1
|
Kunert R, Martelino D, Mahato S, Hein NM, Pulfer J, Philouze C, Jarjayes O, Thomas F, Storr T. Investigating the formation of metal nitride complexes employing a tetradentate bis-carbene bis-phenolate ligand. Dalton Trans 2025; 54:616-630. [PMID: 39560135 DOI: 10.1039/d4dt01765j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The synthesis of MnV and CrV nitride complexes of a pro-radical tetradentate bis-phenol bis-N-heterocyclic carbene ligand H2LC2O2 was investigated. Employing either azide photolysis of the MnIII precursor complex MnLC2O2(N3) or a nitride exchange reaction between MnLC2O2(Br) and the nitride exchange reagent Mnsalen(N) failed to provide a useful route to the target nitride MnLC2O2(N). Experimental results support initial formation of the target nitride MnLC2O2(N), however, the nitride rapidly inserts into a Mn-CNHC bond. A second insertion reaction results in the isolation of the doubly inserted ligand product [H2LC2O2(N)]+ in good yield. In contrast, the Cr analogue CrLC2O2(N) was readily prepared and characterized by a number of experimental methods, including X-ray crystallography. Theoretical calculations predict a lower transition state energy for nitride insertion into the M-CNHC bond for Mn in comparison to Cr, and in addition the N-inserted product is stabilized for Mn while destabilized for Cr. Natural bond order (NBO) analysis predicts that the major bonding interaction (π MN → σ* M-CNHC) promotes nucleophilic attack of the nitride on the carbene as the major reaction pathway. Finally, one-electron oxidation of CrLC2O2(N) affords a relatively stable cation that is characterized by experimental and theoretical analysis to be a metal-oxidized d0 CrVI species.
Collapse
Affiliation(s)
- Romain Kunert
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
- Univ. Grenoble Alpes, CNRS, DCM, F-38000, Grenoble, France.
| | - Diego Martelino
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Samyadeb Mahato
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Nicholas M Hein
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Jason Pulfer
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | | | | | - Fabrice Thomas
- Univ. Grenoble Alpes, CNRS, DCM, F-38000, Grenoble, France.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
2
|
Raje S, Garhwal S, Młodzikowska-Pieńko K, Sheikh Mohammad T, Raphaeli R, Fridman N, Shimon LJW, Gershoni-Poranne R, de Ruiter G. N 2 Dissociation vs Reversible 1,2-Methyl Migration in PC NHCP Cobalt(I) Complexes in the Stereoselective Isomerization ( E/Z) of Allyl Ethers. JACS AU 2024; 4:4234-4248. [PMID: 39610742 PMCID: PMC11600169 DOI: 10.1021/jacsau.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 11/30/2024]
Abstract
With growing efforts pushing toward sustainable catalysis, using earth-abundant metals has become increasingly important. Here, we present the first examples of cobalt PCNHCP pincer complexes that demonstrate dual stereoselectivity for allyl ether isomerization. While the cationic cobalt complex [((PCNHCP)Co)2-μ-N2][BAr4 F]2 (3) mainly favors the Z-isomer of the enol ether, the corresponding methyl complex [(PCNHCP)CoMe] (4) mostly gives the E-isomer. The dichotomy in selectivity was investigated computationally, revealing important contributions from the substituents on the metal (N2 vs Me), including a 1,2-alkyl migration from cobalt to the N-heterocyclic carbene (NHC) of the methyl substituent, which is further explored in this report.
Collapse
Affiliation(s)
- Sakthi Raje
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Subhash Garhwal
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Katarzyna Młodzikowska-Pieńko
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Tofayel Sheikh Mohammad
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Ron Raphaeli
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Natalia Fridman
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Linda J. W. Shimon
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Renana Gershoni-Poranne
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Graham de Ruiter
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| |
Collapse
|
3
|
Gravogl L, Kass D, Pyschny O, Heinemann FW, Haumann M, Katz S, Hildebrandt P, Dau H, Swain A, García-Serres R, Ray K, Munz D, Meyer K. A bis-Phenolate Carbene-Supported bis-μ-Oxo Iron(IV/IV) Complex with a [Fe IV(μ-O) 2Fe IV] Diamond Core Derived from Dioxygen Activation. J Am Chem Soc 2024; 146:28757-28769. [PMID: 39382653 DOI: 10.1021/jacs.4c07582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The diiron(II) complex, [(OCO)Fe(MeCN)]2 (1, MeCN = acetonitrile), supported by the bis-phenolate carbene pincer ligand, 1,3-bis(3,5-di-tert-butyl-2-hydroxyphenyl)benzimidazolin-2-ylidene (OCO), was synthesized and characterized by single-crystal X-ray diffraction, 1H nuclear magnetic resonance, infrared (IR) vibrational, ultraviolet/visible/near-infrared (UV/vis/NIR) electronic absorption, 57Fe Mössbauer, X-band electron paramagnetic resonance (EPR) and SQUID magnetization measurements. Complex 1 activates dioxygen to yield the diferric, μ-oxo-bridged complex [(OCO)Fe(py)(μ-O)Fe(O(C═O)O)(py)] (2) that was isolated and fully characterized. In 2, one of the iron-carbene bonds was oxidized to give a urea motif, resulting in an O(CNHC═O)O binding site, while the other Fe(OCO) unit remained unchanged. When the reaction is performed at -80 °C, an intensively colored, purple intermediate is observed (INT, λmax = 570 nm; ε = 5600 mol L-1 cm-1). INT acts as a sluggish oxidant, reacting only with easily oxidizable substrates, such as PPh3 or 2-phenylpropionic aldehyde (2-PPA). The identity of INT can be best described as a dinuclear complex containing a closed diamond core motif [(OCO)FeIV(μ-O)2FeIV(OCO)]. This proposal is based on extensive spectroscopic [UV/vis/NIR electronic absorption, 57Fe Mössbauer, X-band EPR, resonance Raman (rRaman), X-ray absorption, and nuclear resonance vibrational (NRVS)] and computational studies. The conversion of the diiron(II) complex 1 to the oxo diiron(IV) intermediate INT is reminiscent of the O2 activation process in soluble methane monooxygenases (sMMO). Most importantly, the low reactivity of INT supports the consensus that the [FeIV(μ-O)2FeIV] diamond core in sMMO is kinetically inert and needs to open up to terminal FeIV═O cores to react with the strong C-H bonds of methane.
Collapse
Affiliation(s)
- Lisa Gravogl
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Dustin Kass
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str.2, 12489 Berlin, Germany
| | - Oliver Pyschny
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Sagie Katz
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Abinash Swain
- Inorganic Chemistry, Coordination Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| | - Ricardo García-Serres
- Université Grenoble Alpes, CEA, CNRS, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str.2, 12489 Berlin, Germany
| | - Dominik Munz
- Inorganic Chemistry, Coordination Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
4
|
Jesse KA, Anderson JS. Leveraging ligand-based proton and electron transfer for aerobic reactivity and catalysis. Chem Sci 2024; 15:d4sc03896g. [PMID: 39386904 PMCID: PMC11460188 DOI: 10.1039/d4sc03896g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/08/2024] [Indexed: 10/12/2024] Open
Abstract
While O2 is an abundant, benign, and thermodynamically potent oxidant, it is also kinetically inert. This frequently limits its use in synthetic transformations. Correspondingly, direct aerobic reactivity with O2 often requires comparatively harsh or forcing conditions to overcome this kinetic barrier. Forcing conditions limit product selectivity and can lead to over oxidation. Alternatively, O2 can be activated by a catalyst to facilitate oxidative reactivity, and there are a variety of sophisticated examples where transition metal catalysts facilitate aerobic reactivity. Many efforts have focused on using metal-ligand cooperativity to facilitate the movement of protons and electrons for O2 activation. This approach is inspired by enzyme active sites, which frequently use the secondary sphere to facilitate both the activation of O2 and the oxidation of substrates. However, there has only recently been a focus on harnessing metal-ligand cooperativity for aerobic reactivity and, especially, catalysis. This perspective will discuss recent efforts to channel metal-ligand cooperativity for the activation of O2, the generation and stabilization of reactive metal-oxygen intermediates, and oxidative reactivity and catalysis. While significant progress has been made in this area, there are still challenges to overcome and opportunities for the development of efficient catalysts which leverage this biomimetic strategy.
Collapse
Affiliation(s)
- Kate A Jesse
- Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - John S Anderson
- Department of Chemistry, The University of Chicago Chicago Illinois 60637 USA
| |
Collapse
|
5
|
Neshat A, Mousavizadeh Mobarakeh A, Yousefshahi MR, Varmaghani F, Dusek M, Eigner V, Kucerakova M. Introducing Novel Redox-Active Bis(phenolate) N-Heterocyclic Carbene Proligands: Investigation of Their Coordination to Fe(II)/Fe(III) and Their Catalytic Activity in Transfer Hydrogenation of Carbonyl Compounds. ACS OMEGA 2024; 9:25135-25145. [PMID: 38882110 PMCID: PMC11170717 DOI: 10.1021/acsomega.4c02602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
A simple and efficient procedure for synthesizing novel pincer-type tridentate N-heterocyclic carbene bisphenolate ligands is reported. The synthesis of pincer proligands with N,N'-disubstituted imidazoline core, 5 and 6, was carried out via triethylorthoformate-promoted cyclization of either N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)cyclohexanediamine, 3, or N,N'-bis(2-hydroxyphenyl)cyclohexanediamine, 4, in the presence of concentrated hydrochloric acid. Cyclic voltammograms of the ligands revealed ligand-centered redox activity, indicating the noninnocent nature of the ligands. The voltammograms of the ligands exhibit two successive one-electron oxidations and two consecutive one-electron reductions. In contrast to previous reports, the redox-active ligands in this study exhibit one-electron oxidation and reduction processes. All products were thoroughly characterized by using 1H and 13C NMR spectroscopy. The base-promoted deprotonation of the proligands and subsequent reaction with iron(II) and iron(III) chlorides yielded compounds 7 and 8. These compounds are binuclear and tetranuclear iron(III) complexes that do not contain carbene functional groups. Complexes 7 and 8 were characterized by using elemental analysis and single-crystal X-ray crystallography. At low catalyst loadings, both 7 and 8 exhibited high catalytic activity in the transfer hydrogenation of selected aldehydes and ketones.
Collapse
Affiliation(s)
- Abdollah Neshat
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Ali Mousavizadeh Mobarakeh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Mohammad Reza Yousefshahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Fahimeh Varmaghani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Michal Dusek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, The Czech Republic
| | - Vaclav Eigner
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, The Czech Republic
| | - Monika Kucerakova
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, The Czech Republic
| |
Collapse
|
6
|
Kuehner C, Hill AG, Harris CF, Owens CA, Bacsa J, Soper JD. Catalytic C-H Trifluoromethylation of Arenes and Heteroarenes via Visible Light Photoexcitation of a Co(III)-CF 3 Complex. ACS Catal 2023; 13:13607-13617. [PMID: 37881792 PMCID: PMC10594583 DOI: 10.1021/acscatal.3c03832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Indexed: 10/27/2023]
Abstract
A cobalt photocatalyst for direct trifluoromethylation of (hetero)arene C(sp2)-H bonds is described and shown to operate via visible light activation of a Co-CF3 intermediate, which functions as a combined chromophore and organometallic reaction center. Chemical oxidations of previously reported (OCO)Co complexes containing a redox-active [OCO] pincer ligand afford a Co-CF3 complex two oxidation states above Co(II). Computational and spectroscopic studies are consistent with formulation of the product as [(OCO•)CoIII(CF3)(THF)(OTf)] (II) containing an open-shell [OCO•]1- radical ligand bound to a S = 0 Co(III) center. II is thermodynamically stable, but exposure to blue (440 nm) light induces Co-CF3 bond homolysis and release of •CF3, which is trapped by radical acceptors including TEMPO•, (hetero)arenes, or the radical [OCO•] ligand in II. The latter comprises a competitive degradation pathway, which is overcome under catalytic conditions by using excess substrate. Accordingly, generation of II from the reaction of [(OCO)CoIIL] (III) (L = THF, MeCN) with Umemoto's dibenzothiophenium trifluoromethylating reagent (1) followed by photolytic Co-CF3 bond activation completes a photoredox catalytic cycle for C-H (hetero)arene trifluoromethylation utilizing visible light. Electronic structure and photophysical studies, including time-dependent density functional theory (TDDFT) calculations, suggest that Co-CF3 bond homolysis at II occurs via an ligand-to-metal charge-transfer (LMCT) (OCO0)CoII(CF3) state, revealing ligand redox activity as a critical design feature and establishing design principles for the use of base metal chromophores for selectivity in photoredox bond activations occurring via free radical intermediates.
Collapse
Affiliation(s)
- Christopher
S. Kuehner
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Andrew G. Hill
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Caleb F. Harris
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Christian A. Owens
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - John Bacsa
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
- X-ray
Crystallography Center, Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jake D. Soper
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
7
|
Anferov SW, Filatov AS, Anderson JS. Cobalt-Catalyzed Hydrogenation Reactions Enabled by Ligand-Based Storage of Dihydrogen. ACS Catal 2022; 12:9933-9943. [PMID: 36033368 PMCID: PMC9396622 DOI: 10.1021/acscatal.2c02467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Indexed: 12/18/2022]
Abstract
The use of supporting ligands that can store either protons or electrons has emerged as a powerful strategy in catalysis. While these strategies are potent individually, natural systems mediate remarkable transformations by combining the storage of both protons and electrons in the secondary coordination sphere. As such, there has been recent interest in using this strategy to enable fundamentally different transformations. Furthermore, outsourcing H-atom or hydrogen storage to ancillary ligands can also enable alternative mechanistic pathways and thereby selectivity. Here, we describe the application of this strategy to facilitate radical reactivity in Co-based hydrogenation catalysis. Metalation of previously reported dihydrazonopyrrole ligands with Co results in paramagnetic complexes, which are best described as having Co(II) oxidation states. These complexes catalytically hydrogenate olefins with low catalyst loadings under mild conditions (1 atm H2, 23 °C). Mechanistic, spectroscopic, and computational investigations indicate that this system goes through a radical hydrogen-atom transfer (HAT) type pathway that is distinct from classic organometallic mechanisms and is supported by the ability of the ligand to store H2. These results show how ancillary ligands can facilitate efficient catalysis, and furthermore how classic organometallic mechanisms for catalysis can be altered by the secondary coordination sphere.
Collapse
Affiliation(s)
- Sophie W Anferov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| | - Alexander S Filatov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| |
Collapse
|
8
|
Ruamps M, Bastin S, Rechignat L, Sournia-Saquet A, Vendier L, Lugan N, Mouesca JM, Valyaev DA, Maurel V, César V. Redox-Switchable Behavior of Transition-Metal Complexes Supported by Amino-Decorated N-Heterocyclic Carbenes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123776. [PMID: 35744903 PMCID: PMC9227367 DOI: 10.3390/molecules27123776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
The coordination chemistry of the N-heterocyclic carbene ligand IMes(NMe2)2, derived from the well-known IMes ligand by substitution of the carbenic heterocycle with two dimethylamino groups, was investigated with d6 [Mn(I), Fe(II)], d8 [Rh(I)], and d10 [Cu(I)] transition-metal centers. The redox behavior of the resulting organometallic complexes was studied through a combined experimental/theoretical study, involving electrochemistry, EPR spectroscopy, and DFT calculations. While the complexes [CuCl(IMes(NMe2)2)], [RhCl(COD)(IMes(NMe2)2)], and [FeCp(CO)2 (IMes(NMe2)2)](BF4) exhibit two oxidation waves, the first oxidation wave is fully reversible but only for the first complex the second oxidation wave is reversible. The mono-oxidation event for these complexes occurs on the NHC ligand, with a spin density mainly located on the diaminoethylene NHC-backbone, and has a dramatic effect on the donating properties of the NHC ligand. Conversely, as the Mn(I) center in the complex [MnCp(CO)2 ((IMes(NMe2)2)] is easily oxidizable, the latter complex is first oxidized on the metal center to form the corresponding cationic Mn(II) complex, and the NHC ligand is oxidized in a second reversible oxidation wave.
Collapse
Affiliation(s)
- Mirko Ruamps
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.R.); (S.B.); (L.R.); (A.S.-S.); (L.V.); (N.L.)
| | - Stéphanie Bastin
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.R.); (S.B.); (L.R.); (A.S.-S.); (L.V.); (N.L.)
| | - Lionel Rechignat
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.R.); (S.B.); (L.R.); (A.S.-S.); (L.V.); (N.L.)
| | - Alix Sournia-Saquet
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.R.); (S.B.); (L.R.); (A.S.-S.); (L.V.); (N.L.)
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.R.); (S.B.); (L.R.); (A.S.-S.); (L.V.); (N.L.)
| | - Noël Lugan
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.R.); (S.B.); (L.R.); (A.S.-S.); (L.V.); (N.L.)
| | - Jean-Marie Mouesca
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France;
| | - Dmitry A. Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.R.); (S.B.); (L.R.); (A.S.-S.); (L.V.); (N.L.)
- Correspondence: (D.A.V.); (V.M.); (V.C.)
| | - Vincent Maurel
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France;
- Correspondence: (D.A.V.); (V.M.); (V.C.)
| | - Vincent César
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.R.); (S.B.); (L.R.); (A.S.-S.); (L.V.); (N.L.)
- Correspondence: (D.A.V.); (V.M.); (V.C.)
| |
Collapse
|
9
|
Wittwer B, Dickmann N, Berg S, Leitner D, Tesi L, Hunger D, Gratzl R, van Slageren J, Neuman NI, Munz D, Hohloch S. A mesoionic carbene complex of manganese in five oxidation states. Chem Commun (Camb) 2022; 58:6096-6099. [PMID: 35503035 DOI: 10.1039/d2cc00097k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction between a carbazole-based mesoionic carbene ligand and manganese(II) iodide results in the formation of a rare air-stable manganese(IV) complex after aerobic workup. Cyclic voltammetry reveals the complex to be stable in five oxidation states. The electronic structure of all five oxidation states is elucidated chemically, spectroscopically (NMR, high-frequency EPR, UV-Vis, MCD), magnetically, and computationally (DFT, CASSCF).
Collapse
Affiliation(s)
- Benjamin Wittwer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Nicole Dickmann
- University of Paderborn, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Stephan Berg
- University of Paderborn, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Daniel Leitner
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Lorenzo Tesi
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - David Hunger
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Raphael Gratzl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Joris van Slageren
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Nicolas I Neuman
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.,Instituto de Desarrollo Tecnológico para la Industria Química, INTEC, UNL-CONICET, Predio CONICET Santa Fe Dr Alberto Cassano, Ruta Nacional No 168, Km 0 Paraje El Pozo, (S3000ZAA) Santa Fe, Argentina.
| | - Dominik Munz
- Inorganic Chemistry: Coordination Chemistry, Saarland University Campus C4 1, 66123 Saarbrücken, Germany. .,Inorganic and General Chemistry, FAU Erlangen-Nürnberg, Egelandstr. 1, 91058 Erlangen, Germany
| | - Stephan Hohloch
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
10
|
He F, Gourlaouen C, Pang H, Braunstein P. Influence of the Flexibility of Nickel PCP‐Pincer Complexes on C−H and P−C Bond Activation and Ethylene Reactivity: A Combined Experimental and Theoretical Investigation. Chemistry 2022; 28:e202104234. [DOI: 10.1002/chem.202104234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Fengkai He
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225009 Jiangsu P. R. China
- Laboratoire de Chimie de Coordination Institut de Chimie (UMR 7177 CNRS) Université de Strasbourg 4 rue Blaise Pascal 67081 Strasbourg France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique Institut de Chimie (UMR 7177 CNRS) Université de Strasbourg 4 rue Blaise Pascal 67081 Strasbourg France
| | - Huan Pang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Pierre Braunstein
- Laboratoire de Chimie de Coordination Institut de Chimie (UMR 7177 CNRS) Université de Strasbourg 4 rue Blaise Pascal 67081 Strasbourg France
| |
Collapse
|
11
|
Thenarukandiyil R, Paenurk E, Wong A, Fridman N, Karton A, Carmieli R, Ménard G, Gershoni-Poranne R, de Ruiter G. Extensive Redox Non-Innocence in Iron Bipyridine-Diimine Complexes: a Combined Spectroscopic and Computational Study. Inorg Chem 2021; 60:18296-18306. [PMID: 34787414 PMCID: PMC8653161 DOI: 10.1021/acs.inorgchem.1c02925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Indexed: 11/28/2022]
Abstract
Metal-ligand cooperation is an important aspect in earth-abundant metal catalysis. Utilizing ligands as electron reservoirs to supplement the redox chemistry of the metal has resulted in many new exciting discoveries. Here, we demonstrate that iron bipyridine-diimine (BDI) complexes exhibit an extensive electron-transfer series that spans a total of five oxidation states, ranging from the trication [Fe(BDI)]3+ to the monoanion [Fe(BDI]-1. Structural characterization by X-ray crystallography revealed the multifaceted redox noninnocence of the BDI ligand, while spectroscopic (e.g., 57Fe Mössbauer and EPR spectroscopy) and computational studies were employed to elucidate the electronic structure of the isolated complexes, which are further discussed in this report.
Collapse
Affiliation(s)
- Ranjeesh Thenarukandiyil
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Eno Paenurk
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Anthony Wong
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Natalia Fridman
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Amir Karton
- School
of Molecular Science, The University of
Western Australia, 35 Stirling Highway, 6009 Perth, Australia
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 761000, Israel
| | - Gabriel Ménard
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Renana Gershoni-Poranne
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Graham de Ruiter
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| |
Collapse
|
12
|
Watt FA, Sieland B, Dickmann N, Schoch R, Herbst-Irmer R, Ott H, Paradies J, Kuckling D, Hohloch S. Coupling of CO 2 and epoxides catalysed by novel N-fused mesoionic carbene complexes of nickel(II). Dalton Trans 2021; 50:17361-17371. [PMID: 34788774 DOI: 10.1039/d1dt03311e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the syntheses of two rigid mesoionic carbene (MIC) ligands with a carbazole backbone via an intramolecular Finkelstein-cyclisation cascade and investigate their coordination behavior towards nickel(II) acetate. Despite the nickel(II) carbene complexes 4a,b showing only minor differences in their chemical composition, they display curious differences in their chemical properties, e.g. solubility. Furthermore, the potential of these novel MIC complexes in the coupling of carbon dioxide and epoxides as well as the differences in reactivity compared to classical NHC-derived complexes are evaluated.
Collapse
Affiliation(s)
- Fabian A Watt
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Benedikt Sieland
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Nicole Dickmann
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Roland Schoch
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Regine Herbst-Irmer
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, 37077 Göttingen, Germany
| | - Holger Ott
- Bruker AXS GmbH, Östliche Rheinbrückenstraße 49, 76187 Karlsruhe, Germany
| | - Jan Paradies
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Dirk Kuckling
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Stephan Hohloch
- University of Innsbruck, Faculty of Chemistry and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
13
|
Jesse KA, Anferov SW, Collins KA, Valdez-Moreira JA, Czaikowski ME, Filatov AS, Anderson JS. Direct Aerobic Generation of a Ferric Hydroperoxo Intermediate Via a Preorganized Secondary Coordination Sphere. J Am Chem Soc 2021; 143:18121-18130. [PMID: 34698493 PMCID: PMC8569801 DOI: 10.1021/jacs.1c06911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Indexed: 01/19/2023]
Abstract
Enzymes exert control over the reactivity of metal centers with precise tuning of the secondary coordination sphere of active sites. One particularly elegant illustration of this principle is in the controlled delivery of proton and electron equivalents in order to activate abundant but kinetically inert oxidants such as O2 for oxidative chemistry. Chemists have drawn inspiration from biology in designing molecular systems where the secondary coordination sphere can shuttle protons or electrons to substrates. However, a biomimetic activation of O2 requires the transfer of both protons and electrons, and molecular systems where ancillary ligands are designed to provide both of these equivalents are comparatively rare. Here, we report the use of a dihydrazonopyrrole (DHP) ligand complexed to Fe to perform exactly such a biomimetic activation of O2. In the presence of O2, this complex directly generates a high spin Fe(III)-hydroperoxo intermediate which features a DHP• ligand radical via ligand-based transfer of an H atom. This system displays oxidative reactivity and ultimately releases hydrogen peroxide, providing insight on how secondary coordination sphere interactions influence the evolution of oxidizing intermediates in Fe-mediated aerobic oxidations.
Collapse
Affiliation(s)
- Kate A. Jesse
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sophie W. Anferov
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kelsey A. Collins
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Maia E. Czaikowski
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S. Filatov
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S. Anderson
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
Roux SL, Ori G, Bellemin-Laponnaz S, Boero M. Tridentate complexes of group 4 bearing bis-aryloxide N-heterocyclic carbene ligand: Structure, spin density and charge states. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Rendón-Nava D, Angeles-Beltrán D, Rheingold AL, Mendoza-Espinosa D. Palladium(II) Complexes of a Neutral CCC-Tris(N-heterocyclic carbene) Pincer Ligand: Synthesis and Catalytic Applications. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David Rendón-Nava
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, Hidalgo, Mexico 42090
| | - Deyanira Angeles-Beltrán
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Avenida San Pablo 180, Ciudad de México, Mexico 02200
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Daniel Mendoza-Espinosa
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, Hidalgo, Mexico 42090
| |
Collapse
|
16
|
Suresh L, Finnstad J, Törnroos KW, Le Roux E. Bis(phenolate)-functionalized N-heterocyclic carbene complexes of oxo- and imido-vanadium(V). Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Wang Y, Zhang B, Guo S. Transition Metal Complexes Supported by N‐Heterocyclic Carbene‐Based Pincer Platforms: Synthesis, Reactivity and Applications. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yidan Wang
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Bo Zhang
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Shuai Guo
- Department of Chemistry Capital Normal University Beijing 100048 China
| |
Collapse
|
18
|
Suresh L, Lalrempuia R, B. Ekeli J, Gillis-D’Hamers F, Törnroos KW, Jensen VR, Le Roux E. Unsaturated and Benzannulated N-Heterocyclic Carbene Complexes of Titanium and Hafnium: Impact on Catalysts Structure and Performance in Copolymerization of Cyclohexene Oxide with CO 2. Molecules 2020; 25:E4364. [PMID: 32977466 PMCID: PMC7582562 DOI: 10.3390/molecules25194364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/13/2023] Open
Abstract
Tridentate, bis-phenolate N-heterocyclic carbenes (NHCs) are among the ligands giving the most selective and active group 4-based catalysts for the copolymerization of cyclohexene oxide (CHO) with CO2. In particular, ligands based on imidazolidin-2-ylidene (saturated NHC) moieties have given catalysts which exclusively form polycarbonate in moderate-to-high yields even under low CO2 pressure and at low copolymerization temperatures. Here, to evaluate the influence of the NHC moiety on the molecular structure of the catalyst and its performance in copolymerization, we extend this chemistry by synthesizing and characterizing titanium complexes bearing tridentate bis-phenolate imidazol-2-ylidene (unsaturated NHC) and benzimidazol-2-ylidene (benzannulated NHC) ligands. The electronic properties of the ligands and the nature of their bonds to titanium are studied using density functional theory (DFT) and natural bond orbital (NBO) analysis. The metal-NHC bond distances and bond strengths are governed by ligand-to-metal σ- and π-donation, whereas back-donation directly from the metal to the NHC ligand seems to be less important. The NHC π-acceptor orbitals are still involved in bonding, as they interact with THF and isopropoxide oxygen lone-pair donor orbitals. The new complexes are, when combined with [PPN]Cl co-catalyst, selective in polycarbonate formation. The highest activity, albeit lower than that of the previously reported Ti catalysts based on saturated NHC, was obtained with the benzannulated NHC-Ti catalyst. Attempts to synthesize unsaturated and benzannulated NHC analogues based on Hf invariably led, as in earlier work with Zr, to a mixture of products that include zwitterionic and homoleptic complexes. However, the benzannulated NHC-Hf complexes were obtained as the major products, allowing for isolation. Although these complexes selectively form polycarbonate, their catalytic performance is inferior to that of analogues based on saturated NHC.
Collapse
Affiliation(s)
- Lakshmi Suresh
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| | - Ralte Lalrempuia
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Jonas B. Ekeli
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| | - Francis Gillis-D’Hamers
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| | - Karl W. Törnroos
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| | - Vidar R. Jensen
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| | - Erwan Le Roux
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| |
Collapse
|
19
|
Garhwal S, Kaushansky A, Fridman N, Shimon LJW, Ruiter GD. Facile H/D Exchange at (Hetero)Aromatic Hydrocarbons Catalyzed by a Stable Trans-Dihydride N-Heterocyclic Carbene (NHC) Iron Complex. J Am Chem Soc 2020; 142:17131-17139. [PMID: 32902969 PMCID: PMC7586338 DOI: 10.1021/jacs.0c07689] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Earth-abundant
metal pincer complexes have played an important
role in homogeneous catalysis during the last ten years. Yet, despite
intense research efforts, the synthesis of iron PCcarbeneP pincer complexes has so far remained elusive. Here we report the
synthesis of the first PCNHCP functionalized iron complex
[(PCNHCP)FeCl2] (1) and the reactivity
of the corresponding trans-dihydride iron(II) dinitrogen
complex [(PCNHCP)Fe(H)2N2)] (2). Complex 2 is stable under an atmosphere of
N2 and is highly active for hydrogen isotope exchange at
(hetero)aromatic hydrocarbons under mild conditions (50 °C, N2). With benzene-d6 as the deuterium
source, easily reducible functional groups such as esters and amides
are well tolerated, contributing to the overall wide substrate scope
(e.g., halides, ethers, and amines). DFT studies suggest a complex
assisted σ-bond metathesis pathway for C(sp2)–H
bond activation, which is further discussed in this study.
Collapse
Affiliation(s)
- Subhash Garhwal
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Alexander Kaushansky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| |
Collapse
|
20
|
Danopoulos AA, Braunstein P, Saßmannshausen J, Pugh D, Wright JA. “Pincer” Pyridine–Dicarbene–Iridium and ‐Ruthenium Complexes and Derivatives Thereof. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Andreas A. Danopoulos
- Inorganic Chemistry Laboratory Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis Zografou 15771 Athens Greece
| | - Pierre Braunstein
- CNRS, Chimie UMR 7177 Laboratoire de Chimie de Coordination Université de Strasbourg 4 rue Blaise Pascal 67081 Strasbourg Cedex France
| | - Jörg Saßmannshausen
- Guy's Hospital Guy's and St Thomas' NHS Foundation Trust and King's College London 16th Floor Tower Wing SE1 9RT London UK
| | - David Pugh
- Department of Chemistry King's College London Britannia House, 7 Trinity Street SE1 1DB London UK
| | - Joseph A. Wright
- Energy Materials Laboratory School of Chemistry University of East Anglia Norwich Research Park NR4 7TJ Norwich UK
| |
Collapse
|
21
|
Meshcheryakova IN, Arsenyeva KV, Fukin GK, Cherkasov VK, Piskunov AV. Stable N-heterocyclic carbene derivatives of copper(i) and silver(i) containing radical anion redox active ligands. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Taakili R, Canac Y. NHC Core Pincer Ligands Exhibiting Two Anionic Coordinating Extremities. Molecules 2020; 25:molecules25092231. [PMID: 32397416 PMCID: PMC7248942 DOI: 10.3390/molecules25092231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
The chemistry of NHCcore pincer ligands of LX2 type bearing two pending arms, identical or not, whose coordinating center is anionic in nature, is here reviewed. In this family, the negative charge of the coordinating atoms can be brought either by a carbon atom via a phosphonium ylide (R3P+-CR2-) or by a heteroatom through amide (R2N-), oxide (RO-), or thio(seleno)oxide (RS-, RSe-) donor functionalities. Through selected examples, the synthetic methods, coordination properties, and applications of such tridentate systems are described. Particular emphasis is placed on the role of the donor ends in the chemical behavior of these species.
Collapse
|
23
|
Abstract
The synthesis and characterization of a series of homoleptic iron complexes [Fe(benzNHCOCO)2]2-/1-/0/1+ supported by the tridentate bis-aryloxide benzimidazolin-2-ylidene pincer ligand benzNHCOCO2- (II) is presented. While the reaction of 2 equiv of free ligand II with a ferrous iron precursor leads to the isolation of the coordination polymer [Fe(benzNHCOCOK)2]n (1), treatment of II with ferric iron salts allows for the synthesis and isolation of the mononuclear, octahedral bis-pincer compound K[Fe(benzNHCOCO)2] (2) and its crown-ether derivative [K(18c6)(THF)2][Fe(benzNHCOCO)2] (3). Electrochemical studies of 2 suggested stable products upon further one- and two-electron oxidation. Hence, treatment of 2 with 1 equiv of AgPF6 yields the charge-neutral species [Fe(benzNHCOCO)2] (4). Similarly, the cationic complex [Fe(benzNHCOCO)2]PF6 (5) is obtained by addition of 2 equiv of AgPF6. The characterization of complexes 1, 3, and 4 reveals iron-centered reduction and oxidation processes; thus, preserving the dianionic, closed-shell structure of both coordinated benzNHCOCO pincer chelates, II. This implies a stabilization of a highly Lewis acidic iron(IV) center by four phenolate anions rather than charge distribution across the ligand framework with a lower formal oxidation state at iron. Notably, the overall charge-neutral iron(IV) complex undergoes reductive elimination of the pincer ligand, providing a metal-free compound that can be described as a spirocyclic imidazolone ketal (6). In contrast, the ligand-metal bonds in 5, formally an iron(V) complex, are considerably covalent, rendering the assignment of its oxidation state challenging, if not impossible. All compounds are fully characterized, and the complexes' electronic structures were studied with a variety of spectroscopic and computational methods, including single-crystal X-ray diffraction (SC-XRD), X-band electron paramagnetic resonance (EPR), and zero-field 57Fe Mössbauer spectroscopy, variable-field and variable-temperature superconducting quantum interference device (SQUID) magnetization measurements, and multi-reference ab initio (NEVPT2/CASSCF) as well as density functional theory (DFT) studies. Taken altogether, the electronic structure of 5 is best described as an iron(IV) center antiferromagnetically coupled to a ligand-centered radical.
Collapse
Affiliation(s)
- Lisa Gravogl
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Dominik Munz
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
24
|
Recent advances in the chemistry of group 9—Pincer organometallics. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
van der Vlugt JI. Redox-Active Pincer Ligands. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Baltrun M, Watt FA, Schoch R, Hohloch S. Dioxo-, Oxo-imido-, and Bis-imido-Molybdenum(VI) Complexes with a Bis-phenolate-NHC Ligand. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00472] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marc Baltrun
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Fabian A. Watt
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Roland Schoch
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Stephan Hohloch
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| |
Collapse
|
27
|
Kunert R, Philouze C, Jarjayes O, Thomas F. Stable M(II)-Radicals and Nickel(III) Complexes of a Bis(phenol) N-Heterocyclic Carbene Chelated to Group 10 Metal Ions. Inorg Chem 2019; 58:8030-8044. [PMID: 31185559 DOI: 10.1021/acs.inorgchem.9b00784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The tetradentate ligand based on (1-imidazolium-3,5-di tert-butylphenol) units was prepared and chelated to group 10 metal ions (Ni(II), Pd(II), and Pt(II)), affording complexes 1, 2, and 3, respectively. The X-ray crystal structures of 1-3 show a square planar metal ion coordinated to two N-heterocyclic carbenes and two phenolate moieties. The cyclic voltammetry curves of complexes 1-3 show two reversible oxidation waves in the range 0.11-0.21 V ( E1/21) and 0.55-0.65 V ( E1/22) vs Fc+/Fc, which are assigned to the successive oxidations of the phenolate moieties. One-electron oxidation affords mononuclear ( S = 1/2) systems. Complex 1+·SbF6- was remarkably stable, and its structure was characterized. The coordination sphere is slightly dissymmetric, while the typical patterns of phenoxyl radicals were observed within the ligand framework. Complex 1+ exhibits a rhombic signal at g = 2.087, 2.016, and 1.992, confirming its predominant phenoxyl radical character. The g-values are slightly smaller for 2+ (2.021, 2.008, and 1.983) and larger for 3+ (2.140, 1.999, and 1.885) yet consistent with phenoxyl radical species. The electronic spectra of 1+-3+ display an intervalence charge-transfer (IVCT) transition at 2396, 2600, and 2294 nm, respectively. Its intensity supports the description of cations 1+ and 3+ as mixed-valent (Class II/III) compounds according to the Robin Day classification. Complex 2+ behaves as a mixed-valent class II radical compound. In the presence of pyridine, radical species 1+ is successively converted into stable mono and bis(adducts), which are both Ni(III) complexes. Dications 1+2-3+2 were prepared electrochemically. They are electron paramagnetic resonance (EPR)-silent and do not show IVCT transition in their NIR spectra, consistent with a bis(radical) formulation. The proposed electronic structures are fully supported by density functional theory calculations.
Collapse
Affiliation(s)
- Romain Kunert
- Université Grenoble Alpes , UMR CNRS-5250, Département de Chimie Moléculaire , Grenoble F-38000 , France
| | - Christian Philouze
- Université Grenoble Alpes , UMR CNRS-5250, Département de Chimie Moléculaire , Grenoble F-38000 , France
| | - Olivier Jarjayes
- Université Grenoble Alpes , UMR CNRS-5250, Département de Chimie Moléculaire , Grenoble F-38000 , France
| | - Fabrice Thomas
- Université Grenoble Alpes , UMR CNRS-5250, Département de Chimie Moléculaire , Grenoble F-38000 , France
| |
Collapse
|
28
|
Arion VB. Coordination chemistry of S-substituted isothiosemicarbazides and isothiosemicarbazones. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Danopoulos AA, Simler T, Braunstein P. N-Heterocyclic Carbene Complexes of Copper, Nickel, and Cobalt. Chem Rev 2019; 119:3730-3961. [PMID: 30843688 DOI: 10.1021/acs.chemrev.8b00505] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The emergence of N-heterocyclic carbenes as ligands across the Periodic Table had an impact on various aspects of the coordination, organometallic, and catalytic chemistry of the 3d metals, including Cu, Ni, and Co, both from the fundamental viewpoint but also in applications, including catalysis, photophysics, bioorganometallic chemistry, materials, etc. In this review, the emergence, development, and state of the art in these three areas are described in detail.
Collapse
Affiliation(s)
- Andreas A Danopoulos
- Laboratory of Inorganic Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis Zografou , Athens GR 15771 , Greece.,Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| | - Thomas Simler
- Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| | - Pierre Braunstein
- Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| |
Collapse
|
30
|
van der Vlugt JI. Radical-Type Reactivity and Catalysis by Single-Electron Transfer to or from Redox-Active Ligands. Chemistry 2019; 25:2651-2662. [PMID: 30084211 PMCID: PMC6471147 DOI: 10.1002/chem.201802606] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Controlled ligand-based redox-activity and chemical non-innocence are rapidly gaining importance for selective (catalytic) processes. This Concept aims to provide an overview of the progress regarding ligand-to-substrate single-electron transfer as a relatively new mode of operation to exploit ligand-centered reactivity and catalysis based thereon.
Collapse
Affiliation(s)
- Jarl Ivar van der Vlugt
- Bio-Inspired Homogeneous and Supramolecular Catalysis Groupvan ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamNetherlands
| |
Collapse
|
31
|
Alig L, Fritz M, Schneider S. First-Row Transition Metal (De)Hydrogenation Catalysis Based On Functional Pincer Ligands. Chem Rev 2018; 119:2681-2751. [PMID: 30596420 DOI: 10.1021/acs.chemrev.8b00555] [Citation(s) in RCA: 523] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of 3d metals in de/hydrogenation catalysis has emerged as a competitive field with respect to "traditional" precious metal catalyzed transformations. The introduction of functional pincer ligands that can store protons and/or electrons as expressed by metal-ligand cooperativity and ligand redox-activity strongly stimulated this development as a conceptual starting point for rational catalyst design. This review aims at providing a comprehensive picture of the utilization of functional pincer ligands in first-row transition metal hydrogenation and dehydrogenation catalysis and related synthetic concepts relying on these such as the hydrogen borrowing methodology. Particular emphasis is put on the implementation and relevance of cooperating and redox-active pincer ligands within the mechanistic scenarios.
Collapse
Affiliation(s)
- Lukas Alig
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Maximilian Fritz
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Sven Schneider
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| |
Collapse
|
32
|
Coordination chemistry of a redox non-innocent NHC bis(phenolate) pincer ligand with nickel(II). Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Ren X, Wesolek M, Braunstein P. Nickel(II) Complexes with Tritopic Nimine
CNHC
Namine
Pincer Ligands. Chemistry 2018; 24:14794-14801. [DOI: 10.1002/chem.201802969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaoyu Ren
- Université de Strasbourg; CNRS, CHIMIE UMR 7177; Laboratoire de Chimie de Coordination; 4 rue Blaise Pascal 67081 Strasbourg Cedex France
| | - Marcel Wesolek
- Université de Strasbourg; CNRS, CHIMIE UMR 7177; Laboratoire de Chimie de Coordination; 4 rue Blaise Pascal 67081 Strasbourg Cedex France
| | - Pierre Braunstein
- Université de Strasbourg; CNRS, CHIMIE UMR 7177; Laboratoire de Chimie de Coordination; 4 rue Blaise Pascal 67081 Strasbourg Cedex France
| |
Collapse
|
34
|
Sung S, Wang Q, Krämer T, Young RD. Synthesis and reactivity of a PC carbeneP cobalt(i) complex: the missing link in the cobalt PXP pincer series (X = B, C, N). Chem Sci 2018; 9:8234-8241. [PMID: 30542572 PMCID: PMC6240806 DOI: 10.1039/c8sc02782j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/05/2018] [Indexed: 02/05/2023] Open
Abstract
We report the first example of a cobalt PCcarbeneP pincer complex (1) featuring a central alkylidene carbon donor accessed through the dehydration of an alcoholic POP proligand.
We report the first example of a cobalt PCcarbeneP pincer complex (1) featuring a central alkylidene carbon donor accessed through the dehydration of an alcoholic POP proligand. Complex 1 shares bonding similarities with cobalt PBP and PNP pincer complexes where the donor atom engages in π-bonding with the cobalt centre, and thus completes the PXP (X = B, C, N) pincer ligand series for cobalt (for X donors that partake in M–L π-bonding). As compared to PBP and PNP pincer complexes, which are known to be good hydride and proton acceptors (respectively), complex 1 is found to be an effective hydrogen atom acceptor. Complex 1 partakes in cooperative ligand reactivity, engaging in several small molecule activations with styrene, bromine, carbon disulphide, phenyl acetylene, acetonitrile, hydrogen, benzaldehyde and water (through microreversibility). The mechanism for the formation of complex 1 is studied through the isolation and computational analysis of key intermediates. The formation of 1 is found to avoid C–H activation of the proligand, and instead proceeds through a combination of O–H activation, hydrogen atom transfer, β-hydride elimination and hydrogen activation processes.
Collapse
Affiliation(s)
- Simon Sung
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 .
| | - Qingyang Wang
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 .
| | - Tobias Krämer
- Department of Chemistry , Maynooth University , Maynooth , Ireland
| | - Rowan D Young
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 .
| |
Collapse
|
35
|
Mews NM, Hörner G, Schubert H, Berkefeld A. Tuning of Thiyl/Thiolate Complex Near-Infrared Chromophores of Platinum through Geometrical Constraints. Inorg Chem 2018; 57:9670-9682. [PMID: 29561154 DOI: 10.1021/acs.inorgchem.8b00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemistry of radical-ligand complexes of the transition metals has developed into a vibrant field of research that spans from fundamental studies on the relationship between the chemical and electronic structures to applications in catalysis and functional materials chemistry. In general, fine-tuning of the relevant properties relies on an increasingly diversifying pool of radical-proligand structures. Surprisingly, the variability of the conformational freedom and the number of distinct bonding modes supported by many radical proligands is limited. This work reports on the angular constraints and relative geometric alignment of metal and ligand orbitals as key parameters that render a series of chemically similar thiyl/thiolate complexes of platinum(II) electronically and spectroscopically distinct. The use of conformational flexible thiophenols as primary ligand scaffolds is essential to establishing a defined radical-ligand [(areneS)2PtII]•+ core whose electronic structure is modulated by a series of auxiliary coligands at platinum.
Collapse
Affiliation(s)
- Nicole M Mews
- Institut für Anorganische Chemie , Eberhard Karls Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Gerald Hörner
- Institut für Chemie, Quantenchemie und Bioanorganische Chemie , Technische Universität (TU) Berlin , Straße des 17 Juni 135 , 10623 Berlin , Germany
| | - Hartmut Schubert
- Institut für Anorganische Chemie , Eberhard Karls Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Andreas Berkefeld
- Institut für Anorganische Chemie , Eberhard Karls Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| |
Collapse
|
36
|
Cheng J, Wang L, Wang P, Deng L. High-Oxidation-State 3d Metal (Ti-Cu) Complexes with N-Heterocyclic Carbene Ligation. Chem Rev 2018; 118:9930-9987. [PMID: 30011189 DOI: 10.1021/acs.chemrev.8b00096] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
High-oxidation-state 3d metal species have found a wide range of applications in modern synthetic chemistry and materials science. They are also implicated as key reactive species in biological reactions. These applications have thus prompted explorations of their formation, structure, and properties. While the traditional wisdom regarding these species was gained mainly from complexes supported by nitrogen- and oxygen-donor ligands, recent studies with N-heterocyclic carbenes (NHCs), which are widely used for the preparation of low-oxidation-state transition metal complexes in organometallic chemistry, have led to the preparation of a large variety of isolable high-oxidation-state 3d metal complexes with NHC ligation. Since the first report in this area in the 1990s, isolable complexes of this type have been reported for titanium(IV), vanadium(IV,V), chromium(IV,V), manganese(IV,V), iron(III,IV,V), cobalt(III,IV,V), nickel(IV), and copper(II). With the aim of providing an overview of this intriguing field, this Review summarizes our current understanding of the synthetic methods, structure and spectroscopic features, reactivity, and catalytic applications of high-oxidation-state 3d metal NHC complexes of titanium to copper. In addition to this progress, factors affecting the stability and reactivity of high-oxidation-state 3d metal NHC species are also presented, as well as perspectives on future efforts.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Lijun Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| |
Collapse
|
37
|
Harris CF, Kuehner CS, Bacsa J, Soper JD. Photoinduced Cobalt(III)−Trifluoromethyl Bond Activation Enables Arene C−H Trifluoromethylation. Angew Chem Int Ed Engl 2018; 57:1311-1315. [DOI: 10.1002/anie.201711693] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/12/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Caleb F. Harris
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332-0400 USA
| | - Christopher S. Kuehner
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332-0400 USA
| | - John Bacsa
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332-0400 USA
- X-ray Crystallography Center Department of Chemistry Emory University Atlanta GA 30322 USA
| | - Jake D. Soper
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332-0400 USA
| |
Collapse
|
38
|
Harris CF, Kuehner CS, Bacsa J, Soper JD. Photoinduced Cobalt(III)−Trifluoromethyl Bond Activation Enables Arene C−H Trifluoromethylation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711693] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Caleb F. Harris
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta GA 30332-0400 USA
| | - Christopher S. Kuehner
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta GA 30332-0400 USA
| | - John Bacsa
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta GA 30332-0400 USA
- X-ray Crystallography Center; Department of Chemistry; Emory University; Atlanta GA 30322 USA
| | - Jake D. Soper
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta GA 30332-0400 USA
| |
Collapse
|
39
|
Ruamps M, Bastin S, Rechignat L, Sournia-Saquet A, Valyaev DA, Mouesca JM, Lugan N, Maurel V, César V. Unveiling the redox-active character of imidazolin-2-thiones derived from amino-substituted N-heterocyclic carbenes. Chem Commun (Camb) 2018; 54:7653-7656. [DOI: 10.1039/c8cc03934h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Spectroscopic, structural and computational studies on the amino-substituted imidazolin-2-thiones reveal the imidazolyl ring to be redox active.
Collapse
Affiliation(s)
- Mirko Ruamps
- LCC-CNRS, Université de Toulouse
- INPT
- UPS
- 31077 Toulouse cedex 4
- France
| | - Stéphanie Bastin
- LCC-CNRS, Université de Toulouse
- INPT
- UPS
- 31077 Toulouse cedex 4
- France
| | - Lionel Rechignat
- LCC-CNRS, Université de Toulouse
- INPT
- UPS
- 31077 Toulouse cedex 4
- France
| | | | | | | | - Noël Lugan
- LCC-CNRS, Université de Toulouse
- INPT
- UPS
- 31077 Toulouse cedex 4
- France
| | | | - Vincent César
- LCC-CNRS, Université de Toulouse
- INPT
- UPS
- 31077 Toulouse cedex 4
- France
| |
Collapse
|