1
|
Arojojoye AS, Awuah SG. Functional utility of gold complexes with phosphorus donor ligands in biological systems. Coord Chem Rev 2025; 522:216208. [PMID: 39552640 PMCID: PMC11563041 DOI: 10.1016/j.ccr.2024.216208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Metallo-phosphines are ubiquitous in organometallic chemistry with widespread applications as catalysts in various chemical transformations, precursors for organic electronics, and chemotherapeutic agents or chemical probes. Here, we provide a comprehensive review of the exploration of the current biological applications of Au complexes bearing phosphine donor ligands. The goal is to deepen our understanding of the synthetic utility and reactivity of Au-phosphine complexes to provide insights that could lead to the design of new molecules and enhance the cross-application or repurposing of these complexes.
Collapse
Affiliation(s)
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington KY 40506
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington KY 40536
- Markey Cancer Centre, University of Kentucky, Lexington KY, 40536
- University of Kentucky Bioelectronics and Nanomedicine Research Center, Lexington, Kentucky 40506, United States
| |
Collapse
|
2
|
Comas-Vilà G, Salvador P. Quantification of the Donor-Acceptor Character of Ligands by the Effective Fragment Orbitals. Chemphyschem 2024; 25:e202400582. [PMID: 38831714 DOI: 10.1002/cphc.202400582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Metal-ligand interactions are at the heart of transition metal complexes. The Dewar-Chat-Duncanson model is often invoked, whereby the metal-ligand bonding is decomposed into the simultaneous ligand→metal electron donation and the metal→ligand back-donation. The separate quantification of both effects is not a trivial task, neither from experimental nor computational exercises. In this work we present the effective fragment orbitals (EFOs) and their occupations as a general procedure beyond the Kohn-Sham density functional theory (KS-DFT) framework for the identification and quantification of donor-acceptor interactions, using solely the wavefunction of the complex. Using a common Fe(II) octahedral complex framework, we quantify the σ-donor, π-donor, and π-acceptor character for a large and chemically diverse set of ligands, by introducing the respective descriptors σd, πd, and πa. We also explore the effect of the metal size, coordination number, and spin state on the donor/acceptor features. The spin-state is shown to be the most critical effect, inducing a systematic decrease of the sigma donation and π-backdonation going from low spin to high spin. Finally, we illustrate the ability of the EFOs to rationalize the Tolman electronic parameter and the trans influence in planar square complexes in terms of these new descriptors.
Collapse
Affiliation(s)
- Gerard Comas-Vilà
- Departament de Química and Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona, Campus Montilivi s/n, 17071, Girona, Spain
| | - Pedro Salvador
- Departament de Química and Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona, Campus Montilivi s/n, 17071, Girona, Spain
| |
Collapse
|
3
|
Tomasini M, Voccia M, Caporaso L, Szostak M, Poater A. Tuning the steric hindrance of alkylamines: a predictive model of steric editing of planar amines. Chem Sci 2024; 15:13405-13414. [PMID: 39183899 PMCID: PMC11339794 DOI: 10.1039/d4sc03873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
Amines are one of the most prevalent functional groups in chemistry. Perhaps even more importantly, amines represent one of the most ubiquitous moieties within the realm of bioactive natural products and life-saving pharmaceuticals. The archetypal geometrical property of amines is their sp3 hybridization with the lone pair of nitrogen occupying the apex of the pyramid. Herein, we present a blueprint for quantifying the properties of extremely sterically hindered alkylamines. These amines reach planarity around the nitrogen atom due to the excessive steric hindrance, which results in a conformational re-modeling of the amine moiety. Crucially, the steric properties of amines are characterized by the %V Bur index, which we show is a general predictive parameter for evaluating the properties of sterically hindered amines. Computational studies on the acidic nature and the reactivity of organometallic Au and Pd complexes are outlined. Density functional theory calculations permit for predictive catalysis, ordering the mapping of extremely hindered tertiary amines by employing artificial intelligence via machine learning. Overall, the study outlines the correlation between the unusual geometry and the key thermodynamic and kinetic properties of extremely hindered alkylamines. The steric hindrance, as quantified by %V Bur, is the crucial factor influencing the observed trends and the space required to accommodate sterically hindered tertiary amines.
Collapse
Affiliation(s)
- Michele Tomasini
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona c/Ma Aurèlia Capmany 69 17003 Girona Catalonia Spain
- Dipartimento di Chimica e Biologia, Università di Salerno Via Ponte don Melillo 84084 Fisciano Italy
| | - Maria Voccia
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona c/Ma Aurèlia Capmany 69 17003 Girona Catalonia Spain
- Dipartimento di Chimica e Biologia, Università di Salerno Via Ponte don Melillo 84084 Fisciano Italy
| | - Lucia Caporaso
- Dipartimento di Chimica e Biologia, Università di Salerno Via Ponte don Melillo 84084 Fisciano Italy
| | - Michal Szostak
- Department of Chemistry, Rutgers University 73 Warren Street Newark New Jersey 07102 USA
| | - Albert Poater
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona c/Ma Aurèlia Capmany 69 17003 Girona Catalonia Spain
| |
Collapse
|
4
|
Chen W, Cai P, Zhou HC, Madrahimov ST. Bridging Homogeneous and Heterogeneous Catalysis: Phosphine-Functionalized Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202315075. [PMID: 38135664 DOI: 10.1002/anie.202315075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Phosphine-functionalized metal-organic frameworks (P-MOFs) as an emerging class of coordination polymers, have provided novel opportunities for the development of heterogeneous catalysts. Yet, compared with the ubiquitous phosphine systems in homogeneous catalysis, heterogenization of phosphines in MOFs is still at its early stage. In this Minireview, we summarize the synthetic strategies, characterization and catalytic reactions based on the P-MOFs reported in literature. In particular, various catalytic reactions are discussed in detail in terms of phosphine ligand structure-function relationship, including the potential obstacles for future development. Finally, we discuss the possible solutions, including new types of reactions and techniques as the perspectives for the development of P-MOF catalysts, highlighting the opportunities and challenges.
Collapse
Affiliation(s)
- Wenmiao Chen
- Division of Arts and Sciences, Texas A&M University Qatar Education City, Doha, Qatar
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Sherzod T Madrahimov
- Division of Arts and Sciences, Texas A&M University Qatar Education City, Doha, Qatar
| |
Collapse
|
5
|
Quintano M, Moura RT, Kraka E. Exploring Jahn-Teller distortions: a local vibrational mode perspective. J Mol Model 2024; 30:102. [PMID: 38478107 PMCID: PMC11315727 DOI: 10.1007/s00894-024-05882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024]
Abstract
The characterization of normal mode (CNM) procedure coupled with an adiabatic connection scheme (ACS) between local and normal vibrational modes, both being a part of the Local Vibrational Mode theory developed in our group, can identify spectral changes as structural fingerprints that monitor symmetry alterations, such as those caused by Jahn-Teller (JT) distortions. Employing the PBE0/Def2-TZVP level of theory, we investigated in this proof-of-concept study the hexaaquachromium cation case,[ Cr ( OH 2 ) 6 ] 3 + /[ Cr ( OH 2 ) 6 ] 2 + , as a commonly known example for a JT distortion, followed by the more difficult ferrous and ferric hexacyanide anion case,[ Fe ( CN ) 6 ] 4 - /[ Fe ( CN ) 6 ] 3 - . We found that in both cases CNM of the characteristic normal vibrational modes reflects delocalization consistent with high symmetry and ACS confirms symmetry breaking, as evidenced by the separation of axial and equatorial group frequencies. As underlined by the Cremer-Kraka criterion for covalent bonding, from[ Cr ( OH 2 ) 6 ] 3 + to[ Cr ( OH 2 ) 6 ] 2 + there is an increase in axial covalency whereas the equatorial bonds shift toward electrostatic character. From[ Fe ( CN ) 6 ] 4 - to[ Fe ( CN ) 6 ] 3 - we observed an increase in covalency without altering the bond nature. Distinct π back-donation disparity could be confirmed by comparison with the isolated CN- system. In summary, our study positions the CNM/ACS protocol as a robust tool for investigating less-explored JT distortions, paving the way for future applications.
Collapse
Affiliation(s)
- Mateus Quintano
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX, 75275-0314, USA
| | - Renaldo T Moura
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX, 75275-0314, USA
- Department of Chemistry and Physics, Center of Agrarian Sciences, Federal University of Paraiba, Areia, PB, 58397-000, Brazil
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX, 75275-0314, USA.
| |
Collapse
|
6
|
Szlosek R, Niefanger AS, Balázs G, Seidl M, Timoshkin AY, Scheer M. Characterization of the Ligand Properties of Donor-stabilized Pnictogenyltrielanes. Chemistry 2024; 30:e202303603. [PMID: 38131435 DOI: 10.1002/chem.202303603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
A general synthesis and the characterization of novel alkyl-substituted NHC-stabilized pnictogenylboranes NHC ⋅ BH2 ER2 (NHC=N-heterocyclic carbene, E=P, As; R2 =Me2 , Ph2 , t BuH, Cy2 , (SiMe3 )2 ) are reported. These compounds were reacted with Ni(CO)4 to the corresponding complexes of the type [(NHC ⋅ BH2 ER2 )Ni(CO)3 ] to determine their donor strength by Tolman Electronic Parameters (TEPs) and their steric demand as ligands compared to classical phosphines, superbasic phosphines and other commonly applied donor systems. The results show that the NHC-stabilized pnictogenyltrielanes can be considered as being highly basic, while their steric influence depends strongly on the organic residues as well as the donor attached to the {BH2 } moiety. Although weaker than commonly used superbasic phosphines, the donor strength of pnictogenyltrielanes in general can be classified as of similar strength as NHCs. The steric and electronic properties can easily be modified by alkyl substitution as evident from the TEP trends.
Collapse
Affiliation(s)
- Robert Szlosek
- Institut für Anorganische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | | | - Gábor Balázs
- Institut für Anorganische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Michael Seidl
- Institute of General and Theoretical Chemistry, Leopold-Franzens Universität Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Alexey Y Timoshkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| | - Manfred Scheer
- Institut für Anorganische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| |
Collapse
|
7
|
King A, Wang J, Liu T, Raghavan A, Tomson NC, Zhukhovitskiy AV. Influence of Metal Identity and Complex Nuclearity in Kumada Cross-Coupling Polymerizations with a Pyridine Diimine-Based Ligand Scaffold. ACS POLYMERS AU 2023; 3:475-481. [PMID: 38107419 PMCID: PMC10722565 DOI: 10.1021/acspolymersau.3c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 12/19/2023]
Abstract
Cross-coupling polymerizations have fundamentally changed the field of conjugated polymers (CPs) by expanding the scope of accessible materials. Despite the prevalence of cross-coupling in CP synthesis, almost all polymerizations rely on mononuclear Ni or Pd catalysts. Here, we report a systematic exploration of mono- and dinuclear Fe and Ni precatalysts with a pyridine diimine ligand scaffold for Kumada cross-coupling polymerization of a donor thiophene and an acceptor benzotriazole monomers. We observe that variation of the metal identity from Ni to Fe produces contrasting polymerization mechanisms, while complex nuclearity has a minimal impact on reactivity. Specifically, Fe complexes appear to catalyze step-growth Kumada polymerizations and can readily access both Csp2-Csp3 and Csp2-Csp2 cross-couplings, while Ni complexes catalyze chain-growth polymerizations and predominantly Csp2-Csp2 cross-couplings. Thus, our work sheds light on important design parameters for transition metal complexes used in cross-coupling polymerizations, demonstrates the viability of iron catalysis in Kumada polymerization, and opens the door to novel polymer compositions.
Collapse
Affiliation(s)
- Andrew
J. King
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27514, United States
| | - Jiashu Wang
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tianchang Liu
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Adharsh Raghavan
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Neil C. Tomson
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aleksandr V. Zhukhovitskiy
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27514, United States
| |
Collapse
|
8
|
Ohashi M, Ando K, Murakami S, Michigami K, Ogoshi S. N-Heterocyclic Carbenes with Polyfluorinated Groups at the 4- and 5-Positions from [3 + 2] Cycloadditions between Formamidinates and cis-1,2-Difluoroalkene Derivatives. J Am Chem Soc 2023; 145:23098-23108. [PMID: 37749910 DOI: 10.1021/jacs.3c06331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
We herein report the formation of fluorinated N-heterocyclic carbenes (NHCFs) that bear fluorine atoms at the 4- and 5-positions of the imidazol-2-ylidene ring. Treatment of sodium N,N'-bis(aryl)formamidinates with tetrafluoroethylene followed by the addition of LiBF4 induced a [3 + 2] cycloaddition to afford 4,5-difluorinated imidazolium salts, which served as the precursors for 4,5-difluorinated NHCs. A key feature of this procedure is its applicability to other perfluorinated compounds, which enabled us to incorporate polyfluorinated functional groups at 4- and 5-positions on the imidazol-2-ylidene skeleton. Thus, employing octafluorocyclopentene and hexafluorobenzene led to the formation of 4,4,5,5,6,6-hexafluoro-1,3-diaryl-3,4,5,6-tetrahydrocyclopenta[d]imidazolium (CypIPrF·HBF4) and 4,5,6,7-tetrafluoro-1,3-diarylbenzimidazolium (BIPrF·HBF4) salts, respectively. A thorough NMR analysis of these NHCFs, their selenium adducts, and their tricarbonyl nickel complexes, (NHCF)Ni(CO)3, demonstrated that the fluorine substituents, contrary to expectations, tend to act as electron donors owing to the considerable positive mesomeric effect, while the perfluorocyclopentene-fused and tetrafluorobenzo-fused rings are pure electron acceptors due to their strong negative inductive effect. The unique and increased π-accepting character of the perfluorocyclopentene-fused and tetrafluorobenzo-fused NHCFs in both stoichiometric and catalytic reactions is further demonstrated by employing (NHCF)Ni(CO)3 and (NHCF)AuCl species, respectively. Moreover, an analysis of the % buried volume (%Vbur) values clearly suggests that the modification of the NHC backbone with polyfluorinated groups can drastically alter the electronic properties of the NHC ligand without substantially changing its steric properties. Our experimental results were further corroborated by a series of computational calculations.
Collapse
Affiliation(s)
- Masato Ohashi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai 599-8531 Osaka, Japan
| | - Kota Ando
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita 565-0871 Osaka, Japan
| | - Shoichi Murakami
- Department of Chemistry, Faculty of Science, Osaka Prefecture University, Sakai 599-8531 Osaka, Japan
| | - Kenichi Michigami
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai 599-8531 Osaka, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita 565-0871 Osaka, Japan
| |
Collapse
|
9
|
Huynh HV, Leung JN, Lam TT. Donor Strength Determination of Anionic Ligands. Inorg Chem 2023; 62:13902-13909. [PMID: 37572060 DOI: 10.1021/acs.inorgchem.3c01811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
14 new gold(I) NHC complexes of the type [AuX(iPr2-bimy)] (iPr2-bimy = 1,3-diisopropylbenzimidazolin-2-ylidene) have been prepared and fully characterized. These complexes and their reported analogues were used to systematically compare and rank the donating abilities of overall 34 anionic X-type donors by 13C NMR spectroscopy. Specifically, the carbene chemical shift of the iPr2-bimy ligand was found to be responsive to the ligand X spanning an overall range Δδ > 37 ppm between the strongest and weakest donor in this study.
Collapse
Affiliation(s)
- Han Vinh Huynh
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Jia Nuo Leung
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Truc Tien Lam
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| |
Collapse
|
10
|
Schulz J, Clauss R, Kazimir A, Holzknecht S, Hey-Hawkins E. On the Edge of the Known: Extremely Electron-Rich (Di)Carboranyl Phosphines. Angew Chem Int Ed Engl 2023; 62:e202218648. [PMID: 36573025 DOI: 10.1002/anie.202218648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 12/28/2022]
Abstract
The syntheses of the first B9-connected carboranylphosphines (B9-Phos) featuring two carboranyl moieties as well as access to B9-Phos ligands with bulky electron-donating substituents, previously deemed unattainable, is reported. The electrochemical properties of the B9-Phos ligands were investigated, revealing the ability of the mesityl derivatives to form stabilized phosphoniumyl radical cations. The B9-Phos ligands display an extremely electron-releasing character surpassing that of alkyl phosphines and commonly used N-heterocyclic carbenes. This is demonstrated by their very small Tolman electronic parameters (TEPs) as well as extremely low P-Se coupling constants. Cone angles and buried volumes attest to the high steric demand exerted by the (di)carboranyl phosphines. The dicarboranyl phosphine AuI complexes show superior catalytic performance in the hydroamination of alkynes compared to the monocarboranyl phosphine analogs.
Collapse
Affiliation(s)
- Jan Schulz
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Reike Clauss
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Aleksandr Kazimir
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Sieglinde Holzknecht
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
11
|
Mayr J, Reich RM, Kühn FE. Ru(II) complexes with phosphine-functionalized NHC ligands in catalytic transfer hydrogenations. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Mechanistic Details of the Sharpless Epoxidation of Allylic Alcohols—A Combined URVA and Local Mode Study. Catalysts 2022. [DOI: 10.3390/catal12070789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this work, we investigated the catalytic effects of a Sharpless dimeric titanium (IV)–tartrate–diester catalyst on the epoxidation of allylalcohol with methyl–hydroperoxide considering four different orientations of the reacting species coordinated at the titanium atom (reactions R1–R4) as well as a model for the non-catalyzed reaction (reaction R0). As major analysis tools, we applied the URVA (Unified Reaction Valley Approach) and LMA (Local Mode Analysis), both being based on vibrational spectroscopy and complemented by a QTAIM analysis of the electron density calculated at the DFT level of theory. The energetics of each reaction were recalculated at the DLPNO-CCSD(T) level of theory. The URVA curvature profiles identified the important chemical events of all five reactions as peroxide OO bond cleavage taking place before the TS (i.e., accounting for the energy barrier) and epoxide CO bond formation together with rehybridization of the carbon atoms of the targeted CC double bond after the TS. The energy decomposition into reaction phase contribution phases showed that the major effect of the catalyst is the weakening of the OO bond to be broken and replacement of OH bond breakage in the non-catalyzed reaction by an energetically more favorable TiO bond breakage. LMA performed at all stationary points rounded up the investigation (i) quantifying OO bond weakening of the oxidizing peroxide upon coordination at the metal atom, (ii) showing that a more synchronous formation of the new CO epoxide bonds correlates with smaller bond strength differences between these bonds, and (iii) elucidating the different roles of the three TiO bonds formed between catalyst and reactants and their interplay as orchestrated by the Sharpless catalyst. We hope that this article will inspire the computational community to use URVA complemented with LMA in the future as an efficient mechanistic tool for the optimization and fine-tuning of current Sharpless catalysts and for the design new of catalysts for epoxidation reactions.
Collapse
|
13
|
Kelty ML, McNeece AJ, Kurutz JW, Filatov AS, Anderson JS. Electrostatic vs. inductive effects in phosphine ligand donor properties and reactivity. Chem Sci 2022; 13:4377-4387. [PMID: 35509471 PMCID: PMC9007067 DOI: 10.1039/d1sc04277g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
Enhanced rates and selectivity in enzymes are enabled in part by precisely tuned electric fields within active sites. Analogously, the use of charged groups to leverage electrostatics in molecular systems is a promising strategy to tune reactivity. However, separation of the through space and through bond effects of charged functional groups is a long standing challenge that limits the rational application of electric fields in molecular systems. To address this challenge we developed a method using the phosphorus selenium coupling value (J P-Se) of anionic phosphine selenides to quantify the electrostatic contribution of the borate moiety to donor strength. In this analysis we report the synthesis of a novel anionic phosphine, PPh2CH2BF3K, the corresponding tetraphenyl phosphonium and tetraethyl ammonium selenides [PPh4][SePPh2CH2BF3] and [TEA][SePPh2CH2BF3], and the Rh carbonyl complex [PPh4][Rh(acac)(CO)(PPh2(CH2BF3))]. Solvent-dependent changes in J P-Se were fit using Coulomb's law and support up to an 80% electrostatic contribution to the increase in donor strength of [PPh4][SePPh2CH2BF3] relative to SePPh2Et, while controls with [TEA][SePPh2CH2BF3] exclude convoluting ion pairing effects. Calculations using explicit solvation or point charges effectively replicate the experimental data. This J P-Se method was extended to [PPh4][SePPh2(2-BF3Ph)] and likewise estimates up to a 70% electrostatic contribution to the increase in donor strength relative to SePPh3. The use of PPh2CH2BF3K also accelerates C-F oxidative addition reactivity with Ni(COD)2 by an order of magnitude in comparison to the comparatively donating neutral phosphines PEt3 and PCy3. This enhanced reactivity prompted the investigation of catalytic fluoroarene C-F borylation, with improved yields observed for less fluorinated arenes. These results demonstrate that covalently bound charged functionalities can exert a significant electrostatic influence under common solution phase reaction conditions and experimentally validate theoretical predictions regarding electrostatic effects in reactivity.
Collapse
Affiliation(s)
- Margaret L Kelty
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - Andrew J McNeece
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - Josh W Kurutz
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - John S Anderson
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| |
Collapse
|
14
|
Matsuoka W, Harabuchi Y, Maeda S. Virtual Ligand-Assisted Screening Strategy to Discover Enabling Ligands for Transition Metal Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wataru Matsuoka
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yu Harabuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Satoshi Maeda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
15
|
Jing Y, Jiang J, Liu Y, Ke Z. Electronic and Steric Properties of N-Heterocyclic Boryl Ligands. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaru Jing
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jingxing Jiang
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Optical Chemicals, XinHuaYue Group, Maoming 525000, P. R. China
| |
Collapse
|
16
|
Suresh CH, Remya GS, Anjalikrishna PK. Molecular electrostatic potential analysis: A powerful tool to interpret and predict chemical reactivity. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology Thiruvananthapuram Kerala India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Geetha S. Remya
- Chemical Sciences and Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology Thiruvananthapuram Kerala India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Puthannur K. Anjalikrishna
- Chemical Sciences and Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology Thiruvananthapuram Kerala India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
17
|
Barnett C, Cole ML, Harper JB. Steric Properties of
N
‐Heterocyclic Carbenes affect the Performance of Electronic Probes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Christopher Barnett
- School of Chemistry University of New South Wales UNSW Sydney NSW 2052 Sydney Australia
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Marcus L. Cole
- School of Chemistry University of New South Wales UNSW Sydney NSW 2052 Sydney Australia
| | - Jason B. Harper
- School of Chemistry University of New South Wales UNSW Sydney NSW 2052 Sydney Australia
| |
Collapse
|
18
|
Abstract
Computational methods have emerged as a powerful tool to augment traditional experimental molecular catalyst design by providing useful predictions of catalyst performance and decreasing the time needed for catalyst screening. In this perspective, we discuss three approaches for computational molecular catalyst design: (i) the reaction mechanism-based approach that calculates all relevant elementary steps, finds the rate and selectivity determining steps, and ultimately makes predictions on catalyst performance based on kinetic analysis, (ii) the descriptor-based approach where physical/chemical considerations are used to find molecular properties as predictors of catalyst performance, and (iii) the data-driven approach where statistical analysis as well as machine learning (ML) methods are used to obtain relationships between available data/features and catalyst performance. Following an introduction to these approaches, we cover their strengths and weaknesses and highlight some recent key applications. Furthermore, we present an outlook on how the currently applied approaches may evolve in the near future by addressing how recent developments in building automated computational workflows and implementing advanced ML models hold promise for reducing human workload, eliminating human bias, and speeding up computational catalyst design at the same time. Finally, we provide our viewpoint on how some of the challenges associated with the up-and-coming approaches driven by automation and ML may be resolved.
Collapse
Affiliation(s)
- Ademola Soyemi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
19
|
Collado A, Nelson DJ, Nolan SP. Optimizing Catalyst and Reaction Conditions in Gold(I) Catalysis-Ligand Development. Chem Rev 2021; 121:8559-8612. [PMID: 34259505 DOI: 10.1021/acs.chemrev.0c01320] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review considers phosphine and N-heterocyclic carbene complexes of gold(I) that are used as (pre)catalysts for a range of reactions in organic synthesis. These are divided according to the structure of the ligand, with the narrative focusing on studies that offer a quantitative comparison between the ligands and readily available or widely used existing systems.
Collapse
Affiliation(s)
- Alba Collado
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - David J Nelson
- WestCHEM Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 - S3, 9000 Gent, Belgium
| |
Collapse
|
20
|
Lan Z, Mallikarjun Sharada S. A framework for constructing linear free energy relationships to design molecular transition metal catalysts. Phys Chem Chem Phys 2021; 23:15543-15556. [PMID: 34254089 DOI: 10.1039/d1cp02278d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A computational framework for ligand-driven design of transition metal complexes is presented in this work. We propose a general procedure for the construction of active site-specific linear free energy relationships (LFERs), which are inspired from Hammett and Taft correlations in organic chemistry and grounded in the activation strain model (ASM). Ligand effects are isolated and quantified in terms of their contribution to interaction and strain energy components of ASM. Scalar descriptors that are easily obtainable are then employed to construct the complete LFER. We successfully demonstrate proof-of-concept by constructing and applying an LFER to CH activation with enzyme-inspired [Cu2O2]2+ complexes. The key benefit of using ASM is a built-in compensation or error cancellation between LFER prediction of interaction and strain terms, resulting in accurate barrier predictions for 37 of the 47 catalysts examined in this study. The LFER is also transferable with respect to level of theory and flexible towards the choice of reference system. The absence of interaction-strain compensation or poor model performance for the remaining systems is a consequence of the approximate nature of the chosen interaction energy descriptor and LFER construction of the strain term, which focuses largely on trends in substrate and not catalyst strain.
Collapse
Affiliation(s)
- Zhenzhuo Lan
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| | - Shaama Mallikarjun Sharada
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA. and Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Verma N, Tao Y, Kraka E. Systematic Detection and Characterization of Hydrogen Bonding in Proteins via Local Vibrational Modes. J Phys Chem B 2021; 125:2551-2565. [DOI: 10.1021/acs.jpcb.0c11392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Niraj Verma
- Department of Chemistry, Southern Methodist University, Dallas Texas United States
| | - Yunwen Tao
- Department of Chemistry, Southern Methodist University, Dallas Texas United States
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, Dallas Texas United States
| |
Collapse
|
22
|
Merschel A, Glodde T, Neumann B, Stammler H, Ghadwal RS. Nickel-Catalyzed Intramolecular 1,2-Aryl Migration of Mesoionic Carbenes (iMICs). Angew Chem Int Ed Engl 2021; 60:2969-2973. [PMID: 33155756 PMCID: PMC7898293 DOI: 10.1002/anie.202014328] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 12/26/2022]
Abstract
Intramolecular 1,2-Dipp migration of seven mesoionic carbenes (iMICAr ) 2 a-g (iMICAr =ArC{N(Dipp)}2 CHC; Ar=aryl; Dipp=2,6-iPr2 C6 H3 ) under nickel catalysis to give 1,3-imidazoles (IMDAr ) 3 a-g (IMDAr =ArC{N(Dipp)CHC(Dipp)N}) has been reported. The formation of 3 indicates the cleavage of an N-CDipp bond and the subsequent formation of a C-CDipp bond in 2, which is unprecedented in NHC chemistry. The use of 3 in accessing super-iMICs (5) (S-iMIC=ArC{N(Dipp)N(Me)C(Dipp)}C) has been shown with selenium (6), gold (7), and palladium (8) compounds. The quantification of the stereoelectronic properties reveals the superior σ-donor strength of 5 compared to that of classical NHCs. Remarkably, the percentage buried volume of 5 (%Vbur =45) is the largest known amongst thus far reported iMICs. Catalytic studies show a remarkable activity of 5, which is consistent with their auspicious stereoelectronic features.
Collapse
Affiliation(s)
- Arne Merschel
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Timo Glodde
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Rajendra S. Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| |
Collapse
|
23
|
Huang M, Li Y, Lan XB, Liu J, Zhao C, Liu Y, Ke Z. Ruthenium(II) complexes with N-heterocyclic carbene-phosphine ligands for the N-alkylation of amines with alcohols. Org Biomol Chem 2021; 19:3451-3461. [PMID: 33899900 DOI: 10.1039/d1ob00362c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal hydride complexes are key intermediates for N-alkylation of amines with alcohols by the borrowing hydrogen/hydrogen autotransfer (BH/HA) strategy. Reactivity tuning of metal hydride complexes could adjust the dehydrogenation of alcohols and the hydrogenation of imines. Herein we report ruthenium(ii) complexes with hetero-bidentate N-heterocyclic carbene (NHC)-phosphine ligands, which realize smart pathway selection in the N-alkylated reaction via reactivity tuning of [Ru-H] species by hetero-bidentate ligands. In particular, complex 6cb with a phenyl wingtip group and BArF- counter anion, is shown to be one of the most efficient pre-catalysts for this transformation (temperature is as low as 70 °C, neat conditions and catalyst loading is as low as 0.25 mol%). A large variety of (hetero)aromatic amines and primary alcohols were efficiently converted into mono-N-alkylated amines in good to excellent isolated yields. Notably, aliphatic amines, challenging methanol and diamines could also be transformed into the desired products. Detailed control experiments and density functional theory (DFT) calculations provide insights to understand the mechanism and the smart pathway selection via [Ru-H] species in this process.
Collapse
Affiliation(s)
- Ming Huang
- Clinical Pharmacy of The First Affiliated Hospital, School of clinical pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China. and School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yinwu Li
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Xiao-Bing Lan
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Jiahao Liu
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Cunyuan Zhao
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
24
|
Gupta R, Rezabal E, Hasrack G, Frison G. Comparison of Chemical and Interpretative Methods: the Carbon-Boron π-Bond as a Test Case*. Chemistry 2020; 26:17230-17241. [PMID: 32780465 DOI: 10.1002/chem.202001945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Quantum chemical calculations and NBO, ETS-NOCV, QTAIM and ELF interpretative approaches have been carried out on C-donor ligand-stabilized dihydrido borenium cations. Numerous descriptors of the C-B π-bond strength obtained from orbital localization, energy partitioning or topological methods as well as from structural and chemical parameters have been calculated for 39 C-donor ligands including N-heterocyclic carbenes and carbones. Comparison of the results allows the identification of relative and absolute descriptors of the π interaction. For both families of descriptors excellent correlations are obtained. This enables the establishment of a π-donation capability scale and shows that the interpretative methods, despite their conceptual differences, describe the same chemical properties. These results also reveal noticeable shortcomings in these popular methods, and some precautions that need to be taken to interpret their results adequately.
Collapse
Affiliation(s)
- Radhika Gupta
- LCM, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Elixabete Rezabal
- LCM, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France.,Faculty of Chemistry, Donostia International Physics Center (DIPC), University of the Basque Country UPV/EHU, 20018, Donostia, Spain
| | - Golshid Hasrack
- LCM, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Gilles Frison
- LCM, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| |
Collapse
|
25
|
Merschel A, Glodde T, Neumann B, Stammler H, Ghadwal RS. Nickel‐katalysierte intramolekulare 1,2‐Aryl‐Wanderung von mesoionischen Carbenen (iMICs). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arne Merschel
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Centrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Timo Glodde
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Centrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Beate Neumann
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Centrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Hans‐Georg Stammler
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Centrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Rajendra S. Ghadwal
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Centrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| |
Collapse
|
26
|
Azofra LM, Vummaleti SVC, Zhang Z, Poater A, Cavallo L. σ/π Plasticity of NHCs on the Ruthenium–Phosphine and Ruthenium═Ylidene Bonds in Olefin Metathesis Catalysts. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Luis Miguel Azofra
- Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| | - Sai V. C. Vummaleti
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Ziyun Zhang
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Albert Poater
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona, c/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
27
|
Le M, Tieu A, Zhu H, Ta D, Yu H, Ta T, Tran V. Surface transformation and interactions of iron oxide in glassy lubricant: An ab initio study. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Freindorf M, Kraka E. Critical assessment of the FeC and CO bond strength in carboxymyoglobin: a QM/MM local vibrational mode study. J Mol Model 2020; 26:281. [DOI: 10.1007/s00894-020-04519-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
|
29
|
Affiliation(s)
- James P. Shanahan
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | - Nathaniel K. Szymczak
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
30
|
Appel S, Brüggemann P, Ganter C. A tropylium annulated N-heterocyclic carbene. Chem Commun (Camb) 2020; 56:9020-9023. [PMID: 32639486 DOI: 10.1039/d0cc04482b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Derivatives of the cationic tropylium annulated imidazolylidene ITrop+ are obtained by hydride abstraction from related cycloheptatriene compounds. Spectroscopic, structural and theoretical data indicate that, as a cationic relative of benzimidazolylidenes, ITrop+ has highly reduced σ-donor and strong π-acceptor character.
Collapse
Affiliation(s)
- Sebastian Appel
- Institut für Anorganische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
31
|
Hölzel T, Ganter C. Influence of ring substituents on the electronic properties of 1,2,4-triazolylidenes. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Remya GS, Suresh CH. Substituent Effect Parameters: Extending the Applications to Organometallic Chemistry. Chemphyschem 2020; 21:1028-1035. [PMID: 32181564 DOI: 10.1002/cphc.202000113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/16/2020] [Indexed: 11/06/2022]
Abstract
Typically, metal complexes are constituted of an acceptor metal ion and one or more Iigands containing the donor atoms. Accordingly, the properties of a metal complex are equally dependent on the nature of the metal ion and the ligands. Minute structural variations in the ligand will may result in linear changes in the respective energetic parameters and such linear relationships have paramount importance in organometallic chemistry. The variation in ligands is virtually limitless and substantial because of the extent of organic chemistry available for the modelling of desirable ligands, apart from the variation in metal ions. Anyhow, there is still a need for new parameters for the design and quantification of new ligands which in turn leads to the synthesis of metal complexes with possibly predictable chemical properties. Previous studies have demonstrated that quantum chemically derived molecular electrostatic potential (MESP) parameters can be listed as one of the superior quantifiers in this regard, which can act as an effective ligand electronic parameter. The interaction between the ligand part and metal-containing part will be crucial in assessing the reactivity of organometallic complexes. Here we are applying MESP based substituent constants derived from substituted benzenes to forecast the interaction energies in (pyr* )W(CO)5 , (NHC* )Mo(CO)5 and (η6 -arene* )Cr(CO)3 complexes. Ligands and metal ions are varied in each case for better understanding and transparency.
Collapse
Affiliation(s)
- Geetha S Remya
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695 019, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Cherumuttathu H Suresh
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695 019, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
33
|
Kraka E, Zou W, Tao Y. Decoding chemical information from vibrational spectroscopy data: Local vibrational mode theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1480] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Elfi Kraka
- Department of Chemistry Southern Methodist University Dallas Texas USA
| | - Wenli Zou
- Institute of Modern Physics Northwest University and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an Shaanxi PR China
| | - Yunwen Tao
- Department of Chemistry Southern Methodist University Dallas Texas USA
| |
Collapse
|
34
|
Verma N, Tao Y, Zou W, Chen X, Chen X, Freindorf M, Kraka E. A Critical Evaluation of Vibrational Stark Effect (VSE) Probes with the Local Vibrational Mode Theory. SENSORS 2020; 20:s20082358. [PMID: 32326248 PMCID: PMC7219233 DOI: 10.3390/s20082358] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Over the past two decades, the vibrational Stark effect has become an important tool to measure and analyze the in situ electric field strength in various chemical environments with infrared spectroscopy. The underlying assumption of this effect is that the normal stretching mode of a target bond such as CO or CN of a reporter molecule (termed vibrational Stark effect probe) is localized and free from mass-coupling from other internal coordinates, so that its frequency shift directly reflects the influence of the vicinal electric field. However, the validity of this essential assumption has never been assessed. Given the fact that normal modes are generally delocalized because of mass-coupling, this analysis was overdue. Therefore, we carried out a comprehensive evaluation of 68 vibrational Stark effect probes and candidates to quantify the degree to which their target normal vibration of probe bond stretching is decoupled from local vibrations driven by other internal coordinates. The unique tool we used is the local mode analysis originally introduced by Konkoli and Cremer, in particular the decomposition of normal modes into local mode contributions. Based on our results, we recommend 31 polyatomic molecules with localized target bonds as ideal vibrational Stark effect probe candidates.
Collapse
Affiliation(s)
- Niraj Verma
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (N.V.); (Y.T.); (M.F.)
| | - Yunwen Tao
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (N.V.); (Y.T.); (M.F.)
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, Xi’an 710127, China;
| | - Xia Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Xin Chen
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China;
| | - Marek Freindorf
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (N.V.); (Y.T.); (M.F.)
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (N.V.); (Y.T.); (M.F.)
- Correspondence:
| |
Collapse
|
35
|
Kraka E, Freindorf M. Characterizing the Metal–Ligand Bond Strength via Vibrational Spectroscopy: The Metal–Ligand Electronic Parameter (MLEP). TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Oliveira VP, Marcial BL, Machado FBC, Kraka E. Metal-Halogen Bonding Seen through the Eyes of Vibrational Spectroscopy. MATERIALS 2019; 13:ma13010055. [PMID: 31861904 PMCID: PMC6982077 DOI: 10.3390/ma13010055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 11/17/2022]
Abstract
Incorporation of a metal center into halogen-bonded materials can efficiently fine-tune the strength of the halogen bonds and introduce new electronic functionalities. The metal atom can adopt two possible roles: serving as halogen acceptor or polarizing the halogen donor and acceptor groups. We investigated both scenarios for 23 metal–halogen dimers trans-M(Y2)(NC5H4X-3)2 with M = Pd(II), Pt(II); Y = F, Cl, Br; X = Cl, Br, I; and NC5H4X-3 = 3-halopyridine. As a new tool for the quantitative assessment of metal–halogen bonding, we introduced our local vibrational mode analysis, complemented by energy and electron density analyses and electrostatic potential studies at the density functional theory (DFT) and coupled-cluster single, double, and perturbative triple excitations (CCSD(T)) levels of theory. We could for the first time quantify the various attractive contacts and their contribution to the dimer stability and clarify the special role of halogen bonding in these systems. The largest contribution to the stability of the dimers is either due to halogen bonding or nonspecific interactions. Hydrogen bonding plays only a secondary role. The metal can only act as halogen acceptor when the monomer adopts a (quasi-)planar geometry. The best strategy to accomplish this is to substitute the halo-pyridine ring with a halo-diazole ring, which considerably strengthens halogen bonding. Our findings based on the local mode analysis provide a solid platform for fine-tuning of existing and for design of new metal–halogen-bonded materials.
Collapse
Affiliation(s)
- Vytor P. Oliveira
- Departamento de Química, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, 12228-900 São Paulo, Brazil; (V.P.O.); (F.B.C.M.)
| | - Bruna L. Marcial
- Núcleo de Química, Instituto Federal Goiano (IF Goiano), Campus Morrinhos, 75650-000 Goiás, Brazil;
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, 12228-900 São Paulo, Brazil; (V.P.O.); (F.B.C.M.)
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA
- Correspondence: ; Tel.: +1-214-768-2611
| |
Collapse
|
37
|
Lyu S, Beiranvand N, Freindorf M, Kraka E. Interplay of Ring Puckering and Hydrogen Bonding in Deoxyribonucleosides. J Phys Chem A 2019; 123:7087-7103. [PMID: 31323178 DOI: 10.1021/acs.jpca.9b05452] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Cremer-Pople ring puckering analysis and the Konkoli-Cremer local mode analysis supported by the topological analysis of the electron density were applied for the first comprehensive analysis of the interplay between deoxyribose ring puckering and intramolecular H-bonding in 2'-deoxycytidine, 2'-deoxyadenosine, 2'-deoxythymidine, and 2'-deoxyguanosine. We mapped for each deoxyribonucleoside the complete conformational energy surface and the corresponding pseudorotation path. We found only incomplete pseudorotation cycles, caused by ring inversion, which we coined as pseudolibration paths. On each pseudolibration path a global and a local minimum separated by a transition state were identified. The investigation of H-bond free deoxyribonucleoside analogs revealed that removal of the H-bond does not restore the full conformational flexibility of the sugar ring. Our work showed that ring puckering predominantly determines the conformational energy; the larger the puckering amplitude, the lower the conformational energy. In contrast no direct correlation between conformational energy and H-bond strength was found. The longest and weakest H-bonds are located in the local minimum region, whereas the shortest and strongest H-bonds are located outside the global and local minimum regions at the turning points of the pseudolibration paths, i.e., H-bonding determines the shape and length of the pseudolibration paths. In addition to the H-bond strength, we evaluated the covalent/electrostatic character of the H-bonds applying the Cremer-Kraka criterion of covalent bonding. H-bonding in the puric bases has a more covalent character whereas in the pyrimidic bases the H-bond character is more electrostatic. We investigated how the mutual orientation of the CH2OH group and the base influences H-bond formation via two geometrical parameters describing the rotation of the substituents perpendicular to the sugar ring and their tilting relative to the ring center. According to our results, rotation is more important for H-bond formation. In addition we assessed the influence of the H-bond acceptor, the lone pair (N, respectively O), via the delocalization energy. We found larger delocalization energies corresponding to stronger H-bonds for the puric bases. The global minimum conformation of 2'-deoxyguanosine has the strongest H-bond of all conformers investigated in this work with a bond strength of 0.436 which is even stronger than the H-bond in the water dimer (0.360). The application of our new analysis to DNA deoxyribonucleotides and to unnatural base pairs, which have recently drawn a lot of attention, is in progress.
Collapse
Affiliation(s)
- Siying Lyu
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry , Southern Methodist University , 3215 Daniel Ave , Dallas , Texas 75275-0314 , United States
| | - Nassim Beiranvand
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry , Southern Methodist University , 3215 Daniel Ave , Dallas , Texas 75275-0314 , United States
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry , Southern Methodist University , 3215 Daniel Ave , Dallas , Texas 75275-0314 , United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry , Southern Methodist University , 3215 Daniel Ave , Dallas , Texas 75275-0314 , United States
| |
Collapse
|
38
|
Miles-Hobbs AM, Hunt E, Pringle PG, Sparkes HA. Ring size effects in cyclic fluorophosphites: ligands that span the bonding space between phosphites and PF 3. Dalton Trans 2019; 48:9712-9724. [PMID: 30973565 DOI: 10.1039/c9dt00893d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The 5- to 8-membered cyclic fluorophosphites L5-8 have been prepared from the corresponding chlorophosphites which are derived from dihydroxyarenes or bis(trimethylsiloxy)arenes. Ligand L5 is very sensitive to hydrolysis but L6-8 are much more kinetically robust. The coordination chemistry of L5-8 has been explored with Mo(0), Pt(0) and Rh(i) and it is shown that the π-acceptor properties of L5-8 increase with decreasing ring size. The IR spectra and X-ray crystal structures of the [Mo(CO)4L2] complexes show that L5-8 lie between PF3 and P(OAr)3 in terms of their σ/π-bonding properties. The [PtL4] complexes are readily prepared from [Pt(nbe)3] and 4 equiv. of L5-8 whereas equilibrium mixtures of PtLx(nbe)y species form when 2 equiv. of L5-8 are added to [Pt(nbe)3]. The CO substitution reactions of [Rh2Cl2(CO)4] with L5-8 to give [Rh2Cl2L4] are evidence of the PF3-like ligand properties of L5-8. The trends in the properties of L5-8 are analysed in terms of their proximity to PF3 or P(OPh)3.
Collapse
|
39
|
New insights into Fe–H$$_{2}$$ and Fe–H$$^{-}$$ bonding of a [NiFe] hydrogenase mimic: a local vibrational mode study. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2463-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Maser L, Schneider C, Vondung L, Alig L, Langer R. Quantifying the Donor Strength of Ligand-Stabilized Main Group Fragments. J Am Chem Soc 2019; 141:7596-7604. [DOI: 10.1021/jacs.9b02598] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Leon Maser
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Christian Schneider
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Lisa Vondung
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Lukas Alig
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Robert Langer
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| |
Collapse
|
41
|
Abstract
The intrinsic bonding nature of λ 3 -iodanes was investigated to determine where its hypervalent bonds fit along the spectrum between halogen bonding and covalent bonding. Density functional theory with an augmented Dunning valence triple zeta basis set ( ω B97X-D/aug-cc-pVTZ) coupled with vibrational spectroscopy was utilized to study a diverse set of 34 hypervalent iodine compounds. This level of theory was rationalized by comparing computational and experimental data for a small set of closely-related and well-studied iodine molecules and by a comparison with CCSD(T)/aug-cc-pVTZ results for a subset of the investigated iodine compounds. Axial bonds in λ 3 -iodanes fit between the three-center four-electron bond, as observed for the trihalide species IF 2 − and the covalent FI molecule. The equatorial bonds in λ 3 -iodanes are of a covalent nature. We explored how the equatorial ligand and axial substituents affect the chemical properties of λ 3 -iodanes by analyzing natural bond orbital charges, local vibrational modes, the covalent/electrostatic character, and the three-center four-electron bonding character. In summary, our results show for the first time that there is a smooth transition between halogen bonding → 3c–4e bonding in trihalides → 3c–4e bonding in hypervalent iodine compounds → covalent bonding, opening a manifold of new avenues for the design of hypervalent iodine compounds with specific properties.
Collapse
|
42
|
Abstract
Ligands, especially phosphines and carbenes, can play a key role in modifying and controlling homogeneous organometallic catalysts, and they often provide a convenient approach to fine-tuning the performance of known catalysts. The measurable outcomes of such catalyst modifications (yields, rates, selectivity) can be set into context by establishing their relationship to steric and electronic descriptors of ligand properties, and such models can guide the discovery, optimization, and design of catalysts. In this review we present a survey of calculated ligand descriptors, with a particular focus on homogeneous organometallic catalysis. A range of different approaches to calculating steric and electronic parameters are set out and compared, and we have collected descriptors for a range of representative ligand sets, including 30 monodentate phosphorus(III) donor ligands, 23 bidentate P,P-donor ligands, and 30 carbenes, with a view to providing a useful resource for analysis to practitioners. In addition, several case studies of applications of such descriptors, covering both maps and models, have been reviewed, illustrating how descriptor-led studies of catalysis can inform experiments and highlighting good practice for model comparison and evaluation.
Collapse
Affiliation(s)
- Derek J Durand
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Natalie Fey
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| |
Collapse
|
43
|
Correlation between molecular acidity (pKa) and vibrational spectroscopy. J Mol Model 2019; 25:48. [DOI: 10.1007/s00894-019-3928-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
|
44
|
Gasperini D, Greenhalgh MD, Imad R, Siddiqui S, Malik A, Arshad F, Choudhary MI, Al-Majid AM, Cordes DB, Slawin AMZ, Nolan SP, Smith AD. Chiral Au I - and Au III -Isothiourea Complexes: Synthesis, Characterization and Application. Chemistry 2019; 25:1064-1075. [PMID: 30357947 DOI: 10.1002/chem.201804653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/19/2018] [Indexed: 11/09/2022]
Abstract
During an investigation into the potential union of Lewis basic isothiourea organocatalysis and gold catalysis, the formation of gold-isothiourea complexes was observed. These novel gold complexes were formed in high yield and were found to be air- and moisture stable. A series of neutral and cationic chiral gold(I) and gold(III) complexes bearing enantiopure isothiourea ligands was therefore synthesized and fully characterized. The steric and electronic properties of the isothiourea ligands was assessed through calculation of their percent buried volume and the synthesis and analysis of novel iridium(I)-isothiourea carbonyl complexes. The novel gold(I)- and gold(III)-isothiourea complexes have been applied in preliminary catalytic and biological studies, and display promising preliminary levels of catalytic activity and potency towards cancerous cell lines and clinically relevant enzymes.
Collapse
Affiliation(s)
- Danila Gasperini
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Mark D Greenhalgh
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Rehan Imad
- H.E.J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shezaib Siddiqui
- H.E.J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Anum Malik
- H.E.J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fizza Arshad
- H.E.J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Iqbal Choudhary
- H.E.J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21412, Saudi Arabia
| | - Abdullah M Al-Majid
- Department of Chemistry and Center for Sustainable Chemistry, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Alexandra M Z Slawin
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Chemistry Department, College of Science, Ghent University, Krijgslaan 281, 9000, Ghent, Belgium
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
45
|
Wu K, Conger MA, Waterman R, Liptak M, Geiger WE. Electrochemical and structural characterization of a radical cation formed by one-electron oxidation of a cymantrene complex containing an N-heterocyclic carbene ligand. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.10.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Li H, Gonçalves TP, Hu J, Zhao Q, Gong D, Lai Z, Wang Z, Zheng J, Huang KW. A Pseudodearomatized PN3P*Ni–H Complex as a Ligand and σ-Nucleophilic Catalyst. J Org Chem 2018; 83:14969-14977. [DOI: 10.1021/acs.joc.8b02205] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | | | | | | | | | - Zhixiang Wang
- College of Chemistry and Chemical Engineering, Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Junrong Zheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | |
Collapse
|
47
|
Felten S, Marshall SF, Groom AJ, Vanderlinden RT, Stolley RM, Louie J. Synthesis and Characterization of [(NHC)Ni(styrene)2] Complexes: Isolation of Monocarbene Nickel Complexes and Benchmarking of %VBur in (NHC)Ni-π Systems. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Stephanie Felten
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sarah F. Marshall
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Alisa J. Groom
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ryan T. Vanderlinden
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ryan M. Stolley
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Janis Louie
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
48
|
Gatineau D, Lesage D, Clavier H, Dossmann H, Chan CH, Milet A, Memboeuf A, Cole RB, Gimbert Y. Bond dissociation energies of carbonyl gold complexes: a new descriptor of ligand effects in gold(i) complexes? Dalton Trans 2018; 47:15497-15505. [PMID: 30338332 DOI: 10.1039/c8dt03721c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ligand electronic effects in gold(i) chemistry have been evaluated by means of the experimental determination of M-CO bond dissociation energies for 16 [L-Au-CO]+ complexes, bearing L ligands widely used in gold catalysis. Energy-resolved analyses have been made using tandem mass spectrometry with collision-induced dissociation. Coupled with DFT calculations, this approach enables the quantification of ligand effects based on the LAu-CO bond strength. A further energy decomposition analysis gives access to detailed insights into this bond's characteristics. Whereas small differences are observed between phosphine- and phosphite-containing gold complexes, carbene ligands are shown to stabilize the gold-carbonyl bond much more efficiently.
Collapse
Affiliation(s)
- David Gatineau
- Univ. Grenoble Alpes and CNRS, DCM (UMR 5250) BP 53, 38041 Grenoble Cedex9, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lee K, Wei H, Blake AV, Donahue CM, Keith JM, Daly SR. Measurement of Diphosphine σ-Donor and π-Acceptor Properties in d0 Titanium Complexes Using Ligand K-Edge XAS and TDDFT. Inorg Chem 2018; 57:10277-10286. [DOI: 10.1021/acs.inorgchem.8b01511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kyounghoon Lee
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Haochuan Wei
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Anastasia V. Blake
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Courtney M. Donahue
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Jason M. Keith
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Scott R. Daly
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| |
Collapse
|
50
|
Huynh HV. Electronic Properties of N-Heterocyclic Carbenes and Their Experimental Determination. Chem Rev 2018; 118:9457-9492. [DOI: 10.1021/acs.chemrev.8b00067] [Citation(s) in RCA: 446] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Han Vinh Huynh
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| |
Collapse
|