by π⋯π stacking (approx. -11.1 kcal/mol); meanwhile, the contribution of halogen bonding (approx. -3.6 kcal/mol) is the smallest among these interactions. The structure of the isomeric compound trans-A does not exhibit a 2D SOF architecture. It is assembled by the combined action of hydrogen bonding and π⋯π stacking, without the involvement of halogen bonds. A comparison of the cis-A structures with that of trans-A indicated that halogen bonding, although it has the lowest energy in cis-A-based cocrystals, plays a significant role in the crystal design of the hybrid 2D SOF. The majority of the reported porous halogen-bonded organic frameworks were assembled via iodine and bromine-based contacts, while chlorine-based systems-which, in our case, are structure-directing-were unknown before this study.
Collapse
Affiliation(s)
- Sergey V. Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia; (S.V.B.); (A.V.S.); (S.I.P.); (V.Y.K.)
| | - Artem V. Semenov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia; (S.V.B.); (A.V.S.); (S.I.P.); (V.Y.K.)
| | - Sofia I. Presnukhina
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia; (S.V.B.); (A.V.S.); (S.I.P.); (V.Y.K.)
| | - Marina V. Tarasenko
- Pharmaceutical Technology Transfer Center, Ushinsky Yaroslavl State Pedagogical University, 108 Respublikanskaya St., 150000 Yaroslavl, Russia; (M.V.T.); (A.A.S.)
| | - Anton A. Shetnev
- Pharmaceutical Technology Transfer Center, Ushinsky Yaroslavl State Pedagogical University, 108 Respublikanskaya St., 150000 Yaroslavl, Russia; (M.V.T.); (A.A.S.)
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain;
| | - Vadim P. Boyarskiy
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia; (S.V.B.); (A.V.S.); (S.I.P.); (V.Y.K.)
| | - Vadim Yu. Kukushkin
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia; (S.V.B.); (A.V.S.); (S.I.P.); (V.Y.K.)
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russia
| |
Collapse
|
5
|
Radzhabov AD, Ledneva AI, Soldatova NS, Fedorova II, Ivanov DM, Ivanov AA, Yusubov MS, Kukushkin VY, Postnikov PS. Halogen Bond-Involving Self-Assembly of Iodonium Carboxylates: Adding a Dimension to Supramolecular Architecture. Int J Mol Sci 2023; 24:14642. [PMID: 37834088 PMCID: PMC10573078 DOI: 10.3390/ijms241914642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
We designed 0D, 1D, and 2D supramolecular assemblies made of diaryliodonium salts (functioning as double σ-hole donors) and carboxylates (as σ-hole acceptors). The association was based on two charge-supported halogen bonds (XB), which occurred between IIII sites of the iodonium cations and the carboxylate anions. The sequential introduction of the carboxylic groups in the aryl ring of the benzoic acid added a dimension to the 0D supramolecular organization of the benzoate, which furnished 1D-chained and 2D-layered structures when terephthalate and trimesate anions, correspondingly, were applied as XB acceptors. The structure-directing XB were studied using DFT calculations under periodic boundary conditions and were followed by the one-electron-potential analysis and the Bader atoms-in-molecules topological analysis of electron density. These theoretical methods confirmed the existence of the XB and verified the philicities of the interaction partners in the designed solid-state structures.
Collapse
Affiliation(s)
- Amirbek D. Radzhabov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Alyona I. Ledneva
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Natalia S. Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Irina I. Fedorova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia (V.Y.K.)
- Department of Mathematics and Mechanics, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Daniil M. Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia (V.Y.K.)
| | - Alexey A. Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Vadim Yu. Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia (V.Y.K.)
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russia
| | - Pavel S. Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic
| |
Collapse
|
6
|
Chen WW, Artigues M, Font-Bardia M, Cuenca AB, Shafir A. Cyclic Homo- and Heterohalogen Di-λ 3-diarylhalonium Structures. J Am Chem Soc 2023. [PMID: 37311085 DOI: 10.1021/jacs.3c02406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the context of the ever-growing interest in the cyclic diaryliodonium salts, this work presents synthetic design principles for a new family of structures with two hypervalent halogens in the ring. The smallest bis-phenylene derivative, [(C6H4)2I2]2+, was prepared through oxidative dimerization of a precursor bearing the ortho-disposed iodine and trifluoroborate groups. We also report, for the first time, the formation of cycles containing two different halogen atoms. These present two phenylenes linked by hetero-(I/Br) or -(I/Cl) halogen pairs. This approach was also extended to the cyclic bis-naphthylene derivative [(C10H6)2I2]2+. The structures of these bis-halogen(III) rings were further assessed through X-ray analysis. The simplest cyclic phenylene bis-iodine(III) derivative features the interplanar angle of ∼120°, while a smaller angle of ∼103° was found for the analogous naphthylene-based salt. All dications form dimeric pairs through a combination of π-π and C-H/π interactions. As the largest member of the family, a bis-I(III)-macrocycle was also assembled using the quasi-planar xanthene backbone. Its geometry enables the two iodine(III) centers to be bridged intramolecularly by two bidentate triflate anions. In a preliminary manner, the interaction of the phenylene- and naphthalene-based bis-iodine(III) dications with a new family of rigid bidentate bis-pyridine ligands was studied in solution and the solid state, with an X-ray structure showing the chelating donor bonding to just one of the two iodine centers.
Collapse
Affiliation(s)
- Wei W Chen
- BISi-Bonds Group, Institut de Química Avançada de Catalunya, IQAC-CSIC, c/Jordi Girona 20, 08034 Barcelona, Spain
| | - Margalida Artigues
- Department of Analytical and Applied Chemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Vía Augusta 390, 08017 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de RX. Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, c/Solé i Sabarís 1-3, 08028 Barcelona, Spain
| | - Ana B Cuenca
- BISi-Bonds/CRISOL Group, Department of Organic and Pharmaceutical Chemistry, Universitat Ramon Llull and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Vía Augusta 390, 08017 Barcelona, Spain
| | - Alexandr Shafir
- BISi-Bonds Group, Institut de Química Avançada de Catalunya, IQAC-CSIC, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), 08034 Barcelona, Spain
| |
Collapse
|