1
|
Li T, Heng Y, Wang D, Hou G, Zi G, Ding W, Walter MD. Uranium versus Thorium: A Case Study on a Base-Free Terminal Uranium Imido Metallocene. Inorg Chem 2024; 63:9487-9510. [PMID: 38048266 DOI: 10.1021/acs.inorgchem.3c03356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The structure of and bonding in two base-free terminal actinide imido metallocenes, [η5-1,2,4-(Me3C)3C5H2]2An═N(p-tolyl) (An = U (1), Th (1')) are compared and connected to their individual reactivity. While structurally rather similar, the U(IV) derivative 1 is slightly more sterically crowded. Furthermore, density functional theory (DFT) studies imply that the 5f orbital contribution to the bonding within the individual actinide imido An═N(p-tolyl) moieties is significantly larger for 1 than for 1', which makes the bonds between the [η5-1,2,4-(Me3C)3C5H2]2U2+ and [(p-tolyl)N]2- fragments more covalent. Therefore, steric and electronic factors impact the reactivity of these imido complexes. For example, complex 1 is inert toward internal alkynes, but it readily forms Lewis base adducts [η5-1,2,4-(Me3C)3C5H2]2U═N(p-tolyl)(L) (L = OPMe3 (6), dmap (9), PhCN (14), and 2,6-Me2PhNC (17)) with Me3PO, 4-dimethylaminopyridine (dmap), nitrile, PhCN, or isonitrile 2,6-Me2PhNC. It may also react as a nucleophile or undergo a [2 + 2] cycloaddition with CS2, isothiocyanates, thio-ketones, ketones, lactides, and acyl nitriles, forming the four- or five-membered metallaheteroacycles, terminal sulfido, or oxido complexes, and cyanide amidate complexes, respectively. In contrast, after the addition of aldehyde p-tolylCHO, the tetranuclear complex [η5-1,2,4-(Me3C)3C5H2]4[OCH(p-tolyl)CH(p-tolyl)O]2U4O4 (10) is isolated. However, while 1 is unreactive toward dicyclohexylcarbodiimide (DCC), an equilibrium exists in benzene solution between N,N'-diisopropylcarbodiimide (DIC), 1, and the four-membered metallaheterocycle [η5-1,2,4-(Me3C)3C5H2]2U[N(p-tolyl)C(═NiPr)N(iPr)] (12). Furthermore, 1 may also engage in single- and two-electron transfer processes. It is singly oxidized by Ph3CN3, CuI, Ph2S2, and Ph2Se2, yielding the uranium(V) imido complexes [η5-1,2,4-(Me3C)3C5H2]2U═N(p-tolyl)(X) (X = N3 (20), I (22), PhS (23), and PhSe (24)), or is doubly oxidized by organic azides (RN3) and 9-diazofluorene, forming the uranium(VI) bis-imido metallocenes [η5-1,2,4-(Me3C)3C5H2]2U═N(p-tolyl)(=NR) (R = p-tolyl (18), mesityl (19)) and [η5-1,2,4-(Me3C)3C5H2]2U=N(p-tolyl)[=NN=(9-C13H8)] (21), respectively.
Collapse
Affiliation(s)
- Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
2
|
Hsueh FC, Chen D, Rajeshkumar T, Scopelliti R, Maron L, Mazzanti M. Two-Electron Redox Reactivity of Thorium Supported by Redox-Active Tripodal Frameworks. Angew Chem Int Ed Engl 2024; 63:e202317346. [PMID: 38100190 DOI: 10.1002/anie.202317346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 12/31/2023]
Abstract
The high stability of the + IVoxidation state limits thorium redox reactivity. Here we report the synthesis and the redox reactivity of two Th(IV) complexes supported by the arene-tethered tris(siloxide) tripodal ligands [(KOSiR2 Ar)3 -arene)]. The two-electron reduction of these Th(IV) complexes generates the doubly reduced [KTh((OSi(Ot Bu)2 Ar)3 -arene)(THF)2 ] (2OtBu ) and [K(2.2.2-cryptand)][Th((OSiPh2 Ar)3 -arene)(THF)2 ](2Ph -crypt) where the formal oxidation state of Th is +II. Structural and computational studies indicate that the reduction occurred at the arene anchor of the ligand. The robust tripodal frameworks store in the arene anchor two electrons that become available at the metal center for the two-electron reduction of a broad range of substrates (N2 O, COT, CHT, Ph2 N2 , Ph3 PS and O2 ) while retaining the ligand framework. This work shows that arene-tethered tris(siloxide) tripodal ligands allow implementation of two-electron redox chemistry at the thorium center while retaining the ligand framework unchanged.
Collapse
Affiliation(s)
- Fang-Che Hsueh
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Damien Chen
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
3
|
Du J, Cobb PJ, Ding J, Mills DP, Liddle ST. f-Element heavy pnictogen chemistry. Chem Sci 2023; 15:13-45. [PMID: 38131077 PMCID: PMC10732230 DOI: 10.1039/d3sc05056d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The coordination and organometallic chemistry of the f-elements, that is group 3, lanthanide, and actinide ions, supported by nitrogen ligands, e.g. amides, imides, and nitrides, has become well developed over many decades. In contrast, the corresponding f-element chemisty with the heavier pnictogen analogues phosphorus, arsenic, antimony, and bismuth has remained significantly underdeveloped, due largely to a lack of suitable synthetic methodologies and also the inherent hard(f-element)-soft(heavier pnictogen) acid-base mismatch, but has begun to flourish in recent years. Here, we review complexes containing chemical bonds between the f-elements and heavy pnictogens from phosphorus to bismuth that spans five decades of endeavour. We focus on complexes whose identity has been unambiguously established by structural authentication by single-crystal X-ray diffraction with respect to their synthesis, characterisation, bonding, and reactivity, in order to provide a representative overview of this burgeoning area. By highlighting that much has been achieved but that there is still much to do this review aims to inspire, focus and guide future efforts in this area.
Collapse
Affiliation(s)
- Jingzhen Du
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Philip J Cobb
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Junru Ding
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - David P Mills
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
4
|
Du J, Hurd J, Seed JA, Balázs G, Scheer M, Adams RW, Lee D, Liddle ST. 31P Nuclear Magnetic Resonance Spectroscopy as a Probe of Thorium-Phosphorus Bond Covalency: Correlating Phosphorus Chemical Shift to Metal-Phosphorus Bond Order. J Am Chem Soc 2023; 145:21766-21784. [PMID: 37768555 PMCID: PMC10571089 DOI: 10.1021/jacs.3c02775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 09/29/2023]
Abstract
We report the use of solution and solid-state 31P Nuclear Magnetic Resonance (NMR) spectroscopy combined with Density Functional Theory calculations to benchmark the covalency of actinide-phosphorus bonds, thus introducing 31P NMR spectroscopy to the investigation of molecular f-element chemical bond covalency. The 31P NMR data for [Th(PH2)(TrenTIPS)] (1, TrenTIPS = {N(CH2CH2NSiPri3)3}3-), [Th(PH)(TrenTIPS)][Na(12C4)2] (2, 12C4 = 12-crown-4 ether), [{Th(TrenTIPS)}2(μ-PH)] (3), and [{Th(TrenTIPS)}2(μ-P)][Na(12C4)2] (4) demonstrate a chemical shift anisotropy (CSA) ordering of (μ-P)3- > (═PH)2- > (μ-PH)2- > (-PH2)1- and for 4 the largest CSA for any bridging phosphido unit. The B3LYP functional with 50% Hartree-Fock mixing produced spin-orbit δiso values that closely match the experimental data, providing experimentally benchmarked quantification of the nature and extent of covalency in the Th-P linkages in 1-4 via Natural Bond Orbital and Natural Localized Molecular Orbital analyses. Shielding analysis revealed that the 31P δiso values are essentially only due to the nature of the Th-P bonds in 1-4, with largely invariant diamagnetic but variable paramagnetic and spin-orbit shieldings that reflect the Th-P bond multiplicities and s-orbital mediated transmission of spin-orbit effects from Th to P. This study has permitted correlation of Th-P δiso values to Mayer bond orders, revealing qualitative correlations generally, but which should be examined with respect to specific ancillary ligand families rather than generally to be quantitative, reflecting that 31P δiso values are a very sensitive reporter due to phosphorus being a soft donor that responds to the rest of the ligand field much more than stronger, harder donors like nitrogen.
Collapse
Affiliation(s)
- Jingzhen Du
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Joseph Hurd
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - John A. Seed
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Gábor Balázs
- Institute
of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute
of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Ralph W. Adams
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Daniel Lee
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Stephen T. Liddle
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| |
Collapse
|
5
|
Li T, Wang D, Heng Y, Hou G, Zi G, Walter MD. Reactivity of a Lewis base-supported uranium terminal imido metallocene towards small molecules. Dalton Trans 2023; 52:13618-13630. [PMID: 37698550 DOI: 10.1039/d3dt02165c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The Lewis base-supported uranium terminal imido metallocene [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)(dmap) (1) readily reacts with various small molecules such as internal alkynes, isothiocyanates, thioketones, amidates, organic nitriles and imines, chlorosilanes, copper iodide, diphenyl disulfide, organic azides and diazoalkane derivatives. For example, treatment of 1 with PhCCCCPh and PhNCS forms metallaheterocycles originating from a [2 + 2] cycloaddition to yield [η5-1-(p-tolyl)NC(Ph)CHCC(Ph)CH2Si(Me)2-2,4-(Me3Si)2C5H2][η5-1,2,4-(Me3Si)3C5H2]U (2) and [η5-1,2,4-(Me3Si)3C5H2]2U[N(p-tolyl)C(NPh)S](dmap) (3), respectively. The reaction of 1 with the thioketone Ph2CS forms the known uranium sulfido complex [η5-1,2,4-(Me3Si)3C5H2]2US(dmap) (4), which reacts with a second molecule of Ph2CS to give the disulfido compound [η5-1,2,4-(Me3Si)3C5H2]2U(S2CPh2) (5). The imido moiety also promotes deprotonation reactions as illustrated in the reactions with the amide PhCONH(p-tolyl), the nitrile PhCH2CN and the imine (p-tolyl)2CNH to form the bis-amidate [η5-1,2,4-(Me3Si)3C5H2]2U[OC(Ph)N(p-tolyl)]2 (7), and the iminato complexes [η5-1,2,4-(Me3Si)3C5H2]2U[N(p-tolyl)C(CH2Ph)NH](NCCHPh) (8) and [η5-1,2,4-(Me3Si)3C5H2]2U[NH(p-tolyl)][NC(p-tolyl)2] (9), respectively. Addition of PhSiH2Cl to 1 yields [η5-1,2,4-(Me3Si)3C5H2]2U(Cl)[N(p-tolyl)SiH2Ph] (10). In contrast, the uranium(V) imido complexes [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)(I) (11) and [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)(SPh) (12), may be isolated upon addition of CuI or Ph2S2 to 1, respectively. Uranium(VI) bis-imido metallocenes [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)(NR) (R = p-tolyl (13), mesityl (14)) and [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)[NN(9-C13H8)] (15) are accessible from 1 on exposure to RN3 (R = p-tolyl, mesityl) and 9-diazofluorene, respectively. Complexes 2, 3, 5, and 7-15 were characterized by various spectroscopic techniques and, in addition, compounds 2, 3, 5, and 7-13 were structurally authenticated by single-crystal X-ray diffraction analyses.
Collapse
Affiliation(s)
- Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| |
Collapse
|
6
|
Li T, Wang D, Heng Y, Hou G, Zi G, Ding W, Walter MD. A Comprehensive Study Concerning the Synthesis, Structure, and Reactivity of Terminal Uranium Oxido, Sulfido, and Selenido Metallocenes. J Am Chem Soc 2023. [PMID: 37376858 DOI: 10.1021/jacs.3c03753] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Terminal uranium oxido, sulfido, and selenido metallocenes were synthesized, and their reactivity was comprehensively studied. Heating of an equimolar mixture of [η5-1,2,4-(Me3Si)3C5H2]2UMe2 (2) and [η5-1,2,4-(Me3Si)3C5H2]2U(NH-p-tolyl)2 (3) in the presence of 4-dimethylaminopyridine (dmap) in refluxing toluene forms [η5-1,2,4-(Me3Si)3C5H2]2U═N(p-tolyl)(dmap) (4), which is a useful precursor for the preparation of the terminal uranium oxido, sulfido, and selenido metallocenes [η5-1,2,4-(Me3Si)3C5H2]2U═E(dmap) (E = O (5), S (6), Se (7)) employing a cycloaddition-elimination methodology with Ph2C═E (E = O, S) or (p-MeOPh)2CSe, respectively. Metallocenes 5-7 are inert toward alkynes, but they act as nucleophiles in the presence of alkylsilyl halides. The oxido and sulfido metallocenes 5 and 6 undergo [2 + 2] cycloadditions with isothiocyanate PhNCS or CS2, while the selenido derivative 7 does not. The experimental studies are complemented by density functional theory (DFT) computations.
Collapse
Affiliation(s)
- Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universitüt Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
7
|
Hsueh FC, Rajeshkumar T, Kooij B, Scopelliti R, Severin K, Maron L, Zivkovic I, Mazzanti M. Bonding and Reactivity in Terminal versus Bridging Arenide Complexes of Thorium Acting as Th II Synthons. Angew Chem Int Ed Engl 2023; 62:e202215846. [PMID: 36576035 DOI: 10.1002/anie.202215846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Thorium redox chemistry is extremely scarce due to the high stability of ThIV . Here we report two unique examples of thorium arenide complexes prepared by reduction of a ThIV -siloxide complex in presence of naphthalene, the mononuclear arenide complex [K(OSi(Ot Bu)3 )3 Th(η6 -C10 H8 )] (1) and the inverse-sandwich complex [K(OSi(Ot Bu)3 )3 Th]2 (μ-η6 ,η6 -C10 H8 )] (2). The electrons stored in these complexes allow the reduction of a broad range of substrates (N2 O, AdN3 , CO2 , HBBN). Higher reactivity was found for the complex 1 which reacts with the diazoolefin IDipp=CN2 to yield the unexpected ThIV amidoalkynyl complex 5 via a terminal N-heterocyclic vinylidene intermediate. This work showed that arenides can act as convenient redox-active ligands for implementing thorium-ligand cooperative multielectron transfer and that the reactivity can be tuned by the arenide binding mode.
Collapse
Affiliation(s)
- Fang-Che Hsueh
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Bastiaan Kooij
- Laboratory of Supramolecular Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Rosario Scopelliti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Laboratory of Supramolecular Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
8
|
Heng Y, Li T, Wang D, Hou G, Zi G, Walter MD. Synthesis and Reactivity of the Uranium Bipyridyl Metallocene [η 5-1,3-(Me 3C) 2C 5H 3] 2U(bipy). Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| |
Collapse
|
9
|
Shen Y, Yu X, Meng Q, Yao YR, Autschbach J, Chen N. ThC 2@C 82 versus Th@C 84: unexpected formation of triangular thorium carbide cluster inside fullerenes. Chem Sci 2022; 13:12980-12986. [PMID: 36425487 PMCID: PMC9667913 DOI: 10.1039/d2sc04846a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022] Open
Abstract
Synthesis of the first thorium-containing clusterfullerenes, ThC2@C s (6)-C82 and ThC2@C2(5)-C82, is reported. These two novel actinide fullerene compounds were characterized by mass spectrometry, single-crystal X-ray diffraction crystallography, UV-vis-NIR spectroscopy, and theoretical calculations. Crystallographic studies reveal that the encapsulated ThC2 clusters in both C s (6)-C82 and C2(5)-C82 feature a novel bonding structure with one thorium metal center connected by a C[triple bond, length as m-dash]C unit, forming an isosceles triangular configuration, which has not been hitherto observed for endohedral fullerenes or for solid phase thorium carbides. Electronic structure calculations assign a formal electronic structure of [Th4+(C2)2-]2+@[C82]2-, with pronounced donation bonding from (C2)2- to Th4+, secondary backbonding from the fullerene to thorium and Th-C double bond character in both compounds. This work presents a new family of endohedral fullerenes, MC2@C2n-2, being unexpected isomers of MC2n , and provides broader understanding of thorium bonding.
Collapse
Affiliation(s)
- Yi Shen
- College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260-3000 USA
| | - Qingyu Meng
- College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yang-Rong Yao
- College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260-3000 USA
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
10
|
Rupasinghe DMRYP, Baxter MR, Gupta H, Poore AT, Higgins RF, Zeller M, Tian S, Schelter EJ, Bart SC. Actinide-Oxygen Multiple Bonds from Air: Synthesis and Characterization of a Thorium Oxo Supported by Redox-Active Ligands. J Am Chem Soc 2022; 144:17423-17431. [PMID: 36122408 DOI: 10.1021/jacs.2c04947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first non-uranyl, f-element oxo complex synthesized from dioxygen in dry air is presented in this work. The synthesis was accomplished by treating the redox-active thorium amidophenolate complex, [Th(dippap)3][K(15-c-5)2]2 (1-ap crown), with dioxygen in dry air, forming a rare terminal thorium oxo, [O═Th(dippisq)2(dippap)][K(15-c-5)2]2 (2-oxo). Compound 1-ap crown was regenerated by treating 2-oxo with potassium graphite. X-ray crystallography of 2-oxo revealed a comparatively longer bond length for the thorium-oxygen double bond when compared to other thorium oxos. As such, several thorium-oxygen single bonds were synthesized for comparison, including Th(dippisq)2(OSiMe3)2(THF) (4-OSiMe3), Th(OSiMe3)4(bipy)2 (5-OSiMe3), and [Th(OH)2 (dippHap)4][K(15-c-5)2]2 (6-OH). Full spectroscopic and structural characterization of the complexes was performed via 1H NMR spectroscopy, X-ray crystallography, EPR spectroscopy, and electronic absorption spectroscopy as well as SQUID magnetometry, which all confirmed the electronic structure of these complexes.
Collapse
Affiliation(s)
- D M Ramitha Y P Rupasinghe
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Makayla R Baxter
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Himanshu Gupta
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Andrew T Poore
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robert F Higgins
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shiliang Tian
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Suzanne C Bart
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Wang S, Heng Y, Li T, Wang D, Hou G, Zi G, Walter MD. Intrinsic reactivity of [η 5-1,3-(Me 3Si) 2C 5H 3] 2U(η 4-C 4Ph 2) in small molecule activation. Dalton Trans 2022; 51:11072-11085. [PMID: 35796202 DOI: 10.1039/d2dt01730j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The uranium metallacyclocumulene, [η5-1,3-(Me3Si)2C5H3]2U(η4-C4Ph2) (3) was isolated from the reaction mixture containing [η5-1,3-(Me3Si)2C5H3]2UCl2 (1), potassium graphite (KC8) and 1,4-diphenylbutadiyne (PhCC-CCPh) in good yield. The reactivity of 3 towards various small organic molecules was evaluated. For example, while complex 3 shows no reactivity towards alkynes and 2,2'-bipyridine, it may deliver the [η5-1,3-(Me3Si)2C5H3]2U(II) fragment in the presence of Ph2E2 (E = S, Se) and Ph3CN3, or react as a nucleophile in the presence of carbodiimides, isothiocyanates, aldehydes, ketones, and pyridine derivatives, forming five-, seven- or nine-membered heterometallacycles. On the contrary, addition of Ph2CS to 3 induces CS bond cleavage yielding the dithiolate complex [η5-1,3-(Me3Si)2C5H3]2U[S2(C12H5Ph5)] (14). In contrast, the closely related, but sterically more encumbered uranium metallacyclocumulene [η5-1,2,4-(Me3Si)3C5H2]2U(η4-C4Ph2) (4) features a more limited reactivity which is restricted to mono- and double insertions with small unsaturated organic molecules such as isothiocyanates, ketones and nitriles.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| |
Collapse
|
12
|
Tarlton ML, Vilanova SP, Kaumini MG, Kelley SP, Huang P, Walensky JR. Structural, Spectroscopic, and Computational Analysis of Heterometallic Thorium Phosphinidiide Complexes. Inorg Chem 2021; 60:14932-14943. [PMID: 34528785 DOI: 10.1021/acs.inorgchem.1c02308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To synthesize complexes with thorium-phosphorus multiple-bond character, reactions of (C5Me5)2Th[P(H)Mes]2 with monovalent alkali-metal bases, MN(SiMe3)2, as well as CuMes, have been investigated. The results with MN(SiMe3)2 are phosphinidiide complexes of the form {(C5Me5)2Th[μ2-P(Mes)][μ2-P(H)Mes]M(L)n}2 (M = Na, n = 0; M = K, L = THF, n = 1; M = Rb, L = THF, n = 1; M = Cs, L = Et2O, n = 1). With CuMes, the product is a Th2Cu3P5 heterometallic structure, {(C5Me5)2Th[(μ2-P(H)Mes)P(Mes)]Cu}2Cu[μ2-P(H)Mes]. All complexes have been characterized using heteronuclear NMR and IR spectroscopy, density functional theory calculations, and their solid-state structure identified by X-ray crystallography. We also report the structure of {(C5Me5)2Th[(μ2-As(H)Mes)As(Mes)]Cu}2Cu[μ2-As(H)Mes] obtained from (C5Me5)2Th[As(H)Mes]2 with CuMes.
Collapse
Affiliation(s)
- Michael L Tarlton
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Sean P Vilanova
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - M Gayanethra Kaumini
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Patrick Huang
- Department of Chemistry and Biochemistry, California State University, East Bay, Hayward, California 94542, United States
| | - Justin R Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
13
|
Boronski JT, Seed JA, Hunger D, Woodward AW, van Slageren J, Wooles AJ, Natrajan LS, Kaltsoyannis N, Liddle ST. A crystalline tri-thorium cluster with σ-aromatic metal-metal bonding. Nature 2021; 598:72-75. [PMID: 34425584 DOI: 10.1038/s41586-021-03888-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
Metal-metal bonding is a widely studied area of chemistry1-3, and has become a mature field spanning numerous d transition metal and main group complexes4-7. By contrast, actinide-actinide bonding, which is predicted to be weak8, is currently restricted to spectroscopically detected gas-phase U2 and Th2 (refs. 9,10), U2H2 and U2H4 in frozen matrices at 6-7 K (refs. 11,12), or fullerene-encapsulated U2 (ref. 13). Furthermore, attempts to prepare thorium-thorium bonds in frozen matrices have produced only ThHn (n = 1-4)14. Thus, there are no isolable actinide-actinide bonds under normal conditions. Computational investigations have explored the probable nature of actinide-actinide bonding15, concentrating on localized σ-, π-, and δ-bonding models paralleling d transition metal analogues, but predictions in relativistic regimes are challenging and have remained experimentally unverified. Here, we report thorium-thorium bonding in a crystalline cluster, prepared and isolated under normal experimental conditions. The cluster exhibits a diamagnetic, closed-shell singlet ground state with a valence-delocalized three-centre-two-electron σ-aromatic bond16,17 that is counter to the focus of previous theoretical predictions. The experimental discovery of actinide σ-aromatic bonding adds to main group and d transition metal analogues, extending delocalized σ-aromatic bonding to the heaviest elements in the periodic table and to principal quantum number six, and constitutes a new approach to elaborate actinide-actinide bonding.
Collapse
Affiliation(s)
- Josef T Boronski
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, UK
| | - John A Seed
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, UK
| | - David Hunger
- Institute of Physical Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Adam W Woodward
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, UK
| | - Joris van Slageren
- Institute of Physical Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Ashley J Wooles
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, UK
| | - Louise S Natrajan
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, UK
| | - Nikolas Kaltsoyannis
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, UK.
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
14
|
Rupasinghe DMRYP, Gupta H, Baxter MR, Higgins RF, Zeller M, Schelter EJ, Bart SC. Elucidation of Thorium Redox-Active Ligand Complexes: Evidence for a Thorium-Tri(radical) Species. Inorg Chem 2021; 60:14302-14309. [PMID: 34498847 DOI: 10.1021/acs.inorgchem.1c01859] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of thorium(IV) complexes featuring the redox-active 4,6-di-tert-butyl-N-(2,6-di-isopropylphenyl)-o-iminobenzoquinone (dippiq) ligand family have been synthesized and characterized. The neutral iminoquinone ligand was used to generate Th(dippiq)Cl4(dme)2 (1-iq) and Th(dippiq)2Cl4 (2-iq), both of which show dative bonds between the thorium(IV) ion and the ligands. One electron reduction of the ligand forms the unique tris(iminosemiquinone) complex, Th(dippisq)3Cl (3-isq), which features a radical in each ligand. Further reduction furnishes the amidophenolate species, Th(dippap)3]K2(THF)2 (4-ap), which has the ligands in their dianionic form. Attempts to sequester the potassium ions with cryptand resulted in the [Th(dippap)3K][K(crypt)] (4-ap mono crypt) and [Th(dippap)3][K(crypt)]2 (4-ap crypt) species. A bis(amidophenolate) complex was accessed by incorporating bulky triphenylphosphine oxide (OPPh3) ligands to generate Th(dippap)2(OPPh)3 (5-ap). Spectroscopic and structural characterization of each derivative established the +4 oxidation state for thorium with redox chemistry occurring at the ligands rather than the thorium ion. The reported 3-isq complex is unprecedented as it is the first tri(radical) thorium complex with the highest reported magnetic moment for a thorium species as characterized by SQUID magnetometry.
Collapse
Affiliation(s)
- D M Ramitha Y P Rupasinghe
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Himanshu Gupta
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Makayla R Baxter
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robert F Higgins
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Suzanne C Bart
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Tarlton ML, Yang Y, Kelley SP, Maron L, Walensky JR. Formation and Reactivity with tBuCN of a Thorium Phosphinidiide through a Combined Experimental and Computational Analysis. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Michael L. Tarlton
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Yan Yang
- Université de Toulouse and CNRS, INSA, UPS, CNRS, UMR, UMR 5215, LPCNO, Toulouse 31077, France
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Laurent Maron
- Université de Toulouse and CNRS, INSA, UPS, CNRS, UMR, UMR 5215, LPCNO, Toulouse 31077, France
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
16
|
Wang S, Heng Y, Li T, Hou G, Zi G, Walter MD. Synthesis and reactivity of the uranium phosphinidene metallocene [η 5-1,3-(Me 3Si) 2C 5H 3] 2U([double bond, length as m-dash]P-2,4,6- iPr 3C 6H 2)(OPMe 3): influence of the coordinated Lewis base. Dalton Trans 2021; 50:12502-12516. [PMID: 34342314 DOI: 10.1039/d1dt02149d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This paper describes the synthesis and reactivity of [η5-1,3-(Me3Si)2C5H3]2U([double bond, length as m-dash]P-2,4,6-iPr3C6H2)(OPMe3) (6) which is accessible from a ligand exchange reaction between [η5-1,3-(Me3Si)2C5H3]2U([double bond, length as m-dash]P-2,4,6-iPr3C6H2)(OPPh3) (2) and Me3PO at ambient temperature. Phosphinidene 6 exhibits no reactivity towards internal alkynes, but readily reacts with various hetero-unsaturated molecules such as isothiocyanates, aldehydes, nitriles, isonitriles, and organic azides, forming uranium sulfido, oxido, imido, and uranaheterocyclic compounds. Nevertheless, with the bidentate ortho-dicyanobenzene o-C6H4(CN)2 the zwitterionic species [η5-1,3-(Me3Si)2C5H3]2U[NHC(N){C6H4CP(2,4,6-iPr3C6H2)CH2PMe2O}] (13) is isolated in good yield. Moreover, 6 converts with Ph2S2 to the uranium(iii) phenylthiolate compound [η5-1,3-(Me3Si)2C5H3]2USPh(OPMe3) (7) in good isolated yield. Furthermore, the influence of the Lewis base on the reactivity of the uranium phosphinidene metallocenes has also been evaluated.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| |
Collapse
|
17
|
Tarlton ML, Fajen OJ, Kelley SP, Kerridge A, Malcomson T, Morrison TL, Shores MP, Xhani X, Walensky JR. Systematic Investigation of the Molecular and Electronic Structure of Thorium and Uranium Phosphorus and Arsenic Complexes. Inorg Chem 2021; 60:10614-10630. [DOI: 10.1021/acs.inorgchem.1c01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael L. Tarlton
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - O. Jonathan Fajen
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Thomas Malcomson
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Thomas L. Morrison
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Matthew P. Shores
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Xhensila Xhani
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| |
Collapse
|
18
|
Wang S, Li T, Heng Y, Hou G, Zi G, Walter MD. Influence of the 1,3-Bis(trimethylsilyl)cyclopentadienyl Ligand on the Reactivity of the Uranium Phosphinidene [η5-1,3-(Me3Si)2C5H3]2U(═P-2,4,6-iPr3C6H2)(OPPh3). Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shichun Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
19
|
Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2019. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213830] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Wang D, Ding W, Hou G, Zi G, Walter MD. Uranium versus Thorium: Synthesis and Reactivity of [η 5 -1,2,4-(Me 3 C) 3 C 5 H 2 ] 2 U[η 2 -C 2 Ph 2 ]. Chemistry 2021; 27:6767-6782. [PMID: 33559922 PMCID: PMC8251885 DOI: 10.1002/chem.202100089] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 01/09/2023]
Abstract
The synthesis, electronic structure, and reactivity of a uranium metallacyclopropene were comprehensively studied. Addition of diphenylacetylene (PhC≡CPh) to the uranium phosphinidene metallocene [η5 -1,2,4-(Me3 C)3 C5 H2 ]2 U=P-2,4,6-tBu3 C6 H2 (1) yields the stable uranium metallacyclopropene, [η5 -1,2,4-(Me3 C)3 C5 H2 ]2 U[η2 -C2 Ph2 ] (2). Based on density functional theory (DFT) results the 5f orbital contributions to the bonding within the metallacyclopropene U-(η2 -C=C) moiety increases significantly compared to the related ThIV compound [η5 -1,2,4-(Me3 C)3 C5 H2 ]2 Th[η2 -C2 Ph2 ], which also results in more covalent bonds between the [η5 -1,2,4-(Me3 C)3 C5 H2 ]2 U2+ and [η2 -C2 Ph2 ]2- fragments. Although the thorium and uranium complexes are structurally closely related, different reaction patterns are therefore observed. For example, 2 reacts as a masked synthon for the low-valent uranium(II) metallocene [η5 -1,2,4-(Me3 C)3 C5 H2 ]2 UII when reacted with Ph2 E2 (E=S, Se), alkynes and a variety of hetero-unsaturated molecules such as imines, ketazine, bipy, nitriles, organic azides, and azo derivatives. In contrast, five-membered metallaheterocycles are accessible when 2 is treated with isothiocyanate, aldehydes, and ketones.
Collapse
Affiliation(s)
- Deqiang Wang
- Department of ChemistryBeijing Normal UniversityBeijing100875China
| | - Wanjian Ding
- Department of ChemistryBeijing Normal UniversityBeijing100875China
| | - Guohua Hou
- Department of ChemistryBeijing Normal UniversityBeijing100875China
| | - Guofu Zi
- Department of ChemistryBeijing Normal UniversityBeijing100875China
| | - Marc D. Walter
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
21
|
Feng B, Xiang L, Carpentier A, Maron L, Leng X, Chen Y. Scandium-Terminal Boronylphosphinidene Complex. J Am Chem Soc 2021; 143:2705-2709. [DOI: 10.1021/jacs.1c00148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bin Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Li Xiang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Ambre Carpentier
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
22
|
Lee KF, Yang T, Tsang LY, Sung HHY, Williams ID, Lin Z, Jia G. Azavinylidene Complexes from Coupling Reactions of Organonitriles with Phosphines. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kui-Fun Lee
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Long-Yiu Tsang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Herman H. Y. Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ian D. Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
23
|
Wang D, Hou G, Zi G, Walter MD. Influence of the Lewis Base Ph3PO on the Reactivity of the Uranium Phosphinidene (η5-C5Me5)2U(═P-2,4,6-iPr3C6H2)(OPPh3). Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deqiang Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
24
|
Wang D, Wang S, Li T, Heng Y, Hou G, Zi G, Walter MD. Reactivity studies involving a Lewis base supported terminal uranium phosphinidene metallocene [η5-1,3-(Me3C)2C5H3]2U(P-2,4,6-iPr3C6H2)(OPMe3). Dalton Trans 2021; 50:8349-8363. [DOI: 10.1039/d1dt00742d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Small variations in the phosphinidene substituents, but significant change the reactivity of the uranium phosphinidene complexes.
Collapse
Affiliation(s)
- Deqiang Wang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Shichun Wang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Tongyu Li
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Yi Heng
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guohua Hou
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| |
Collapse
|
25
|
Wang D, Ding W, Hou G, Zi G, Walter MD. Experimental and Computational Studies on a Base-Free Terminal Uranium Phosphinidene Metallocene. Chemistry 2020; 26:16888-16899. [PMID: 32744750 PMCID: PMC7756876 DOI: 10.1002/chem.202003465] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/31/2020] [Indexed: 12/26/2022]
Abstract
The first stable base‐free terminal uranium phosphinidene metallocene is presented; and its structure and reactivity have been studied in detail and compared to that of the corresponding thorium derivative. Salt metathesis reaction of the methyl iodide uranium metallocene Cp’’’2U(I)Me (2, Cp’’’=η5‐1,2,4‐(Me3C)3C5H2) with Mes*PHK (Mes*=2,4,6‐(Me3C)3C6H2) in THF yields the base‐free terminal uranium phosphinidene metallocene, Cp’’’2U=PMes* (3). In addition, density functional theory (DFT) studies suggest substantial 5f orbital contributions to the bonding within the uranium phosphinidene [U]=PAr moiety, which results in a more covalent bonding between the [Cp’’’2U]2+ and [Mes*P]2− fragments than that for the related thorium derivative. This difference in bonding besides steric reasons causes different reactivity patterns for both molecules. Therefore, the uranium derivative 3 may act as a Cp’’’2U(II) synthon releasing the phosphinidene moiety (Mes*P:) when treated with alkynes or a variety of hetero‐unsaturated molecules such as imines, thiazoles, ketazines, bipy, organic azides, diazene derivatives, ketones, and carbodiimides.
Collapse
Affiliation(s)
- Deqiang Wang
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
26
|
Wang D, Hou G, Zi G, Walter MD. (η5-C5Me5)2U(=P-2,4,6-tBu3C6H2)(OPMe3) Revisited—Its Intrinsic Reactivity toward Small Organic Molecules. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Deqiang Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
27
|
Wang D, Wang S, Hou G, Zi G, Walter MD. A Lewis Base Supported Terminal Uranium Phosphinidene Metallocene. Inorg Chem 2020; 59:14549-14563. [DOI: 10.1021/acs.inorgchem.0c02363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Deqiang Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shichun Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
28
|
Ma W, Douair I, Maron L, Ye Q. Incorporation of Boron into Uranium Metallacycles: Synthesis, Structure, and Reactivity of Boron-Containing Uranacycles Derived from Bis(alkynyl)boranes. Chemistry 2020; 26:13573-13577. [PMID: 32761976 DOI: 10.1002/chem.202003611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 11/08/2022]
Abstract
The reaction of uranacyclopropene complex (C5 Me5 )2 U[η2 -1,2-C2 (SiMe3 )2 ] with B-aryl bis(alkynyl)borane PhB(C≡CPh)2 led to the first six-membered uranium metallaboracycle, while the reaction with B-amino bis(alkynyl)borane (Me3 Si)2 NB(C≡CPh)2 afforded an unexpected uranaborabicyclo[2.2.0] complex via [2+2] cycloaddition. The reaction with CuCl revealed the non-innocent property of the rearranged bis(alkynyl)boron species towards oxidant. The reactions with isocyanide DippNC: (Dipp=2,6-iPr2 -C6 H3 ) and isocyanate tBuNCO afforded the novel uranaborabicyclo[3.2.0] complexes. All new complexes have been structurally characterized. DFT calculations were performed to provide more insights into the electronic structures and the reaction mechanism.
Collapse
Affiliation(s)
- Wangyang Ma
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Iskander Douair
- LPCNO, CNRS & INSA, Université Paul Sabatier, Toulouse, France
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, Toulouse, France
| | - Qing Ye
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| |
Collapse
|
29
|
Tarlton ML, Del Rosal I, Vilanova SP, Kelley SP, Maron L, Walensky JR. Comparative Insertion Reactivity of CO, CO2, tBuCN, and tBuNC into Thorium– and Uranium–Phosphorus Bonds. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Michael L. Tarlton
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Iker Del Rosal
- Universite de Toulouse, 135 Avenuede Rangueil, 31077 Toulouse, France
| | - Sean P. Vilanova
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Laurent Maron
- Universite de Toulouse, 135 Avenuede Rangueil, 31077 Toulouse, France
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| |
Collapse
|
30
|
Ward RJ, Rungthanaphatsophon P, Del Rosal I, Kelley SP, Maron L, Walensky JR. Divergent uranium- versus phosphorus-based reduction of Me 3SiN 3 with steric modification of phosphido ligands. Chem Sci 2020; 11:5830-5835. [PMID: 34094084 PMCID: PMC8159289 DOI: 10.1039/d0sc02261f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We describe an example of a two-electron metal- and ligand-based reduction of Me3SiN3 using uranium(iv) complexes with varying steric properties. Reaction of (C5Me5)2U(CH3)[P(SiMe3)(Ph)] with Me3SiN3 produces the imidophosphorane complex, (C5Me5)2U(CH3)[N
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
P(SiMe3)2(Ph)] through oxidation of phosphorus. However, a similar reaction with a more sterically encumbering phosphido ligand, (C5Me5)2U(CH3)[P(SiMe3)(Mes)] forms the U(iv) complex, (C5Me5)2U[κ2-(N,N)–N(SiMe3)P(Mes)N(SiMe3)]. In probing the mechanism of this reaction, a U(vi) bis(imido) complex, (C5Me5)2U(NSiMe3){N[P(SiMe3)(Mes)]} was isolated. DFT calculations show an intramolecular reductive cycloaddition reaction leads to the formation of the U(iv) bis(amido)phosphane from the U(vi) bis(imido) complex. This is a rare example of the isolation of a reaction intermediate in f element chemistry. We describe an example of a two-electron metal- and ligand-based reduction of Me3SiN3 using uranium(iv) complexes with varying steric properties. With uranium-based reduction, a U(vi) intermediate is isolated.![]()
Collapse
Affiliation(s)
- Robert J Ward
- Department of Chemistry, University of Missouri Columbia MO 65211 USA
| | | | - Iker Del Rosal
- Universite de Toulouse, CNRS, INSA, UPS, UMR, UMR 5215 LPCNO 135 Avenue de Ranguiel 31077 Toulouse France
| | - Steven P Kelley
- Department of Chemistry, University of Missouri Columbia MO 65211 USA
| | - Laurent Maron
- Universite de Toulouse, CNRS, INSA, UPS, UMR, UMR 5215 LPCNO 135 Avenue de Ranguiel 31077 Toulouse France
| | - Justin R Walensky
- Department of Chemistry, University of Missouri Columbia MO 65211 USA
| |
Collapse
|
31
|
Kelley SP, Smetana V, Emerson SD, Mudring AV, Rogers RD. Benchtop access to anhydrous actinide N-donor coordination complexes using ionic liquids. Chem Commun (Camb) 2020; 56:4232-4235. [PMID: 32182311 DOI: 10.1039/c9cc09852f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
By dehydrating actinide salts with an ionic liquid containing a common anion and subsequent reaction with N-heterocyclic ligands, we challenge the concept that actinides prefer O- over N-donors; rather the acidic hydrogen atoms of protic solvents hinder the formation of more elusive f-element N-donor coordination complexes.
Collapse
Affiliation(s)
- Steven P Kelley
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
The synthesis of tetravalent thorium and uranium complexes with the phosphaazaallene moiety, [N(tBu)C=P(C6H5)]2−, is described. The reaction of the bis(phosphido) complexes, (C5Me5)2An[P(C6H5)(SiMe3)]2, An = Th, U, with two equivalents of tBuNC produces (C5Me5)2An(CNtBu)[η2-(N,C)-N(tBu)C=P(C6H5)] with concomitant formation of P(SiMe3)2(C6H5) via silyl migration. These complexes are characterized by NMR and IR spectroscopy, as well as structurally determined using X-ray crystallography.
Collapse
|
33
|
Cheisson T, Kersey KD, Mahieu N, McSkimming A, Gau MR, Carroll PJ, Schelter EJ. Multiple Bonding in Lanthanides and Actinides: Direct Comparison of Covalency in Thorium(IV)- and Cerium(IV)-Imido Complexes. J Am Chem Soc 2019; 141:9185-9190. [PMID: 31117665 DOI: 10.1021/jacs.9b04061] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of thorium(IV)-imido complexes was synthesized and characterized. Extensive experimental and computational comparisons with the isostructural cerium(IV)-imido complexes revealed a notably more covalent bonding arrangement for the Ce═N bond compared with the more ionic Th═N bond. The thorium-imido moieties were observed to be 3 orders of magnitude more basic than their cerium congeners. More generally, these results provide unique experimental evidence for the larger covalent character of 4f05d0 Ce(IV) multiple bonds compared to its 5f06d0 Th(IV) actinide congener.
Collapse
Affiliation(s)
- Thibault Cheisson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Kyle D Kersey
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Nolwenn Mahieu
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States.,Département de Chimie, ENS Paris-Saclay , Université Paris-Saclay , 94235 Cachan , France
| | - Alex McSkimming
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Michael R Gau
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
34
|
Rungthanaphatsophon P, Rosal ID, Ward RJ, Vilanova SP, Kelley SP, Maron L, Walensky JR. Formation of an α-Diimine from Isocyanide Coupling Using Thorium(IV) and Uranium(IV) Phosphido–Methyl Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Pokpong Rungthanaphatsophon
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, Missouri 65211, United States
| | - Iker del Rosal
- Laboratoire de Physique et Chimie de Nano-objets, Universite de Toulouse, INSA-CNRS-UPS, 135 Avenue de Ranguiel, 31077 Toulouse, France
| | - Robert J. Ward
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, Missouri 65211, United States
| | - Sean P. Vilanova
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, Missouri 65211, United States
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, Missouri 65211, United States
| | - Laurent Maron
- Laboratoire de Physique et Chimie de Nano-objets, Universite de Toulouse, INSA-CNRS-UPS, 135 Avenue de Ranguiel, 31077 Toulouse, France
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, Missouri 65211, United States
| |
Collapse
|
35
|
Zhang C, Wang Y, Hou G, Ding W, Zi G, Walter MD. Experimental and computational studies on a three-membered diphosphido thorium metallaheterocycle [η5-1,3-(Me3C)2C5H3]2Th[η2-P2(2,4,6-iPr3C6H2)2]. Dalton Trans 2019; 48:6921-6930. [DOI: 10.1039/c9dt01160a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A three-membered diphosphido thorium metallaheterocycle complex was prepared and its reactivity was investigated.
Collapse
Affiliation(s)
- Congcong Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Yongsong Wang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guohua Hou
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Wanjian Ding
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| |
Collapse
|
36
|
Wang Y, Zhang C, Zi G, Ding W, Walter MD. Preparation of a potassium chloride bridged thorium phosphinidiide complex and its reactivity towards small organic molecules. NEW J CHEM 2019. [DOI: 10.1039/c9nj02269d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The steric and electronic properties of the coordinated ligands modulate the reactivity of thorium phosphinidene complexes.
Collapse
Affiliation(s)
- Yongsong Wang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Congcong Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Wanjian Ding
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30
- Braunschweig
- Germany
| |
Collapse
|
37
|
Zhang C, Hou G, Zi G, Walter MD. A base-free terminal thorium phosphinidene metallocene and its reactivity toward selected organic molecules. Dalton Trans 2019; 48:2377-2387. [DOI: 10.1039/c9dt00012g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small molecule activation mediated by a base-free terminal phosphinidene thorium metallocene is reported.
Collapse
Affiliation(s)
- Congcong Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guohua Hou
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| |
Collapse
|