1
|
Patra R, Sahoo S, Deepanshu, Rom T, Paul AK, Sarma D. Stoichiometry-Regulated Synthesis of Three Adenine-Based Coordination Polymers for Catalytic Excellence through the Synergistic Amalgamation of Coordinative Unsaturation and Lewis Basic Sites. Inorg Chem 2024; 63:23396-23410. [PMID: 39576751 DOI: 10.1021/acs.inorgchem.4c04161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Nucleobase adenine is a promising candidate for synthesizing fascinating coordination polymers (CPs) due to the presence of five potential metal-ion binding centers. In recent years, CPs have emerged as promising Lewis acid-base centers containing heterogeneous catalysts for a wide range of organic transformations. However, the crucial role of stoichiometric regulations of the starting materials and their consequential impact on catalytic performance are rarely studied. Herein, we have synthesized three adenine (Ad)-based cadmium CPs with 5-nitro isophthalic acid (H2NIPA) by a mixed linker approach by tuning the substrate's stoichiometric proportion. The single-crystal X-ray diffraction analysis of the synthesized CPs, SSICG-11, [Cd(Ad)(NIPA)(H2O)]·H2O; SSICG-12, [Cd(Ad)2(NIPA)(H2O)]; and SSICG-13, [Cd4(Ad)(NIPA)3]·H2O·DMF, reveals that these three compounds exhibit distinct asymmetric units, each reflecting varying precursor proportions. Due to their high chemical stability and the presence of both Lewis acidic-basic sites, SSICG-11-13 were employed as heterogeneous catalysts for Hantzsch and Strecker reactions. However, SSICG-12 is more efficient due to its capacity to form an open metal sites (OMSs) and the presence of a higher number of adenine moieties. Overall, this study demonstrated the stoichiometrically controlled synthesis of adenine-based CPs and dissected their efficiency as a heterogeneous catalyst by correlating their structures and compositions.
Collapse
Affiliation(s)
- Rajesh Patra
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | - Subham Sahoo
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | - Deepanshu
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | - Tanmay Rom
- Department of Chemistry, National Institute of Technology Kurukshetra, Thanesar, Haryana 136119, India
| | - Avijit Kumar Paul
- Department of Chemistry, National Institute of Technology Kurukshetra, Thanesar, Haryana 136119, India
| | - Debajit Sarma
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| |
Collapse
|
2
|
Wang D, Liu Y, Zhang G, Chu M, Gao F, Chen G, Wang G, Tung CH, Wang Y. Guest modulating the photoactivity of a titanium-oxide cage. Chem Sci 2024; 15:19952-19961. [PMID: 39568895 PMCID: PMC11575578 DOI: 10.1039/d4sc04983g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Two host-guest Ti-oxide clusters, Ti14(NH4)2 and Ti14Cs2, were synthesized and thoroughly characterized. They possess a rarely seen biloculate structure that encapsulates two NH4 + and Cs+ guests, respectively. Interestingly, alkali metal cations can exchange places with NH4 +. The ability of the host to capture the guest cations follows the order Cs+ > NH4 + > Rb+ > K+. The guests heavily influence the physiochemical properties and photocatalytic activities of the complexes. Ti14Cs2 exhibits a redshifted visible-light absorption edge, increased charge-separation properties, and enhanced interfacial charge-transfer ability compared to Ti14(NH4)2. It also demonstrates excellent performance in photocatalytic CO2/epoxide cycloaddition reactions regarding the reaction rate, scalability, sunlight usage, catalyst recyclability, and stability. This study presents a novel Ti-oxide-based cage cluster with exchangeable guests and provides insights for enhancing the solar harvesting applications of Ti-oxide cages.
Collapse
Affiliation(s)
- Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Menghui Chu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Fangfang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Guo Wang
- Department of Chemistry, Capital Normal University Beijing 100048 China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| |
Collapse
|
3
|
Nasiriani T, Nigjeh NA, Torabi S, Shaabani A. MIL-88-NH 2(Fe) conjugated pectin through a post-modification Ugi four-component reaction: A robust bio-based catalyst for the synthesis of cyclic carbonate via CO 2 fixation reaction. Carbohydr Polym 2024; 342:122418. [PMID: 39048205 DOI: 10.1016/j.carbpol.2024.122418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
The functionalization of materials via multicomponent reactions (MCRs) led to a recent surge in the interest of researchers, owing to the creation of exceptional properties in materials. Herein, a novel robust porous catalyst was prepared via the conjugation of MIL-88-NH2(Fe) and pectin (DAP/MIL-88-NH2(Fe)) through the post-modification Ugi four-component reaction (Ugi-4CR) for the first time. To achieve this aim, pectin was oxidized using sodium periodate as an oxidant agent to produce dialdehyde pectin (DAP). Next, the generated carbonyl functional groups participated in the Ugi-4CR of MIL-88-NH2(Fe), 4-methyl carboxylic acid, and cyclohexyl (c-hex) isocyanide to produce DAP/MIL-88-NH2(Fe) catalyst. The catalytic activity of the prepared bio-based catalyst was examined in producing cyclic carbonates through the chemical fixation of CO2 with epoxides in the presence of TBAB as a co-catalyst. Interestingly, catalytic experiments revealed that the prepared bio-based catalyst could be remarkably active regarding the CO2 fixation reaction and performed it in the shortest reaction time (1 h) via high CO2 adsorbent capacity. The outstanding benefits of the prepared bio-based catalyst include its non-hazardous nature, inexpensive, green and gentle reaction conditions, and ability to be reusable in several runs with slight loss of catalytic activity due to a more durable framework with high chemical and thermal stability.
Collapse
Affiliation(s)
- Tahereh Nasiriani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 1983963113, Tehran, Iran
| | - Neda Adabi Nigjeh
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 1983963113, Tehran, Iran
| | - Saeed Torabi
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 1983963113, Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 1983963113, Tehran, Iran.
| |
Collapse
|
4
|
Gao B, Yang K, Yang M, Li W, Jiang T, Gao R, Pei Y, Pei Z, Lv Y. A nanoplatform based on allylthiopurine bio-MOF and glycosylated AIE PARP inhibitor for cancer synthetic lethal therapy. Chem Commun (Camb) 2024; 60:8892-8895. [PMID: 39086281 DOI: 10.1039/d4cc02944e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A biological nanoplatform (Gal-ANI@ZnAP NPs) was constructed based on a prodrug-skeletal metal-organic framework (MOF) using purine nucleobase analogue prodrug 6-allylthiopurine as a bioactive ligand, and functionalized with AIE fluorescent PARP inhibitor glycoconjugate for visualization therapy and synthetic lethal cancer therapy. This nanoplatform could actively target cancer cells, selectively release drugs in response to esterase/pH, and visualize drug uptake. In vitro studies revealed that Gal-ANI@ZnAP NPs increased the synthetic lethality in cancer cells by inducing DNA repair failure with the simultaneous targeting of PARP and nucleotide metabolism, thereby exhibiting a significant cancer-killing effect. The study presents a novel strategy to construct an AIE nanoplatform using pharmaceutical molecules for drug uptake visualization and boosting synthetic lethality in cancer.
Collapse
Affiliation(s)
- Bingling Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Ke Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Manman Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Wendong Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Tingli Jiang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Rong Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Yinghua Lv
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| |
Collapse
|
5
|
Karmakar A, Santos AACD, Liu P, Gurbanov AV, Pires J, Alegria ECBA, Hasanov KI, Guedes da Silva MFC, Wang Z, Pombeiro AJL. Thiophene-Functionalized Cadmium(II)-Based Metal-Organic Frameworks for CO 2 Adsorption with Gate-Opening Effect, Separation, and Catalytic Conversion. Inorg Chem 2024; 63:13321-13337. [PMID: 38987901 DOI: 10.1021/acs.inorgchem.4c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Two new porous three-dimensional cadmium(II) metal-organic frameworks (MOFs) containing thiophene-appended carboxylate acid ligands, formulated as [Cd(L1)(4,4'-Bipy)]n.2n(DMF) (1) and [Cd(L2)(4,4'-Bipy)]n.2n(DMF) (2) [where L1 = 5-{(thiophen-2-ylmethyl)amino}isophthalate, L2 = 5-{(thiophen-3-ylmethyl)amino}isophthalate, 4,4'-Bipy = 4,4'-bipyridine, and DMF = N,N'-dimethylformamide] have been synthesized and structurally characterized. The gas adsorption analysis of the activated MOFs shows that they specifically capture CO2 (uptake amount 4.36 mmol/g under 1 bar at 195 K) over N2 and CH4. Moreover, both MOFs show a gate-opening-closing phenomenon, which features the S-shaped isotherms with impressive hysteretic desorption during the CO2 adsorption-desorption process at 195 K. Ideal adsorbed solution theory (IAST) calculations of these MOFs displayed that the obtained selectivity values for CO2/CH4 (50:50) and CO2/N2 (15:85) are approximately 8.6-23 and 93-565, respectively. Configurational bias Monte Carlo simulation was performed to understand the mechanism behind the better CO2 adsorption by these MOFs. Catalytic activity of the MOFs for the CO2 fixation reactions with different epoxides to form cyclic carbonates were tested. These MOFs demonstrated a significantly high conversion (94-99%) of epichlorohydrin to the corresponding cyclic carbonate within 8 h of reaction time at 1 bar of CO2 pressure, at 70 °C, and they can be reused up to five cycles without losing considerably their activity.
Collapse
Affiliation(s)
- Anirban Karmakar
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
| | - Andreia A C D Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, Lisboa 1959-007, Portugal
| | - Peixi Liu
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R. China
| | - Atash V Gurbanov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
- Excellence Center, Baku State University, Z. Xalilov Str. 33, AZ 1148 Baku, Azerbaijan
| | - João Pires
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Elisabete C B A Alegria
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, Lisboa 1959-007, Portugal
| | - Khudayar I Hasanov
- Western Caspian University, Istiqlaliyyat Str. 31, AZ 1001 Baku , Azerbaijan
- Azerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14, AZ 1022 Baku, Azerbaijan
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
| | - Zhihua Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R. China
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
| |
Collapse
|
6
|
Abazari R, Ghorbani N, Shariati J, Varma RS, Qian J. Copper-Based Bio-MOF/GO with Lewis Basic Sites for CO 2 Fixation into Cyclic Carbonates and C-C Bond-Forming Reactions. Inorg Chem 2024; 63:12667-12680. [PMID: 38916987 DOI: 10.1021/acs.inorgchem.4c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Several measures, including crude oil recovery improvement and carbon dioxide (CO2) conversion into valuable chemicals, have been considered to decrease the greenhouse effect and ensure a sustainable low-carbon future. The Knoevenagel condensation and CO2 fixation have been introduced as two principal solutions to these challenges. In the present study for the first time, bio-metal-organic frameworks (MOF)(Cu)/graphene oxide (GO) nanocomposites have been used as catalytic agents for these two reactions. In view of the attendance of amine groups, biological MOFs with NH2 functional groups as Lewis base sites protruding on the channels' internal surface were used. The bio-MOF(Cu)/20%GO performs efficaciously in CO2 fixation, leading to more than 99.9% conversion with TON = 525 via a solvent-free reaction under a 1 bar CO2 atmosphere. It has been shown that these frameworks are highly catalytic due to the Lewis basic sites, i.e., NH2, pyrimidine, and C═O groups. Besides, the Lewis base active sites exert synergistic effects and render bio-MOF(Cu)/10%GO nanostructures as highly efficient catalysts, significantly accelerating Knoevenagel condensation reactions of aldehydes and malononitrile as substrates, thanks to the high TOF (1327 h-1) and acceptable reusability. Bio-MOFs can be stabilized in reactions using GO with oxygen-containing functional groups that contribute as efficient substitutes, leading to an expeditious reaction speed and facilitating substrate absorption.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111 Maragheh, Iran
| | - Nasrin Ghorbani
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111 Maragheh, Iran
| | - Jafar Shariati
- Department of Chemical Engineering, Darab Branch, Islamic Azad University, P.O. Box 74817-83143 Darab, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, São Paulo, Brazil
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
7
|
Kaur G, Sharma S, Bhardwaj N, Nayak MK, Deep A. Simple fluorochromic detection of chromium with ascorbic acid functionalized luminescent Bio-MOF-1. NANOSCALE 2024; 16:12523-12533. [PMID: 38888214 DOI: 10.1039/d4nr00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The bioaccumulation of various heavy metals in the environment and agriculture is posing serious hazards to human health. Hexavalent chromium is one of the most encountered heavy metal pollutants. The routine monitoring of Cr(VI) via simple methods assumes great analytical significance in sectors like environmental safety, food quality, etc. This study reports a novel biocompatible and luminescent metal-organic framework (ascorbic acid functionalized Bio-MOF-1) based "Turn-on" nanoprobe for rapid and sensitive optical detection of Cr(VI). Bio-MOF-1 has been synthesized, functionalized with ascorbic acid (AA), and then comprehensively characterized for its key material properties. The presence of Cr(VI) results in the photoluminescence recovery of Bio-MOF-1/AA. Using the above approach, Cr(VI) is detected over a wide concentration range of 0.02 to 20 ng mL-1, with the limit of detection being 0.01 ng mL-1. The nanoprobe is capable of detecting Cr(VI) in real water as well as in some spiked food samples. Hence, the ascorbic acid functionalized Bio-MOF-1 nanoprobe is established as a potential on-field detection tool for Cr(VI).
Collapse
Affiliation(s)
- Gurjeet Kaur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh-160030, India.
| | - Saloni Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh-160030, India.
| | - Neha Bhardwaj
- Institute of Nano Science and Technology (INST), Sector 81, S.A.S. Nagar (Mohali), Punjab-140306, India.
| | - Manoj K Nayak
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh-160030, India.
| | - Akash Deep
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
- Institute of Nano Science and Technology (INST), Sector 81, S.A.S. Nagar (Mohali), Punjab-140306, India.
| |
Collapse
|
8
|
Lv M, Hu H, Adila A, Yan Y, Liu Y, Liu Z. Tunability of Photovoltaic Functions via Halogen Substitution [(Ade) 2 CdX 4](X = Cl, Br): A Class of Three-Dimensional Organic-Inorganic Hybrid Materials. Molecules 2024; 29:2773. [PMID: 38930838 PMCID: PMC11487418 DOI: 10.3390/molecules29122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Two new three-dimensional organic-inorganic hybrid crystalline materials, [(Ade)2 CdCl4] (1) and [(Ade)2 CdBr4] (2), were obtained by the slow evaporation of adenine (Ade) and cadmium chloride in aqueous solution at room temperature with hydrochloric acid and hydrobromic acid used as halogen sources. The structural, thermal, optical, and electrical properties were characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, variable-temperature-variable-frequency dielectric constant analysis, and electrochemical tests. With increasing the substitution of Cl by Br, the composition of the material changed and the space group shifted from P-1 to P21/m, with a significant blue-shift in the fluorescence emission. Changing the temperature induced the deformation of the three-dimensional framework structure formed by hydrogen bonding interactions, leading to dielectric anomalies. Cyclic voltammetry tests showed the good reversibility of the electrolysis process. The structural diversity of the complexes was realized by modulating the halogen composition, and a new method for designing novel organic-inorganic hybrids with controllable photoelectric functionality was proposed.
Collapse
Affiliation(s)
- Meixia Lv
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (M.L.); (H.H.); (A.A.); (Y.Y.)
| | - Hongzhi Hu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (M.L.); (H.H.); (A.A.); (Y.Y.)
- Xinjiang Sub-Center National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
| | - Abuduheni Adila
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (M.L.); (H.H.); (A.A.); (Y.Y.)
| | - Yibo Yan
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (M.L.); (H.H.); (A.A.); (Y.Y.)
- Xinjiang Sub-Center National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
| | - Yang Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (M.L.); (H.H.); (A.A.); (Y.Y.)
- Xinjiang Sub-Center National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, Urumqi 830052, China
| | - Zunqi Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (M.L.); (H.H.); (A.A.); (Y.Y.)
- Xinjiang Sub-Center National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, Urumqi 830052, China
| |
Collapse
|
9
|
Liu H, Li X, Li P, Yang X, Li Y, Song H. Mn(II) Coordination Complex Loaded Hydrogel: Synthesis, Characterization, Fluorescence Properties, and Application in Treating Knee Arthritis. J Fluoresc 2024:10.1007/s10895-024-03722-9. [PMID: 38662254 DOI: 10.1007/s10895-024-03722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Using a mixed-ligand approach, we successfully obtained two Mn(II)-based coordination compounds, namely [Mn2(L1)(TBIP)·H2O]n (1) and [Mn2(L2)(NPTA)·H2O]n (2) (where L1 and L2 are 1,4-bis(thiabenzimidazol-1-ylmethyl)benzene and 1,2-bis(thiabenzimidazol-1-ylmethyl)benzene, H2NPTA is 2-nitroterephthalic acid, and H2TBIP is 5-tert-butylisophthalic acid). Fluorescence performance testing of complexes 1 and 2 showed excellent green and blue fluorescence properties. Based on this, we further prepared HA/CMCS hydrogels using natural polysaccharides hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) as raw materials and studied their internal structural characteristics using scanning electron microscopy. Using "Duhuo Jisheng Decoction" as a drug model, two metal gel scaffolds loaded with "Duhuo Jisheng Decoction" were prepared, and their potential for treating knee osteoarthritis was evaluated.
Collapse
Affiliation(s)
- Hongpeng Liu
- Orthopedics and Traumatology Department, Heilongjiang University of Chinese Medicine/The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaodong Li
- Orthopedics and Traumatology Department, The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Pengfei Li
- Orthopedics and Traumatology Department, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiangjun Yang
- Orthopedics and Traumatology Department, Hanan Branch of the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Yongji Li
- Orthopedics and Traumatology Department, Hanan Branch of the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Hanbing Song
- Orthopedics and Traumatology Department, Heilongjiang University of Chinese Medicine/The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
10
|
Karmakar A, Santos AACD, Pagliaricci N, Pires J, Batista M, Alegria ECBA, Martin-Calvo A, Gutiérrez-Sevillano JJ, Calero S, Guedes da Silva MFC, Pettinari R, Pombeiro AJL. Halogen-Decorated Metal-Organic Frameworks for Efficient and Selective CO 2 Capture, Separation, and Chemical Fixation with Epoxides under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38605636 DOI: 10.1021/acsami.4c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
In the present work, three novel halogen-appended cadmium(II) metal-organic frameworks [Cd2(L1)2(4,4'-Bipy)2]n·4n(DMF) (1), [Cd2(L2)2(4,4'-Bipy)2]n·3n(DMF) (2), and [Cd(L3)(4,4'-Bipy)]n·2n(DMF) (3) [where L1 = 5-{(4-bromobenzyl)amino}isophthalate; L2 = 5-{(4-chlorobenzyl)amino}isophthalate; L3 = 5-{(4-fluorobenzyl)amino}isophthalate; 4,4'-Bipy = 4,4'-bipyridine; and DMF = N,N'-dimethylformamide] have been synthesized under solvothermal conditions and characterized by various analytical techniques. The single-crystal X-ray diffraction analysis demonstrated that all the MOFs feature a similar type of three-dimensional structure having a binuclear [Cd2(COO)4(N)4] secondary building block unit. Moreover, MOFs 1 and 2 contain one-dimensional channels along the b-axis, whereas MOF 3 possesses a 1D channel along the a-axis. In these MOFs, the pores are decorated with multifunctional groups, i.e., halogen and amine. The gas adsorption analysis of these MOFs demonstrate that they display high uptake of CO2 (up to 5.34 mmol/g) over N2 and CH4. The isosteric heat of adsorption (Qst) value for CO2 at zero loadings is in the range of 18-26 kJ mol-1. In order to understand the mechanism behind the better adsorption of CO2 by our MOFs, we have also performed configurational bias Monte Carlo simulation studies, which confirm that the interaction between our MOFs and CO2 is stronger compared to those with N2 and CH4. Various noncovalent interactions, e.g., halogen (X)···O, Cd···O, and O···O, between CO2 and the halogen atom, the Cd(II) metal center, and the carboxylate group from the MOFs are observed, respectively, which may be a reason for the higher carbon dioxide adsorption. Ideal adsorbed solution theory (IAST) calculations of MOF 1 demonstrate that the obtained selectivity values for CO2/CH4 (50:50) and CO2/N2 (15:85) are ca. 28 and 193 at 273 K, respectively. However, upon increasing the temperature to 298 K, the selectivity value (S = 34) decreases significantly for the CO2/N2 mixture. We have also calculated the breakthrough analysis curves for all the MOFs using mixtures of CO2/CH4 (50:50) and CO2/N2 (50:50 and 15:85) at different entering gas velocities and observed larger retention times for CO2 in comparison with other gases, which also signifies the stronger interaction between our MOFs and CO2. Moreover, due to the presence of Lewis acidic metal centers, these MOFs act as heterogeneous catalysts for the CO2 fixation reactions with different epoxides in the presence of tetrabutyl ammonium bromide (TBAB), for conversion into industrially valuable cyclic carbonates. These MOFs exhibit a high conversion (96-99%) of epichlorohydrin (ECH) to the corresponding cyclic carbonate 4-(chloromethyl)-1,3-dioxolan-2-one after 12 h of reaction time at 1 bar of CO2 pressure, at 65 °C. The MOFs can be reused up to four cycles without compromising their structural integrity as well as without losing their activity significantly.
Collapse
Affiliation(s)
- Anirban Karmakar
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Andreia A C D Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisbon, Portugal
| | - Noemi Pagliaricci
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri (ChIP), 62032 Camerino, Macerata, Italy
| | - João Pires
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Mary Batista
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Elisabete C B A Alegria
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisbon, Portugal
| | - Ana Martin-Calvo
- Center for Nanoscience and Sustainable Technologies (CNATS), Universidad Pablo de Olavide, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Juan José Gutiérrez-Sevillano
- Center for Nanoscience and Sustainable Technologies (CNATS), Universidad Pablo de Olavide, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Sofia Calero
- Department of Applied Physics, Eindhoven University of Technology, Flux Building, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Riccardo Pettinari
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri (ChIP), 62032 Camerino, Macerata, Italy
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
11
|
Eskemech A, Chand H, Karmakar A, Krishnan V, Koner RR. Zn-MOF as a Single Catalyst with Dual Lewis Acidic and Basic Reaction Sites for CO 2 Fixation. Inorg Chem 2024; 63:3757-3768. [PMID: 38354394 DOI: 10.1021/acs.inorgchem.3c03901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Continuous increase in carbon dioxide (CO2) emissions are causing imbalances in the environment, which impact biodiversity and human health. The conversion of CO2 to cyclic carbonates by means of metal-organic frameworks (MOFs) as a heterogeneous catalyst is a prominent strategy for rectifying this imbalance. Herein, we have developed nitrogen-rich Zn (II) based metal-organic framework, [Zn(CPMT)(bipy)]n (CPMT = 1-(4-carboxyphenyl)-5-mercapto-1H-tetrazole; bipy = 4,4'-bipyridine), synthesized via a mixed ligand strategy. This Zn-MOF showed high chemical stability in both acidic and basic conditions, and in organic solvents for a long time. On account of the concurrent presence of acid-base active sites and strong chemical stability under abrasive conditions, this Zn-MOF was employed as an effective catalyst for the coupling of CO2 and epoxides, under atmospheric pressure, mild temperature, and neat conditions. This Zn-MOF shows remarkable activity by producing high yields of epichlorohydrin carbonate (98%) and styrene carbonate (82%) at atmospheric CO2 pressure, 70 °C temperature, and 24 h reaction time, with turnover numbers (TON) of 217 and 181, respectively. The Zn-MOF could be reused for up to seven cycles with structural and framework integrity. Overall, this work demonstrates the synthesis of a novel and highly efficient MOF for CO2 conversion.
Collapse
Affiliation(s)
- Alehegn Eskemech
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Hushan Chand
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Rik Rani Koner
- School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
12
|
Liu N, Liu T, Liu G, Mi X, Li Y, Yang L, Zhou Z, Wang S. Two isostructural Zn/Co-MOFs with penetrating structures: multifunctional properties of both luminescence sensing and conversion of CO 2 into cyclic carbonates. Dalton Trans 2024; 53:3654-3665. [PMID: 38289280 DOI: 10.1039/d3dt03466f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Two new metal-organic frameworks (MOFs), namely, {[Zn(HL)(bpea)]·DMF}n (Zn-MOF-1) and {[Co(HL)(bpea)]·DMF}n (Co-MOF-2) (H3L = 3-(3,5-dicarboxybenzyloxy)benzoic acid, bpea = 1,2-di(pyridyl)ethane), were obtained by the reaction of H3L and N-containing ligand bpea with Zn(NO3)2·6H2O and Co(NO3)2·6H2O, respectively. The isomorphic Zn-MOF-1 and Co-MOF-2 featured a 3D penetrating framework with different stabilities, luminescence, and catalytic properties. Luminescence measurement indicated that Zn-MOF-1 could be used to detect Al3+ through a turn-on effect with a detection limit of 0.42 μM. The sensing mechanism experiments showed that the enhanced luminescence of Zn-MOF-1 toward Al3+ may be due to the weak interaction between Al3+ and Zn-MOF-1 and the absorbance-caused enhancement (ACE) mechanism. Meanwhile, both Zn-MOF-1 and Co-MOF-2 showed interesting CO2 adsorption properties and could catalyze the cycloaddition of CO2 to epoxides resulting in 96 and 92% ideal products within 12 hours, respectively. They can be cycled up to 5 times without significant loss of catalytic efficiency.
Collapse
Affiliation(s)
- Nana Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Tingting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Guangning Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Xiuna Mi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Lu Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.
| | - Zhen Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
13
|
Nabipour H, Rohani S. Green Synthesis of pH-Responsive Metal-Organic Frameworks for Delivery of Diclofenac Sodium. IEEE Trans Nanobioscience 2024; 23:63-70. [PMID: 37428669 DOI: 10.1109/tnb.2023.3289787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The current study developed a drug delivery system through the green chemistry-based synthesis of a biologically friendly metal-organic framework (bio-MOF) called Asp-Cu, which included copper ions and the environmentally friendly molecule L(+)-aspartic acid (Asp). For the first time, diclofenac sodium (DS) was loaded onto the synthesized bio-MOF simultaneously. The system's efficiency was then improved by encapsulating it with sodium alginate (SA). FT-IR, SEM, BET, TGA, and XRD analyses confirmed that DS@Cu-ASP was successfully synthesized. DS@Asp-Cu was found to release the total load within 2 h when used with simulated stomach media. This challenge was overcome by coating DS@Cu-ASP with SA (SA@DS@Cu-ASP). SA@DS@Cu-ASP displayed limited drug release at pH 1.2, and a higher percentage of the drug was released at pH 6.8 and 7.4 due to the pH-responsive nature of SA. In vitro cytotoxicity screening showed that SA@DS@Cu-ASP could be an appropriate biocompatible carrier with >90% cell viability. The on-command drug carrier was observed to be more applicable biocompatible with lower toxicity, as well as adequate loading properties and responsiveness, indicating its applicability as a feasible drug carrier with controlled release.
Collapse
|
14
|
Zhang X, He X, Zhang M, Wu T, Liu X, Zhang Y, Xie Z, Liu S, Xia T, Wang Y, Wei F, Wang H, Xie C. Efficient delivery of the lncRNA LEF1-AS1 through the antibody LAIR-1 (CD305)-modified Zn-Adenine targets articular inflammation to enhance the treatment of rheumatoid arthritis. Arthritis Res Ther 2023; 25:238. [PMID: 38062469 PMCID: PMC10702009 DOI: 10.1186/s13075-023-03226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUNDS Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by synovial hyperplasia. Maintaining a balance between the proliferation and apoptosis of rheumatoid arthritis synovial fibroblasts (RASFs) is crucial for preventing the erosion of bone and cartilage and, ultimately, mitigating the progression of RA. We found that the lncRNA LEF1-AS1 was expressed at low levels in the RASFs and inhibited their abnormal proliferation by targeting PIK3R2 protein and regulating the PI3K/AKT signal pathway through its interaction with miR-30-5p. In this study, we fabricated a nano-drug delivery system for LEF1-AS1 using Zn-Adenine nanoparticles (NPs) as a novel therapeutic strategy against RA. METHODS The expression levels of LEF1-AS1, miR-30-5p, PIK3R2, p-PI3K, and p-AKT were detected in the primary RASFs and a human fibroblast-like synovial cell line (HFLS). Zn-Adenine nanoparticles (NPs) were functionalized with anti-CD305 antibody to construct (Zn-Adenine)@Ab. These NPs were then loaded with LEF1-AS1 to form (Zn-Adenine)@Ab@lncRNA LEF1-AS1. Finally, the (Zn-Adenine)@Ab@lncRNA LEF1-AS1 NPs were locally injected into a rat model with collagen-induced arthritis (CIA). The arthritic injuries in each group were evaluated by HE staining and other methods. RESULTS LEF1-AS1 was expressed at low levels in the primary RASFs. High expression levels of LEF1-AS1 were detected in the HFLS cells, which corresponded to a significant downregulation of miR-30-5p. In addition, the expression level of PIK3R2 was significantly increased, and that of p-PI3K and p-AKT were significantly downregulated in these cells. The (Zn-Adenine)@Ab@lncRNA LEF1-AS1 NPs significantly inhibited the proliferation of RASFs and decreased the production of inflammatory cytokines (IL-1β, IL-6, TNF-α). Intra-articular injection (IAI) of (Zn-Adenine)@Ab@lncRNA LEF1-AS1 NPs significantly alleviated cartilage destruction and joint injury in the CIA-modeled rats. CONCLUSIONS LEF1-AS1 interacts with miR-30-5p to inhibit the abnormal proliferation of RASFs by regulating the PI3K/AKT signal pathway. The (Zn-Adenine)@Ab NPs achieved targeted delivery of the loaded LEF1-AS1 into the RASFs, which improved the cellular internalization rate and therapeutic effects. Thus, LEF1-AS1 is a potential target for the treatment of RA.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Xiaoyu He
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, China
| | - Ming Zhang
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Tianyu Wu
- Department of Preventive Medicine, Bengbu Medical College, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Xiaojie Liu
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Yan Zhang
- Clinical Medicine Department of Bengbu Medical College, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Zhuobei Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, China
| | - Saisai Liu
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Tian Xia
- Clinical Medicine Department of Bengbu Medical College, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Yuanyuan Wang
- Department of Tissue and Embryology, Bengbu Medical College, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Hongtao Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China.
| | - Changhao Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, China.
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China.
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, 287 Changhuai Road, Bengbu, Anhui, 233004, China.
| |
Collapse
|
15
|
Hu Y, Abazari R, Sanati S, Nadafan M, Carpenter-Warren CL, Slawin AMZ, Zhou Y, Kirillov AM. A Dual-Purpose Ce(III)-Organic Framework with Amine Groups and Open Metal Sites: Third-Order Nonlinear Optical Activity and Catalytic CO 2 Fixation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37300-37311. [PMID: 37497576 DOI: 10.1021/acsami.3c04506] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The present work focuses on the synthesis and properties of a novel multifunctional cerium(III) MOF, [Ce2(data)3(DMF)4]·DMF (data2-: 2,5-diaminoterephthalate), abbreviated as NH2-Ce-MUM-2. Its crystal structure reveals an intricate 3D 4,5-connected framework with a xah topology. This MOF features unique properties, such as open metal sites, presence of free amino groups, and high stability. Two main applications of NH2-Ce-MUM-2 were investigated: (i) as a heterogeneous catalyst in the CO2 fixation into cyclic carbonates and (ii) as a material with third-order nonlinear optical activity. As a model reaction, the cycloaddition of CO2 to propylene oxide to give the corresponding cyclic carbonate was explored under mild conditions, at the atmospheric pressure of carbon dioxide and in the absence of cocatalyst and added solvent. Various reaction parameters were investigated toward optimization and exploration of substrate scope, revealing up to 99% product yields of cyclic carbonate products. Besides, the structure of NH2-Ce-MUM-2 is highly stable, permitting its recyclability and reusability in further catalytic experiments. The significant contributions of free amino groups and open metal sites within this catalyst were particularly considered when proposing a potential mechanism for the reaction. Z-Scan measurements were used to evaluate the nonlinear optical (NLO) properties of NH2-Ce-MUM-2 at various laser intensities. A high two-photon absorption (TPA) under greater incident intensities shows that NH2-Ce-MUM-2 might be applicable in optical switching devices. Besides, the self-focusing effects of NH2-Ce-MUM-2 under various incident intensities were highlighted by the nonlinear index of refraction (n2). By reporting the synthesis and characterization of a novel MOF, along with its highly promising catalytic and NLO behavior, the current study introduces an additional example of multifunctional material into a growing family of metal-organic frameworks.
Collapse
Affiliation(s)
- Yaxuan Hu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China
| | - Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111, Maragheh, Iran
| | - Marzieh Nadafan
- Department of Physics, Shahid Rajaee Teacher Training University, 16788-15811, Tehran, Iran
| | | | - Alexandra M Z Slawin
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
16
|
Liu S, Chen H, Fan L, Zhang X. Highly Robust {In 2}-Organic Framework for Efficiently Catalyzing CO 2 Cycloaddition and Knoevenagel Condensation. Inorg Chem 2023; 62:3562-3572. [PMID: 36791403 DOI: 10.1021/acs.inorgchem.2c04130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
To improve the catalytic performance of metal-organic frameworks (MOFs), creating higher defects is now considered as the most effective strategy, which can not only optimize the Lewis acidity of metal ions but also create more pore space to enhance diffusion and mass transfer in the channels. Herein, the exquisite combination of scarcely reported [In2(CO2)5(H2O)2(DMF)2] clusters and 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine (H5BDCP) under solvothermal conditions generated a highly robust nanoporous framework of {[In2(BDCP)(DMF)2(H2O)2](NO3)}n (NUC-65) with nanocaged voids (14.1 Å) and rectangular nanochannels (15.94 Å × 11.77 Å) along the a axis. It is worth mentioning that an In(1) ion displays extremely low tetra-coordination modes after the thermal removal of its associated four solvent molecules of H2O and DMF. Activated {[In2(BDCP)](Br)}n (NUC-65Br), as a defective material because of its extremely unsaturated metal centers, could be generated by bromine ion exchange, solvent exchange, and vacuum drying. Catalytic experiments proved that the conversion of epichlorohydrin with 1 atm CO2 into 4-(chloromethyl)-1,3-dioxolan-2-one catalyzed by 0.11 mol % NUC-65Br could reach 99% at 65 °C within 24 h. Moreover, with the aid of 5 mol % cocatalyst n-Bu4NBr, heterogeneous NUC-65Br owns excellent universal catalytic performance in most epoxides under mild conditions. In addition, NUC-65Br, as a heterogeneous catalyst, exhibits higher activity and better selectivity for Knoevenagel condensation of aldehydes and malononitrile. Hence, this work offers a fresh insight into the design of structure defect cationic metal-organic frameworks, which can be better applied to various fields because of their promoted performance.
Collapse
Affiliation(s)
- Shurong Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongtai Chen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
17
|
Said A, Zhang G, Liu C, Wang D, Niu H, Liu Y, Chen G, Tung CH, Wang Y. A butterfly-like lead-doped titanium-oxide compound with high performance in photocatalytic cycloaddition of CO 2 to epoxide. Dalton Trans 2023; 52:2392-2403. [PMID: 36723215 DOI: 10.1039/d2dt03990g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cycloaddition reaction of CO2 to epoxides is quite promising for CO2 capture and storage as well as the production of value-added fine chemicals. Herein, a novel atomically precise lead-doped titanium-oxide cluster with the formula Ti10Pb2O16(phen)4(Ac)12(DMF)2 (denoted as Ti10Pb2; phen = 1,10-phenanthroline; Ac = acetate; DMF = dimethylformamide) was synthesized through a facile solvothermal process, and is a molecular photocatalyst with surface-anchored main-group metal active sites. Its structure was characterized by single-crystal X-ray diffraction and other complementary techniques. Ti10Pb2 showed high photo-response and charge-separation efficiency under simulated sunlight irradiation. Ti10Pb2 was successfully used in the cycloaddition reaction of CO2 with epoxides under solvent-free conditions. While its catalytic activity due to the Lewis acidity was moderate, simulated solar light irradiation further enhanced the reaction rate, demonstrating the synergistic effect of photocatalysis and Lewis-acid thermocatalysis.
Collapse
Affiliation(s)
- Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Caiyun Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Huihui Niu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. .,State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
18
|
Li N, Yao SJ, Wei MJ, He J, Chi W, Lan YQ. CO 2 Photoactivation Study of Adenine Nucleobase: Role of Hydrogen-Bonding Traction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206724. [PMID: 36436832 DOI: 10.1002/smll.202206724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/12/2022] [Indexed: 06/16/2023]
Abstract
The discovery and in-depth study of non-biocatalytic applications of active biomolecules are essential for the development of biomimicry. Here, the effect of intermolecular hydrogen-bonding traction on the CO2 photoactivation performance of adenine nucleobase by means of an adenine-containing model system (AMOF-1-4) is uncovered. Remarkably, the hydrogen-bonding schemes around adenines are regularly altered with the increase in the alkyl (methyl, ethyl, isopropyl, and tert-butyl) electron-donating capacity of the coordinated aliphatic carboxylic acids, and thus, lead to a stepwise improvement in CO2 photoreduction activity. Density functional theory calculations demonstrate that strong intermolecular hydrogen-bonding traction surrounding adenine can obviously increase the adenine-CO2 interaction energy and, therefore, result in a smoother CO2 activation process. Significantly, this work also provides new inspiration for expanding the application of adenine to more small-molecule catalytic reactions.
Collapse
Affiliation(s)
- Ning Li
- Department School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Su-Juan Yao
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Mei-Jie Wei
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Jun He
- Department School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Weijie Chi
- School of Science, Hainan university, No. 58 Renmin Avenue, Meilan District, Haikou, 570228, China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
19
|
Insight into the Varying Reactivity of Different Catalysts for CO 2 Cycloaddition into Styrene Oxide: An Experimental and DFT Study. Int J Mol Sci 2023; 24:ijms24032123. [PMID: 36768447 PMCID: PMC9916580 DOI: 10.3390/ijms24032123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 01/25/2023] Open
Abstract
The cycloaddition of CO2 into epoxides to form cyclic carbonates is a highly sought-after reaction for its potential to both reduce and use CO2, which is a greenhouse gas. In this paper, we present experimental and theoretical studies and a mechanistic approach for three catalytic systems. First, as Lewis base catalysts, imidazole and its derivatives, then as a Lewis acid catalyst, ZnI2 alone, and after that, the combined system of ZnI2 and imidazole. In the former, we aimed to discover the reasons for the varied reactivities of five Lewis base catalysts. Furthermore, we succeeded in reproducing the experimental results and trends using DFT. To add, we emphasized the importance of non-covalent interactions and their role in reactivity. In our case, the presence of a hydrogen bond was a key factor in decreasing the reactivity of some catalysts, thus leading to lower conversion rates. Finally, mechanistically understanding this 100% atom economy reaction can aid experimental chemists in designing better and more efficient catalytic systems.
Collapse
|
20
|
Bumstead AM, Castillo-Blas C, Pakamorė I, Thorne MF, Sapnik AF, Chester AM, Robertson G, Irving DJM, Chater PA, Keen DA, Forgan RS, Bennett TD. Formation of a meltable purinate metal-organic framework and its glass analogue. Chem Commun (Camb) 2023; 59:732-735. [PMID: 36541403 DOI: 10.1039/d2cc05314d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The chemistries that can be incorporated within melt-quenched zeolitic imidazolate framework (ZIF) glasses are currently limited. Here we describe the preparation of a previously unknown purine-containing ZIF which we name ZIF-UC-7. We find that it melts and forms a glass at one of the lowest temperatures reported for 3D hybrid frameworks.
Collapse
Affiliation(s)
- Alice M Bumstead
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| | - Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| | - Ignas Pakamorė
- WestCHEM, School of Chemistry, The University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Michael F Thorne
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| | - Adam F Sapnik
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| | - Ashleigh M Chester
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| | - Georgina Robertson
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| | - Daniel J M Irving
- Diamond Light Source Ltd, Diamond House, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Philip A Chater
- Diamond Light Source Ltd, Diamond House, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Ross S Forgan
- WestCHEM, School of Chemistry, The University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| |
Collapse
|
21
|
Metalloporphyrin and triazine integrated nitrogen-rich frameworks as high-performance platform for CO2 adsorption and conversion under ambient pressure. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Construction of stable MOFs integrated with open metal sites and amine groups for CO2 capture and conversion. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
23
|
Synthesis of 3D Cadmium(II)-Carboxylate Framework Having Potential for Co-Catalyst Free CO2 Fixation to Cyclic Carbonates. INORGANICS 2022. [DOI: 10.3390/inorganics10100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Metal-organic frameworks (MOFs) are porous coordination polymers with interesting structural frameworks, properties, and a wide range of applications. A novel 3D cadmium(II)-carboxylate framework, CdMOF ([Cd2(L)(DMF)(H2O)2]n), was synthesized by the solvothermal method using a tetracarboxylic bridging linker having amide functional moieties. The CdMOF crystal structure exists in the form of a 3D layer structure. Based on the single-crystal X-ray diffraction studies, the supramolecular assembly of CdMOF is explored by Hirshfeld surface analysis. The voids and cavities analysis is performed to check the strength of the crystal packing in CdMOF. The CdMOF followed a multistage thermal degradation pattern in which the solvent molecules escaped around 200 °C and the structural framework remained stable till 230 °C. The main structural framework collapsed (>60 wt.%) into organic volatiles between 400–550 °C. The SEM morphology analyses revealed uniform wedge-shaped rectangular blocks with dimensions of 25–100 μm. The catalytic activity of CdMOF for the solvent and cocatalyst-free cycloaddition of CO2 into epichlorohydrin was successful with 100% selectivity. The current results revealed that this 3D CdMOF is more active than the previously reported CdMOFs and, more interestingly, without using a co-catalyst. The catalyst was easily recovered and reused, having the same performance.
Collapse
|
24
|
Yun R, Li T, He L, Shi C, Xu R. Atomically Dispersed Iron Sites on the Hollow Nitrogen-Doped Carbon Framework with a Highly Efficient Performance on Carbon Dioxide Cycloaddition. Inorg Chem 2022; 61:15817-15821. [PMID: 36178332 DOI: 10.1021/acs.inorgchem.2c02695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The exploration of efficient and low-consumption catalysts for carbon dioxide (CO2) conversion is desirable yet remains a great challenge. Herein, a novel catalyst composed of a hollow nitrogen-doped carbon framework (HNF) enriched with high-loading (9.8 wt %) atomically dispersed iron sites (defined as FeSAs/HNF) has been fabricated by a polymer-assisted strategy. As a result, FeSAs/HNF has an excellent performance on the cycloaddition reactions of CO2 with epoxides (the conversion >96%) under milder conditions because of its ultrahigh loading of atomically dispersed iron sites. This study not only provides an advanced catalyst for driving CO2 cycloaddition but also furnishes a novel perspective on the rational design of superior catalysts with high-loading active sites for diverse heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Ruirui Yun
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Tuanhui Li
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Lei He
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Changsong Shi
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Ruiming Xu
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| |
Collapse
|
25
|
Lv H, Chen H, Fan L, Zhang X. Nanocage-Based Tb 3+-Organic Framework for Efficiently Catalyzing the Cycloaddition Reaction of CO 2 with Epoxides and Knoevenagel Condensation. Inorg Chem 2022; 61:15558-15568. [DOI: 10.1021/acs.inorgchem.2c02302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|
26
|
Liu Y, Hu S, Zhi Y, Hu T, Yue Z, Tang X, Shan S. Non-metal and non-halide enol PENDI catalysts for the cycloaddition of CO2 and epoxide. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Yang K, Jiang J. Highly efficient CO2 conversion on a robust metal-organic framework Cu(I)-MFU-4l: Prediction and mechanistic understanding from DFT calculations. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
28
|
A highly robust lutecium(III)-organic framework for the high catalytic performance on the chemical fixation CO2. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Evaluation of Zn Adenine-Based Bio-MOF for Efficient Remediation of Different Types of Dyes. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/6818348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As an eco-friendly material, Zn-adeninate bio-metal-organic framework (bio-MOF) was investigated as an efficient adsorbent for both anionic and cationic dyes. The adsorption capability of the synthesized Zn-adeninate bio-MOF was confirmed by its notable surface area of 52.62 m2 g−1 and total pore volume of 0.183 cm3 g−1. The bio-MOF adsorption profiles of anionic direct red 81 (DR-81) and cationic methylene blue (MB) dyes were investigated under different operating parameters. The optimum dosages of Zn-adeninate bio-MOF were 0.5 g L−1 and 1 g L−1 for MB and DR-81 decolorization, respectively. The pHPZC of Zn-adeninate bio-MOF was 7.2, and maximum monolayer adsorption capacity was 132.15 mg g–1 for MB, which decreased to 82.54 mg g–1 for DR-81 dye. Thermodynamic data indicated the spontaneous and endothermic nature of the decolorization processes. Additionally, the adsorption processes were in agreement with the Langmuir and pseudo-second-order kinetic models. The synthesized Zn-adeninate bio-MOF could be reused several times with high decolorization ability. These findings demonstrated that the synthesized Zn bio-MOF is an effective and promising adsorbent material for the removal of both cationic and anionic dyes from polluted water.
Collapse
|
30
|
Liu S, Chen H, Zhang X. Bifunctional {Pb 10K 2}–Organic Framework for High Catalytic Activity in Cycloaddition of CO 2 with Epoxides and Knoevenagel Condensation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|
31
|
A unique terbium-fluoride-oxalate metal–organic framework containing [Tb-F]n chains with bifunctions of luminescent detection of Cr(VI) and catalyzing CO2 conversion to cyclic carbonates. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Gupta RK, Riaz M, Ashafaq M, Gao ZY, Varma RS, Li DC, Cui P, Tung CH, Sun D. Adenine-incorporated metal–organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Chen H, Zhang T, Liu S, Lv H, Fan L, Zhang X. Fluorine-Functionalized NbO-Type {Cu 2}-Organic Framework: Enhanced Catalytic Performance on the Cycloaddition Reaction of CO 2 with Epoxides and Deacetalization-Knoevenagel Condensation. Inorg Chem 2022; 61:11949-11958. [PMID: 35839442 DOI: 10.1021/acs.inorgchem.2c01686] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The high catalytic activity of metal-organic frameworks (MOFs) can be realized by increasing their effective active sites, which prompts us to perform the functionalization on selected linkers by introducing a strong Lewis basic group of fluorine. Herein, the exquisite combination of paddle-wheel [Cu2(CO2)4(H2O)] clusters and meticulously designed fluorine-funtionalized tetratopic 2',3'-difluoro-[p-terphenyl]-3,3″,5,5″-tetracarboxylic acid (F-H4ptta) engenders one peculiar nanocaged {Cu2}-organic framework of {[Cu2(F-ptta)(H2O)2]·5DMF·2H2O}n (NUC-54), which features two types of nanocaged voids (9.8 Å × 17.2 Å and 10.1 Å × 12.4 Å) shaped by 12 paddle-wheel [Cu2(COO)4H2O)2] secondary building units, leaving a calculated solvent-accessible void volume of 60.6%. Because of the introduction of plentifully Lewis base sites of fluorine groups, activated NUC-54a exhibits excellent catalytic performance on the cycloaddition reaction of CO2 with various epoxides under mild conditions. Moreover, to expand the catalytic scope, the deacetalization-Knoevenagel condensation reactions of benzaldehyde dimethyl acetal and malononitrile were performed using the heterogenous catalyst of NUC-54a. Also, NUC-54a features high recyclability and catalytic stability with excellent catalytic performance in subsequent catalytic tests. Therefore, this work not only puts forward a new solution for developing high-efficiency heterogeneous catalysts, but also enriches the functionalization strategies for nanoporous MOFs.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tao Zhang
- Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, People's Republic of China
| | - Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
34
|
Periodic Mesoporous Organosilica Nanoparticles for CO2 Adsorption at Standard Temperature and Pressure. Molecules 2022; 27:molecules27134245. [PMID: 35807490 PMCID: PMC9268279 DOI: 10.3390/molecules27134245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/07/2022] Open
Abstract
(1) Background: Due to human activities, greenhouse gas (GHG) concentrations in the atmosphere are constantly rising, causing the greenhouse effect. Among GHGs, carbon dioxide (CO2) is responsible for about two-thirds of the total energy imbalance which is the origin of the increase in the Earth’s temperature. (2) Methods: In this field, we describe the development of periodic mesoporous organosilica nanoparticles (PMO NPs) used to capture and store CO2 present in the atmosphere. Several types of PMO NP (bis(triethoxysilyl)ethane (BTEE) as matrix, co-condensed with trialkoxysilylated aminopyridine (py) and trialkoxysilylated bipyridine (Etbipy and iPrbipy)) were synthesized by means of the sol-gel procedure, then characterized with different techniques (DLS, TEM, FTIR, BET). A systematic evaluation of CO2 adsorption was carried out at 298 K and 273 K, at low pressure. (3) Results: The best values of CO2 adsorption were obtained with 6% bipyridine: 1.045 mmol·g−1 at 298 K and 2.26 mmol·g−1 at 273 K. (4) Conclusions: The synthetized BTEE/aminopyridine or bipyridine PMO NPs showed significant results and could be promising for carbon capture and storage (CCS) application.
Collapse
|
35
|
Kuruppathparambil RR, Robert TM, Pillai RS, Pillai SKB, Kalamblayil Shankaranarayanan SK, Kim D, Mathew D. Nitrogen-rich dual linker MOF catalyst for room temperature fixation of CO2 via cyclic carbonate synthesis: DFT assisted mechanistic study. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Rani P, Husain A, Bhasin KK, Kumar G. Metal-Organic Framework-Based Selective Molecular Recognition of Organic Amines and Fixation of CO 2 into Cyclic Carbonates. Inorg Chem 2022; 61:6977-6994. [PMID: 35481354 DOI: 10.1021/acs.inorgchem.2c00367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthesis and structural depiction of two new metal-organic frameworks (MOFs), namely, [{Zn(L)(oba)}·4H2O]α (Zn-MOF-1) and [{Cd1/2(L)1/2(nipa)1/2(H2O)1/2}·(DMF)1/2(H2O)]α (Cd-MOF-2) (where L = N2,N6-di(pyridin-4-yl)naphthalene-2,6-dicarboxamide, 4,4'-H2oba = 4,4'-oxybisbenzoic acid, and 5-H2nipa = 5-nitroisophthalic acid) are reported. Both Zn-MOF-1 and Cd-MOF-2 have been prepared by reacting ligand L and coligand 4,4'-H2oba or 5-H2nipa with the respective dihydrates of Zn(OAc)2 and Cd(OAc)2 (OAc = acetate). Crystal structure X-ray analysis discloses that Zn-MOF-1 displays an overall 2D → 3D interpenetrated framework structure. The topological analysis by ToposPro suggests a (4)-connected uninodal sql topology with a point symbol of {44·62} having 2D + 2D parallel polycatenation. However, crystal packing of Cd-MOF-2 adapted a porous framework architecture and was topologically simplified as (3,4)-connected binodal 2D net. In addition, both Zn-MOF-1 and Cd-MOF-2 were proved to be multifunctional materials for the recognition of organic amines and in the fixation of CO2 to cyclic carbonates. Remarkably, Zn-MOF-1 and Cd-MOF-2 showed very good fluorescence stability in aqueous media and have shown 98 and 97% quenching efficiencies, respectively, for 4-aminobenzoic acid (4-ABA), among all of the researched amines. The mechanistic study of organic amines recognition proposed that fluorescence quenching happened mainly through hydrogen-bonding and π-π stacking interactions. Additionally, cycloaddition of CO2 to epoxide in the presence of Zn-MOF-1 and Cd-MOF-2 afforded up to 96% of cyclic carbonate within 24 h. Both Zn-MOF-1 and Cd-MOF-2 exhibited recyclability for up to five cycles without noticing an appreciable loss in their sensing or catalytic efficiency.
Collapse
Affiliation(s)
- Pooja Rani
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ahmad Husain
- Department of Chemistry, DAV University Jalandhar, Jalandhar, Punjab 144012, India
| | - K K Bhasin
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Girijesh Kumar
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
37
|
Gao A, Li F, Xu Z, Ji C, Gu J, Zhou YH. Guanidyl-implanted UiO-66 as an efficient catalyst for the enhanced conversion of carbon dioxide into cyclic carbonates. Dalton Trans 2022; 51:2567-2576. [PMID: 35048931 DOI: 10.1039/d1dt04110j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The development of heterogeneous catalysts for promoting epoxide cycloaddition with carbon dioxide is highly desirable for recycling CO2 and achieving the goal of carbon neutrality. Herein, we designed and synthesized Zr-based metal organic frameworks (MOFs) by implanting functional guanidyl into the framework via mixing different molar ratios of 4-guanidinobenzoic acid (Gua) with 1,4-benzenedicarboxylic acid (BDC). Consequently, a small sized Zr-MOF (∼350 nm) can be prepared by implanting Gua with 20% molar ligands, denoted as UiO-66-Gua0.2(s). Compared to large sized and different guanidyl Zr-MOFs, UiO-66-Gua0.2(s) exhibited an optimal activity on catalyzing epoxide cycloaddition with CO2 in the presence of the Bu4NBr cocatalyst. A yield of 97% for the product of chloropropene carbonate was achieved at 90 °C under 1 atm CO2. The great performance of UiO-66-Gua0.2(s) might be attributed to the synergistic effect of guanidyl groups as hydrogen-bond donors and Zr centers acting as Lewis-acidic sites. In addition, the heterogeneous catalyst of UiO-66-Gua0.2(s) exhibited a great versatility towards converting other epoxides and a satisfactory recyclability for five consecutive runs. Moreover, a plausible reaction mechanism has been proposed for UiO-66-Gua0.2(s) in promoting CO2 epoxide cycloaddition reactions.
Collapse
Affiliation(s)
- Aijia Gao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| | - Fangfang Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| | - Zhi Xu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| | - Changchun Ji
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| | - Jing Gu
- Department of Chemistry and Biochemistry, San Diego State University, USA.
| | - Ying-Hua Zhou
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| |
Collapse
|
38
|
Li ZQ, Zhang YY, Zheng YJ, Li B, Wu GP. Insights into Thiourea-Based Bifunctional Catalysts for Efficient Conversion of CO2 to Cyclic Carbonates. J Org Chem 2022; 87:3145-3155. [DOI: 10.1021/acs.joc.1c02888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhuo-Qun Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 310036, China
| | - Yao-Yao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu-Jia Zheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 310036, China
| | - Bo Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 310036, China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
39
|
Hongxiao L, Fan L, Chen H, Zhang X, Gao Y. Nanochannel-Based {BaZn}-Organic Framework for Catalytic Activity on Cycloaddition Reaction of Epoxides with CO2 and Deacetalization-Knoevenagel Condensation. Dalton Trans 2022; 51:3546-3556. [DOI: 10.1039/d1dt04231a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because of the integrated properties from chemically dissimilar metals, microporous heterometallic MOFs have wider potential applicability, which prompts us to explore the tendency collocation of different metal cations in the...
Collapse
|
40
|
Ghosh AK, Saha U, Biswas S, ALOthman ZA, Islam MA, Dolai M. Anthracene-triazole-dicarboxylate-Based Zn(II) 2D Metal Organic Frameworks for Efficient Catalytic Carbon Dioxide Fixation into Cyclic Carbonates under Solvent-Free Condition and Theoretical Study for the Reaction Mechanism. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aloke Kumar Ghosh
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, 721 404 West Bengal, India
| | - Urmila Saha
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700 073 West Bengal, India
| | - Surajit Biswas
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, 741 235 West Bengal, India
| | - Zeid A. ALOthman
- Department of Chemistry, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, M13 9PL Manchester, U.K
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, 721 404 West Bengal, India
| |
Collapse
|
41
|
Wang L, Wang K, An HT, Huang H, Xie LH, Li JR. A Hydrolytically Stable Cu(II)-Based Metal-Organic Framework with Easily Accessible Ligands for Water Harvesting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49509-49518. [PMID: 34617718 DOI: 10.1021/acsami.1c15240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water scarcity is a critical issue in desert and arid regions, and atmospheric water harvesting is a potential solution. The challenge is lacking ideal adsorbents that can efficiently capture water from low-humidity air and be regenerated readily. Herein, we report a hydrolytically stable metal-organic framework (MOF), [Cu2(AD)2(SA)] (Cu-AD-SA), with excellent performance in water harvesting. More importantly, this material can be facilely prepared from two easily accessible ligands adenine (HAD) and succinic acid (H2SA). Cu-AD-SA has a three-dimensional (3D) framework structure with the crs topology and intersecting channels of ∼5 Å in diameter. The channel surface is decorated by uncoordinated aromatic N atoms, amine groups, and alkyl moieties. Interestingly, Cu-AD-SA shows a high water adsorption capacity of 0.16 g g-1 at low pressure of 0.2 P/P0 and 25 °C. Furthermore, dynamic water adsorption-desorption cycling experiments demonstrated a stable working capacity of 0.13 g g-1 for uptaking water from a low-humidity air (water partial pressure: 0.85 kPa, 20% RH at 30 °C, 5.3% RH at 55 °C) at 30 °C and desorption at 55 °C. The water adsorption mechanism was also studied by analyzing its single-crystal structure after water loading. The results indicated the existence of strong H-bonding interactions between water molecules and uncoordinated N atoms and amine groups on the framework, which should play an important role in the high adsorption at low pressure. All the above features suggest great potential of Cu-AD-SA for water harvesting in arid regions.
Collapse
Affiliation(s)
- Lu Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Kecheng Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Hao-Tian An
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Membrane Separation and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
42
|
Three-dimensional amino acid backbone Cu-aspartate metal–organic framework as a catalyst for the cycloaddition of propylene oxide and CO2. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01991-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Yuan R, Chen H, Zhu QQ, He H. Rational fabrication of a porous Cd-organic framework for chemical fixation of CO2 and selective sorption of p-xylene over other isomers. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Abstract
Crystalline porous materials (CPM)-200-In and CPM-200-In/Mg metal-organic frameworks (MOFs) were synthesized by a solvothermal method and were characterized by using powder X-ray diffraction (PXRD), FT-IR, Brunauer–Emmett–Teller (BET), temperature programmed desorption (TPD), TGA, XPS, and SEM-EDS. They were used as heterogeneous catalysts for the cycloaddition of CO2 with epoxides and found to be highly efficient toward the cycloaddition reaction at moderate reaction conditions under solvent-free conditions. The catalyst was easily separated by a simple filtration and can be reused up to five consecutive times without any considerable decrease of its initial activity. CPM-200-In/Mg showed excellent catalytic performance in the cycloaddition reaction due to the synergistic role of the acidic sites and basic sites. A plausible reaction mechanism for the CPM-200-In/Mg MOF catalyzed cycloaddition reaction is proposed based on the experimental results and our previously reported DFT (Density Functional Theory) studies.
Collapse
|
45
|
Pander M, Janeta M, Bury W. Quest for an Efficient 2-in-1 MOF-Based Catalytic System for Cycloaddition of CO 2 to Epoxides under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8344-8352. [PMID: 33560110 PMCID: PMC8023534 DOI: 10.1021/acsami.0c20437] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/28/2021] [Indexed: 05/21/2023]
Abstract
We have devised a straightforward tandem postsynthetic modification strategy for Zr-based metal-organic framework (MOF) materials, which resulted in a series of well-defined 2-in-1 heterogeneous catalysts, cat1-cat8, exhibiting high catalytic activity in the synthesis of cyclic carbonates under solvent-free and co-catalyst-free conditions. The materials feature precisely located co-catalyst moieties decorating the metal nodes throughout the bulk of the MOF and yield cyclic carbonates with up to 99% efficiency at room temperature. We use diffuse reflectance infrared Fourier transform (DRIFT) and solid-state nuclear magnetic resonance (NMR) measurements to elucidate the role of each component in this model catalytic reaction. Establishing a method to precisely control the co-catalyst loading allowed us to observe the cooperativity between Lewis acid sites and the co-catalyst in the 2-in-1 heterogeneous system.
Collapse
|
46
|
Zhai G, Liu Y, Lei L, Wang J, Wang Z, Zheng Z, Wang P, Cheng H, Dai Y, Huang B. Light-Promoted CO2 Conversion from Epoxides to Cyclic Carbonates at Ambient Conditions over a Bi-Based Metal–Organic Framework. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05145] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Guangyao Zhai
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Longfei Lei
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Jiajia Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, P. R. China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
47
|
Lan J, Qu Y, Wang Z, Xu P, Sun J. A facile fabrication of a multi-functional and hierarchical Zn-based MOF as an efficient catalyst for CO 2 fixation at room-temperature. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00104c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-functional and hierarchical Zn-MOF was rapidly synthesized by room-temperature stirring using an organic amine as a protonation agent and exhibited remarkable improvement for CO2 cycloaddition to bulky epoxides.
Collapse
Affiliation(s)
- Jianwen Lan
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Ye Qu
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Zhijiang Wang
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Ping Xu
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| |
Collapse
|
48
|
Yu Y, Wang Z, Li Z, Hang X, Bi Y. Assembly of {Co 14} nanoclusters from adenine-modified Co 4-thiacalix[4]arene units. CrystEngComm 2021. [DOI: 10.1039/d1ce00440a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An adenine-modified Co4-thiacalix[4]arene unit can serve as a second building unit for fabrication of three Co14 clusters with different structures.
Collapse
Affiliation(s)
- Yanan Yu
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
| | - Zhao Wang
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
| | - Ziping Li
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
| | - Xinxin Hang
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
- School of Chemistry and Chemical Engineering
| | - Yanfeng Bi
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
| |
Collapse
|
49
|
Liu Y, Zhang S, Wu Y, Li W, Yang Y. A 3D Adenine‐based Cd‐MOF: Synthesis, Structure and Photoluminescent Sensing for an Aromatic Azo Compound. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yang Liu
- Key Laboratory of Functional Organometallic Materials, Department of Chemistry and Materials Science Hengyang Normal University Hengyang City Hunan Province P. R. China
| | - Shi‐Ting Zhang
- Key Laboratory of Functional Organometallic Materials, Department of Chemistry and Materials Science Hengyang Normal University Hengyang City Hunan Province P. R. China
| | - Yan‐Bin Wu
- Key Laboratory of Functional Organometallic Materials, Department of Chemistry and Materials Science Hengyang Normal University Hengyang City Hunan Province P. R. China
| | - Wei Li
- Key Laboratory of Functional Organometallic Materials, Department of Chemistry and Materials Science Hengyang Normal University Hengyang City Hunan Province P. R. China
| | - Ying‐Qun Yang
- Key Laboratory of Functional Organometallic Materials, Department of Chemistry and Materials Science Hengyang Normal University Hengyang City Hunan Province P. R. China
| |
Collapse
|
50
|
Li Y, Wang G, Yang H, Hou L, Wang Y, Zhu Z. New Supercage Metal–Organic Framework Based on Allopurinol Ligands Showing Acetylene Storage and Separation. Chemistry 2020; 26:16402-16407. [DOI: 10.1002/chem.202002751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Yong‐Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the, Ministry of Education National Demonstration Center for, Experimental Chemistry Education College of Chemistry &, Materials Science Northwest University Xi'an 710069 P. R. China
| | - Gang‐Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the, Ministry of Education National Demonstration Center for, Experimental Chemistry Education College of Chemistry &, Materials Science Northwest University Xi'an 710069 P. R. China
| | - Hong‐Yun Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the, Ministry of Education National Demonstration Center for, Experimental Chemistry Education College of Chemistry &, Materials Science Northwest University Xi'an 710069 P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the, Ministry of Education National Demonstration Center for, Experimental Chemistry Education College of Chemistry &, Materials Science Northwest University Xi'an 710069 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the, Ministry of Education National Demonstration Center for, Experimental Chemistry Education College of Chemistry &, Materials Science Northwest University Xi'an 710069 P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| |
Collapse
|